Math 110, 19/1/1431H Exam2–A 1 Instructions. (30points) Solve

Math 110,
19/1/1431H
Exam2–A
1
Instructions. (30 points) Solve each of the following problems.
(1pts )
1. The period of 𝑓 (π‘₯) = cos (2π‘₯)
is
(a)
 πœ‹
(1pts )
(b)
(c) 2πœ‹
(d) 2
Solution:
2πœ‹
= πœ‹.
The period of 𝑓 (π‘₯) = cos (2π‘₯) is
2
(πœ‹)
=
2. cos
12
√
3+1
√
(b)
(a)

2 2
√
3+1
(d)
(c) βˆ’ √
2 2
Solution:
(πœ‹ πœ‹ )
(πœ‹)
= cos
βˆ’
cos
12
3) 4 ( )
(πœ‹ )
(πœ‹)
(πœ‹
πœ‹
cos
+ sin
sin
= cos
3
3
4
√ 4
1 1
3 1
β‹…βˆš
= β‹…βˆš +
2
2
2
2
√
3+1
= √
2 2
(1pts )
πœ‹
2
3. If 𝑓 (π‘₯) = βˆ’π‘₯3 βˆ’ π‘₯ βˆ’ 1,
(a)
 βˆ’5
1
5
Solution:
(c) βˆ’
π‘₯ ∈ [0, 2],
√
βˆ’ 3+1
√
2 2
√
3βˆ’1
√
2 2
πœ‹
πœ‹
πœ‹
= βˆ’ ,
12
3
4
cos (𝐴 βˆ’ 𝐡) = cos 𝐴 cos 𝐡 + sin 𝐴 sin 𝐡,
cos
(πœ‹ )
4
√
(πœ‹)
(πœ‹)
(πœ‹)
1
1
3
= √ = sin
,sin
=
, cos
=
4
3
2
3
2
2
then the average rate of change
(b)
1
5
(d) 5
𝑓 (π‘₯2 ) βˆ’ 𝑓 (π‘₯1 )
Δ𝑓
=
Ξ”π‘₯
π‘₯2 βˆ’ π‘₯1
𝑓 (2) βˆ’ 𝑓 (0)
=
2βˆ’0
βˆ’11 + 1
= βˆ’5.
=
2
Δ𝑓
=
Ξ”π‘₯
Math 110,
(1pts )
19/1/1431H
Exam2–A
2
𝑦
4. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 β€² (βˆ’2) = .
𝑦 = 𝑓 (π‘₯)
3
2
(a) βˆ’3
(b)
 0
(c) 1
(d) 3
1
-4
-3
-2
-1
1
2
3
π‘₯
-1
-2
(1pts )
Solution:
From the graph we can see that the tangent line to the graph of 𝑦 = 𝑓 (π‘₯) at βˆ’2 is
horizontal (𝑦 = 3) and hence its slope is zero. Now, since the first derivative is the slope of
the tangent line to the graph at βˆ’2 then 𝑓 β€² (βˆ’2) = 0.
