Piecewise Functions Graphing Answer Key

Name:
Date:
Piecewise Functions and Their Graphs
Piecewise Functions:
Example 1:
Graph the following piecewise function:
βˆ’π’™ + πŸ’,
𝒙 < βˆ’πŸ‘
𝒇 𝒙 =
πŸπ’™,
𝒙 β‰₯ βˆ’πŸ‘
Evaluate the following:
𝒇 βˆ’πŸ“ =
𝒇 βˆ’πŸ‘
𝒇(𝟐)
Example 1:
Graph the following piecewise function:
π’™πŸ βˆ’ 𝟏
π’™β‰€πŸ
𝒇 𝒙 = 𝒙+πŸ’
πŸβ‰€π’™β‰€πŸ“
βˆ’πŸ‘
𝒙>πŸ“
Evaluate the following:
𝒇 βˆ’πŸ“ =
𝒇 βˆ’πŸ‘
𝒇(𝟐)
Period:
1.
⎧βŽͺx + 5
f (x ) = ⎨ 2
βŽͺ⎩x + 2x + 3
x < βˆ’2
x β‰₯ βˆ’2
f (3) =
f (βˆ’4 ) =
f (βˆ’2 ) =
2.
⎧βŽͺ2x + 1
f (x ) = ⎨ 2
βŽͺ⎩x + 3
f (βˆ’2 ) =
f (6 ) =
f (1 ) =
x β‰₯1
x <1
3.
βŽ§βˆ’2x + 1
f (x ) = ⎨
⎩5x βˆ’ 4
x ≀2
x >2
f (βˆ’4 ) =
f (8 ) =
f (2 ) =
4.
⎧x 2 βˆ’ 1
βŽͺ
f (x ) = ⎨2x βˆ’ 1
βŽͺ3
⎩
f (βˆ’2 ) =
f (0 ) =
f (5 ) =
x ≀0
0<x ≀5
x >5
5.
⎧x 2
βŽͺβŽͺ
f x = ⎨7
βŽͺβˆ’x 2 + 4
βŽͺ⎩
()
x <0
x =0
x >0
f (βˆ’4 ) =
f (0 ) =
f (3) =
6.
⎧5
x ≀ βˆ’4
βŽͺβŽͺ
f x = ⎨x βˆ’ 3 βˆ’ 4 ≀ x ≀ βˆ’2
βŽͺβˆ’2x βˆ’ 3
x > βˆ’2
βŽͺ⎩
()
f (βˆ’4 ) =
f (0 ) =
f (3) =