Problem 1 (Exam 1 Fall 2015 - 4). The integral of the following... [some options are given] R dx (3−2x−x2 )3/2 can be transformed into which solution. Complete the square downstairs: Z Z Z dx dx dx = = (3 − 2x − x2 )3/2 (3 + 1 − 1 − 2x − x2 )3/2 (4 − (1 + x)2 )3/2 so we see that the useful substitution is (1 + x) = 2 sin(θ), dx = 2 cos(θ)dθ. The integral becomes Z Z Z Z dx cos θ 1 2 1 1 dθ = = 3/2 dθ = sec2 (θ)dθ. 2 3/2 2 3/2 2 (4 − (1 + x) ) 4 (cos (θ)) 4 cos (θ) 4 Problem 2 (Exam 1 Fall 2015 - 9). Evaluate R2 1 x3 ln(8x) dx. solution. Integrate by parts choosing u = ln(8x), dv = x3 dx. Z 2 4 Z 2 x x4 2 3 x ln(8x) dx = ln(8x) · − dx 4 1 1 4x 1 Z 2 3 x4 2 x = ln(8x) · − dx 4 1 1 4 x4 2 x4 2 = ln(8x) · − 4 1 16 1 1 16 1 16 − − = ln(16) − ln(8) 4 4 16 16 1 1 4 3 = 4 ln(2 ) − ln(2 ) − 1 − 4 16 15 3 = 16 ln(2) − ln(2) − 16 4 3 15 = 16 − ln(2) − 4 16 61 15 = ln(2) − 4 16
© Copyright 2026 Paperzz