(
πœ‹)
=
5. cos π‘₯ +
2
(a) cos π‘₯
(b)
 βˆ’ sin π‘₯
(c) sin π‘₯
(d) βˆ’ cos π‘₯
Solution:
(πœ‹ )
(πœ‹ )
(
πœ‹)
= cos π‘₯ cos
βˆ’ sin π‘₯ sin
cos (𝐴 + 𝐡) = cos 𝐴 cos 𝐡 βˆ’ sin 𝐴 sin 𝐡,
cos π‘₯ +
2
2
2
(πœ‹)
(πœ‹)
= 0,sin
=1
= cos π‘₯ β‹… 0 βˆ’ sin π‘₯ β‹… 1
cos
2
= 0 βˆ’ sin π‘₯ = βˆ’ sin π‘₯
(1pts )
6. If 𝑦 = π‘₯2 csc π‘₯,
2
then 𝑦 β€² =
(a) βˆ’2π‘₯ csc π‘₯ cot π‘₯ + π‘₯2 csc π‘₯
(b)
 2π‘₯ csc π‘₯ βˆ’ π‘₯2 csc π‘₯ cot π‘₯
(c) 2π‘₯ csc π‘₯ + π‘₯2 csc π‘₯ cot π‘₯
Solution:
(d) βˆ’2π‘₯ csc π‘₯ cot π‘₯
𝑦 = π‘₯2 csc π‘₯
𝑦 β€² = (π‘₯2 )β€² csc π‘₯ + π‘₯2 (csc π‘₯)β€²
Use the fact (𝑓 𝑔)β€² = 𝑓 β€² 𝑔 + 𝑓 𝑔 β€²
= 2π‘₯ csc π‘₯ + π‘₯2 (βˆ’ csc π‘₯ cot π‘₯)
= 2π‘₯ csc π‘₯ βˆ’ π‘₯2 csc π‘₯ cot π‘₯.
(1pts )
𝑦
7. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 β€² (2) > 0.
3
2
(a)
 True
(b) False
𝑦 = 𝑓 (π‘₯)
1
-4
-3
-2
-1
1
-1
-2
2
3
π‘₯
Math 110,
19/1/1431H
Exam2–A
3
Solution:
From the graph we can see that the tangent line to the graph of 𝑦 = 𝑓 (π‘₯) at 2 is rising
up (left to right) and hence its slope is positive. Now, since the first derivative is the slope
of the tangent line to the graph at 2 then 𝑓 β€² (2) > 0.
(1pts )
8. If 𝑦 = cos π‘₯ tan π‘₯,
then 𝑦 β€² =
(a) sec π‘₯ tan π‘₯
(b) βˆ’ sin π‘₯
(c)
 cos π‘₯
Solution:
(d) βˆ’ csc π‘₯ cot π‘₯
𝑦 = cos π‘₯ tan π‘₯
sin π‘₯
𝑦 = cos π‘₯
cos π‘₯
𝑦 = sin π‘₯
𝑦 β€² = cos π‘₯.
(1pts )
9. If 𝑦 = 6π‘₯2 βˆ’
(a)
 12 βˆ’
4
π‘₯3
(c) 12π‘₯ +
Solution:
4
2
βˆ’ βˆ’1 ,
π‘₯ π‘₯
2
βˆ’4
π‘₯2
then 𝑦 β€²β€² =
(b) 12 +
4
π‘₯3
(d) 12 βˆ’
24
π‘₯4
4
2
βˆ’
π‘₯ π‘₯βˆ’1
𝑦 = 6π‘₯2 βˆ’ 2π‘₯βˆ’1 βˆ’ 4π‘₯
𝑦 = 6π‘₯2 βˆ’
𝑦 β€² = 12π‘₯ + 2π‘₯βˆ’2 βˆ’ 4
𝑦 β€²β€² = 12 βˆ’ 4π‘₯βˆ’3
4
𝑦 β€²β€² = 12 βˆ’ 3 .
π‘₯
(1pts )
𝑦
10. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 is differentiable at π‘₯ = 1.
3
2
(a) True
(b)
 False
𝑦 = 𝑓 (π‘₯)
1
-4
-3
-2
-1
1
2
-1
-2
Solution:
𝑓 is not differentiable at π‘₯ = 1 since the derivative from the left of 1 approaches βˆ’βˆž
and from the right of 1 approaches ∞.
3
π‘₯
Math 110,
(1pts )
19/1/1431H
Exam2–A
4
tan (4𝑦)
=
𝑦→0
3𝑦
11. lim
(a) 3
(b)

4
3
(c) 1
(d)
3
πœ‹
4
Solution:
Direct substitution will give us I.F. type 0/0.
