3/3/2010 In a simple process we can think about how the Entropy of a system changes As Boltzmann demonstrated, increasing the number of microstates increases the entropy Factors that can cause an increase in the number of microstates include. T Temperature t Increasing the temperature The number of particles Increasing the number of particles is like increasing the number of cards in a deck Volume Increasing the Volume gives molecules greater freedom to move around and increases the number of possible microstates What happens as the Temperature of a system is lowered? 1 3/3/2010 The Third Law Of Thermodynamics At 0K, all the units in the lattice have no thermal energy, no motion, 1 Microstate S = k lnW W = 1 lnW = 0 So S = 0 What happens to Entropy as we continue to heat 2 3/3/2010 19.4 Entropy Changes in Chemical Reactions We can measure ΔH of a reaction by using calorimetry, however there is no such easy method for determining ΔS for a reaction Absolute values for Entropies, S, can be obtained Standard Molar Entropy So is defined for pure substances at 1 atm pressure and 298K The Entropy change for a reaction can be calculated from the Standard Molar Entropies ΔSo = Σ nSo (products) - Σ mSo (reactants) Sample Exercise 19.5 Entropy Changes in the Surroundings The Entropy change of the surroundings depends on the how much heat is absorbed or given off by the system For a constant pressure reaction (usual) then qp (heat exchanged at constant pressure) = ΔH so the entropy change of the surroundings can be written as 3 3/3/2010 Because Souniv is positive (increases) for any spontaneous reaction we can put together the equations for calculating ΔSsys with ΔSsurr to predict whether a reaction will be spontaneous For the reaction CO(g) + 2H2(g) → CH3OH (l) at 298K Prediction of Spontaneity depends on The sign of ΔH and ΔS And the magnitude of ΔH, ΔS and the temperature (in KELVIN) A spontaneous reaction can be exothermic or endothermic 4 3/3/2010 19.5 Gibbs Free Energy From the calculation previous using ΔSouniv = ΔSosys + ΔSosurr the spontaneity of a reaction was seen to involve enthalpy H and Entropy S J W Gibbs came up with a new state function G, that connected entropy and enthalpy to predict whether a reaction occurring at a constant temperature would be spontaneous From the definition of ΔSuniv, we can relate the state function G to spontaneity ΔSuniv = ΔSsys + ΔSsurr = ΔSsys + (ΔHsys/T) Multiply both sides by –T gives -TΔSuniv = ΔHsys - TΔSsys = ΔGsys ΔGsys = - TΔSuniv at constant temperature and pressure So the value of ΔG should predict whether a reaction will be spontaneous In any spontaneous process occurring at constant temperature and pressure the free energy always decreases 5 3/3/2010 This can be explained in the diagram for the formation of ammonia The expression for Q is the same as the Equilibrium Constant except that the reactants and products need not be in equilibrium Q < K reaction goes towards products, (Q > K vice versa) 6
© Copyright 2026 Paperzz