1
tan (4𝑦)
4 tan (4𝑦)
= lim
𝑦→0
3𝑦
3 𝑦→0
4𝑦
tan (4𝑦)
4
= lim
3 𝑦→0 4𝑦
4
4
= (1) =
3
3
lim
(1pts )
tan πœƒ
=1
πœƒβ†’0 πœƒ
use lim
π‘₯3 + 8
=
π‘₯β†’βˆ’2 π‘₯2 βˆ’ 4
12. lim
(a) βˆ’1
(b) 3
(c)
 βˆ’3
Solution:
(d) 0
π‘₯3 + 8
π‘₯3 + 8
=
lim
A direct substitution will give us I.F. 0/0
π‘₯β†’βˆ’2 π‘₯2 βˆ’ 4
π‘₯β†’βˆ’2 π‘₯2 βˆ’ 4
(π‘₯ + 2)(π‘₯2 βˆ’ 2π‘₯ + 4)
= lim
Factoring π‘₯ + 2 from denominator and numerator
π‘₯β†’βˆ’2
(π‘₯ + 2)(π‘₯ βˆ’ 2)
2 βˆ’ 2π‘₯ + 4)
(π‘₯
+2)(π‘₯
= lim
βˆ’ 2)
π‘₯β†’βˆ’2
(π‘₯
+2)(π‘₯
π‘₯2 βˆ’ 2π‘₯ + 4
= lim
π‘₯β†’βˆ’2
π‘₯βˆ’2
2
12
(βˆ’2) βˆ’ 2(βˆ’2) + 4
=
= βˆ’3.
=
βˆ’2 βˆ’ 2
βˆ’4
lim
(1pts )
13. If 𝑦 =
√
2,
1
(a) √
2
√
(c) 2
Solution:
then 𝑦 β€² =
(b)
 0
1
(d) √
2 2
Math 110,
19/1/1431H
Exam2–A
𝑦=
β€²
√
𝑦 = 0.
2
the derivative of a constant is zero
5
Math 110,
(1pts )
19/1/1431H
Exam2–A
π‘₯ cos (2π‘₯)
=
π‘₯β†’0 sin (5π‘₯)
14. lim
1
5
(b)
2
5
(c) 5
(d)
5
2
(a)

Solution:
lim
π‘₯β†’0
(1pts )
6
π‘₯ cos (2π‘₯)
π‘₯
= lim
β‹… cos (2π‘₯)
π‘₯β†’0 sin (5π‘₯)
sin (5π‘₯)
5π‘₯
β‹… cos (2π‘₯)
= lim
π‘₯β†’0 5 sin (5π‘₯)
5π‘₯
1
lim cos (2π‘₯)
= lim
π‘₯β†’0
5
sin (5π‘₯) π‘₯β†’0
1
1
= .1. cos 0 =
5
5
π‘Žπ‘
π‘Ž
= β‹… 𝑐.
𝑐
𝑏
make the top similar to the angle
Use that lim
π‘₯β†’0
sin π‘₯
π‘₯
= 1 = lim
π‘₯β†’0 sin π‘₯
π‘₯
2π‘₯3 + 1
=
π‘₯β†’βˆž 6 + π‘₯2 + 3π‘₯3
15. lim
(a) 0
(b)
3
2
2
(d) 1
3
Solution:
Since lim (2π‘₯3 + 1) = ∞ = lim (6 + π‘₯2 + 3π‘₯3 ) we have I.F. type ∞/∞. Divide each
π‘₯β†’βˆž
π‘₯β†’βˆž
term in the numerator and each term in the denominator by the highest power in the
denominator.
(c)

2π‘₯3 + 1
+1
π‘₯3
= lim
lim
π‘₯β†’βˆž 6 + π‘₯2 + 3π‘₯3
π‘₯β†’βˆž 6 + π‘₯2 + 3π‘₯3
π‘₯3
1
2π‘₯3
+ 3
3
π‘₯
π‘₯
= lim
π‘₯β†’βˆž 6
π‘₯2 3π‘₯3
+
+ 3
π‘₯3 π‘₯3
π‘₯
1
2+ 3
π‘₯
= lim
1
π‘₯β†’βˆž 6
+ +3
π‘₯3 π‘₯
2
2+0
=
=
0+0+3
3
2π‘₯3
Math 110,
(1pts )
19/1/1431H
16. If tan π‘₯ =
(a)
5
,
12
0<π‘₯<
Exam2–A
7
πœ‹
then cos π‘₯ =
2
13
12
5
13
Solution:
(c)
(b)

12
13
(d)
13
5
13
opposite
5
=
we draw a triangle is shown to
12
adjacent
2
2
2
the right: Now,
( πœ‹π») = 5 + 12 = 25 + 144 = 169 β‡’ 𝐻 = 13.
, then sin π‘₯ β‰₯ 0 and cos π‘₯ β‰₯ 0. Hence
Since π‘₯ ∈ 0,
2
12
cos π‘₯ = .
13
Since tan π‘₯ =
(1pts )
17. If 2 βˆ’ π‘₯2 ≀ 𝑓 (π‘₯) ≀ 2 cos π‘₯,
5
π‘₯
12
then lim 𝑓 (π‘₯) =
π‘₯β†’0
(a) 0
(b) βˆ’2
(c)
 2
(d) 1
Solution:
Since lim (2 βˆ’ π‘₯2 ) = 2 = lim 2 cos π‘₯, then by The Sandwich Theorem we have
π‘₯β†’0
π‘₯β†’0
lim 𝑓 (π‘₯) = 2.
π‘₯β†’0
Math 110,
(1pts )
19/1/1431H
Exam2–A
π‘₯2 βˆ’ 5π‘₯
=
π‘₯β†’5 π‘₯2 βˆ’ 3π‘₯ βˆ’ 10
18. lim
(a)
1
7
(b)

5
3
Solution:
5
7
(d) 0
(c)
π‘₯2 βˆ’ 5π‘₯
π‘₯2 βˆ’ 5π‘₯
=
lim
π‘₯β†’5 π‘₯2 βˆ’ 3π‘₯ βˆ’ 10
π‘₯β†’5 π‘₯2 βˆ’ 3π‘₯ βˆ’ 10
π‘₯(π‘₯ βˆ’ 5)
= lim
π‘₯β†’5 (π‘₯ βˆ’ 5)(π‘₯ + 2)
π‘₯
(π‘₯
βˆ’5)
= lim
+ 2)
π‘₯β†’5 (π‘₯
βˆ’5)(π‘₯
π‘₯
= lim
π‘₯β†’5 π‘₯ + 2
5
5
= .
=
5+2
7
lim
(1pts )
8
A direct substitution will give us I.F. 0/0
Factoring π‘₯ βˆ’ 5 from denominator and numerator
∣π‘₯ βˆ’ 1∣ βˆ’ ∣π‘₯ + 1∣
π‘₯β†’0
π‘₯
19. lim
(a)
 βˆ’2
(b) 0
(c) 2
(d) Does Not Exist
Solution:
A direct substitution gives I.F. 0/0. We find the limit form the right of 0 and the left
of 0.
lim
π‘₯β†’0+
∣π‘₯ βˆ’ 1∣ βˆ’ ∣π‘₯ + 1∣
∣π‘₯ βˆ’ 1∣ βˆ’ ∣π‘₯ + 1∣
= lim
+
π‘₯
π‘₯
π‘₯β†’0
βˆ’(π‘₯ βˆ’ 1) βˆ’ (π‘₯ + 1)
= lim
π‘₯
π‘₯β†’0+
βˆ’π‘₯ + 1 βˆ’ π‘₯ βˆ’ 1
= lim
π‘₯
π‘₯β†’0+
βˆ’2
π‘₯
= lim
π‘₯
π‘₯β†’0+ = lim βˆ’2 = βˆ’2
π‘₯ β†’ 0+ β‡’ π‘₯ > 0, π‘₯ > βˆ’1, π‘₯ < 1,
hence ∣π‘₯ βˆ’ 1∣ = βˆ’(π‘₯ βˆ’ 1), ∣π‘₯ + 1∣ = π‘₯ + 1
π‘₯β†’0+
lim
π‘₯β†’0βˆ’
∣π‘₯ βˆ’ 1∣ βˆ’ ∣π‘₯ + 1∣
∣π‘₯ βˆ’ 1∣ βˆ’ ∣π‘₯ + 1∣
= lim
βˆ’
π‘₯
π‘₯
π‘₯β†’0
βˆ’(π‘₯ βˆ’ 1) βˆ’ (π‘₯ + 1)
= lim
π‘₯
π‘₯β†’0βˆ’
βˆ’π‘₯ + 1 βˆ’ π‘₯ βˆ’ 1
= lim
π‘₯
π‘₯β†’0βˆ’
βˆ’2
π‘₯
= lim
π‘₯
π‘₯β†’0βˆ’ = lim βˆ’2 = βˆ’2
π‘₯β†’0βˆ’
π‘₯ β†’ 0βˆ’ β‡’ π‘₯ < 0, π‘₯ > βˆ’1, π‘₯ < 1,
hence ∣π‘₯ βˆ’ 1∣ = βˆ’(π‘₯ βˆ’ 1), ∣π‘₯ + 1∣ = π‘₯ + 1
Math 110,
19/1/1431H
Now, since lim
π‘₯β†’0+
Exam2–A
∣π‘₯ βˆ’ 1∣ βˆ’ ∣π‘₯ + 1∣
∣π‘₯ βˆ’ 1∣ βˆ’ ∣π‘₯ + 1∣
= βˆ’2 = lim
, then
π‘₯
π‘₯
π‘₯β†’0βˆ’
lim
π‘₯β†’0
√
(1
pts
)
20. lim
π‘₯β†’2
∣π‘₯ βˆ’ 1∣ βˆ’ ∣π‘₯ + 1∣
= βˆ’2.
π‘₯
π‘₯+2βˆ’2
=
π‘₯βˆ’2
(a) 0
(b) βˆ’
1
4
1
(d) 4
4
Solution:
A direct substitution will give us I.F. 0/0. Now,
√
√
√
π‘₯+2βˆ’2
π‘₯+2βˆ’2
π‘₯+2+2
= lim
β‹…βˆš
lim
π‘₯β†’2
π‘₯β†’2
π‘₯βˆ’2
π‘₯βˆ’2
π‘₯+2+2
√
2
( π‘₯ + 2) βˆ’ (2)2
√
= lim
π‘₯β†’2 (π‘₯ βˆ’ 2)( π‘₯ + 2 + 2)
π‘₯+2βˆ’4
√
= lim
π‘₯β†’2 (π‘₯ βˆ’ 2)( π‘₯ + 2 + 2)
(π‘₯
βˆ’2)
√
= lim
π‘₯ + 2 + 2)
π‘₯β†’2 (π‘₯
βˆ’2)(
1
= lim √
π‘₯β†’2
π‘₯+2+2
1
=√
2+2+2
1
= .
4
(c)

(1pts )
21. lim
π‘₯β†’2+
√
π‘₯+2+2
Multiply by 1 = √
π‘₯+2+2
Simplify
π‘₯βˆ’1
=
π‘₯βˆ’2
(a) βˆ’βˆž
(b) 1
(c) 0
Solution:
(d)
 ∞
lim
π‘₯β†’2+
π‘₯βˆ’1
π‘₯βˆ’1
= lim
+
π‘₯ βˆ’ 2 π‘₯β†’2 π‘₯ βˆ’ 2
π‘₯βˆ’1
= lim
+
π‘₯β†’2 π‘₯ βˆ’ 2
A direct substitution gives I.F. 3/0.
If π‘₯ > 2 and near 2,then π‘₯ βˆ’ 1 > 0, π‘₯ βˆ’ 2 > 0.
+
= lim
π‘₯β†’2+
π‘₯βˆ’1
+
π‘₯βˆ’2
=∞
9
Math 110,
19/1/1431H
Exam2–A
𝑦
5
𝑦=
4
3
π‘₯βˆ’1
π‘₯βˆ’2
2
1
-5
-4
-3
-2
-1
-1
-2
-3
-4
1
2
3
4
π‘₯
5
6
7
10
Math 110,
(1pts )
19/1/1431H
Exam2–A
22. An equation for the tangent line to 𝑓 (π‘₯) =
π‘₯2
2
+1
at the point (1, 1) is
(a)
 𝑦 = βˆ’π‘₯ + 2
(b) 𝑦 = π‘₯
(c) 𝑦 = 2π‘₯ βˆ’ 1
Solution:
The slope of the tangent line to 𝑓 (π‘₯) =
(d) 𝑦 = βˆ’2π‘₯ + 3
𝑓 (π‘₯) =
π‘₯2
11
2
at π‘₯ = 1 is 𝑓 β€² (1).
+1
(π‘₯2 + 1)(0) βˆ’ 2(2π‘₯)
βˆ’4π‘₯
2
β€²
(π‘₯)
=
= 2
.
β‡’
𝑓
2
2
2
π‘₯ +1
(π‘₯ + 1)
(π‘₯ + 1)2
Hence
the slope of the tangent = 𝑓 β€² (1) =
βˆ’4(1)
= βˆ’1.
((1)2 + 1)2
Now, we have π‘š = βˆ’1 and (1, 1), hence
𝑦 βˆ’ 𝑦1 = π‘š(π‘₯ βˆ’ π‘₯1 ) β‡’ 𝑦 βˆ’ 1 = βˆ’1(π‘₯ βˆ’ 1) β‡’ 𝑦 βˆ’ 1 = βˆ’π‘₯ + 1 β‡’ 𝑦 = βˆ’π‘₯ + 2.
(1pts )
23. The curve 𝑓 (π‘₯) =
2π‘₯2 βˆ’ π‘₯ + 1
π‘₯2 βˆ’ 4π‘₯ + 1
has horizontal asymptote at
(a) π‘₯ = 2
(b)
 𝑦=2
(c) 𝑦 = 0
(d) 𝑦 = ±2
Solution:
To find the horizontal asymptote we take the limit as π‘₯ β†’ ±βˆž. Note that both the
numerator and the denominator β†’ ±βˆž, as π‘₯ β†’ ±βˆž. To find this limit divided both the
numerator and the denominator by the highest power of π‘₯ in the denominator which is π‘₯2 .
So,
2π‘₯2 βˆ’ π‘₯ + 1
βˆ’π‘₯+1
π‘₯2
= lim
lim 2
2
π‘₯β†’±βˆž π‘₯ βˆ’ 4π‘₯ + 1
π‘₯β†’±βˆž π‘₯ βˆ’ 4π‘₯ + 1
π‘₯2
1
1
2βˆ’ + 2
π‘₯ π‘₯
= lim
1
4
π‘₯β†’±βˆž
1βˆ’ + 2
π‘₯ π‘₯
2βˆ’0+0
= 2.
=
1βˆ’0+0
2π‘₯2
Therefore 𝑦 = 2 is a horizontal asymptote.
(1pts )
24. If 𝑦 =
π‘₯βˆ’1
,
π‘₯+1
then 𝑦 β€² =
(a)

2
(π‘₯ + 1)2
(b)
2π‘₯
(π‘₯ + 1)2
(c)
βˆ’2π‘₯
(π‘₯ + 1)2
(d)
βˆ’2
(π‘₯ + 1)2
Math 110,
19/1/1431H
Exam2–A
12
Solution:
Bottom Derivative of Top
β€²
Top
(π‘₯ + 1)
(π‘₯ βˆ’ 1)β€²
βˆ’ (π‘₯ βˆ’ 1)
𝑦 =
Derivative of Bottom
(π‘₯ + 1)β€²
Bottom2
(π‘₯ + 1)2
(π‘₯ + 1)(1) βˆ’ (π‘₯ βˆ’ 1)(1)
(π‘₯ + 1)2
π‘₯ + 1 βˆ’ (π‘₯ βˆ’ 1)
=
(π‘₯ + 1)2
π‘₯+1βˆ’π‘₯+1
=
(π‘₯ + 1)2
2
=
.
(π‘₯ + 1)2
=
(1pts )
25. The function 𝑓 (π‘₯) =
π‘₯+1
π‘₯2 βˆ’ 4π‘₯ + 3
is discontinuous at
(a) π‘₯ = βˆ’1, π‘₯ = 3
(b) π‘₯ = 1, π‘₯ = βˆ’3
(c) π‘₯ = βˆ’1, π‘₯ = βˆ’3
(d)
 π‘₯ = 1, π‘₯ = 3
π‘₯+1
is a rational function, then it is continuous on
π‘₯2 βˆ’ 4π‘₯ + 3
its domain which is the set of real number except the zeroes of the denominator and it is
discontinuous at the zeroes of the the denominator. Now
Solution: Notice that 𝑓 (π‘₯) =
π‘₯2 βˆ’ 4π‘₯ + 3 = 0 ⇔ (π‘₯ βˆ’ 1)(π‘₯ βˆ’ 3) = 0
⇔ π‘₯ = 1 or π‘₯ = 3.
Hence 𝑓 is discontinuous at π‘₯ = 1, π‘₯ = 3.
Math 110,
(1pts )
26. If 𝑦 =
19/1/1431H
π‘₯2 + π‘₯ + 1
,
π‘₯
(a) 1 +
Exam2–A
13
then 𝑦 β€² =
1
π‘₯
1
π‘₯2
Solution:
(c)
 1βˆ’
(b) 1 βˆ’
1
π‘₯
(d) 1 +
1
π‘₯2
π‘₯2 + π‘₯ + 1
π‘₯
𝑦 = π‘₯ + 1 + π‘₯βˆ’1
𝑦=
𝑦 β€² = 1 βˆ’ π‘₯βˆ’2
1
𝑦′ = 1 βˆ’ 2 .
π‘₯
(1pts )
27. If 𝑦 =
sin π‘₯
,
1 + sin π‘₯
then 𝑦 β€² =
(a) 1
cos π‘₯
(1 + sin π‘₯)2
Solution:
(c)

(b)
βˆ’ cos π‘₯
(1 + sin π‘₯)2
(d)
sin π‘₯
(1 + sin π‘₯)2
(1 + sin π‘₯)(cos π‘₯) βˆ’ (sin π‘₯)(cos π‘₯)
(1 + sin π‘₯)2
cos π‘₯ + sin π‘₯ cos π‘₯ βˆ’ sin π‘₯ cos π‘₯
=
(1 + sin π‘₯)2
cos π‘₯
=
.
(1 + sin π‘₯)2
𝑦′ =
(1pts )
28. The curve 𝑓 (π‘₯) =
π‘₯2
π‘₯+3
,
+ 2π‘₯ βˆ’ 3
has a vertical asymptote at
(a)
 π‘₯=1
(b) π‘₯ = 1,
π‘₯ = βˆ’3
(c) 𝑦 = 1
Solution:
Write 𝑓 (π‘₯) =
(d) 𝑦 = 1,
𝑦 = βˆ’3
π‘₯+3
. The zeroes of the denominator are 1, βˆ’3.
(π‘₯ βˆ’ 1)(π‘₯ + 3)
To chuck that π‘₯ = βˆ’3 is a vertical asymptote or not we take the limit at βˆ’3 from both
sides.
1
(π‘₯
+3)
1
= lim
=βˆ’ .
lim 𝑓 (π‘₯) = lim
π‘₯β†’βˆ’3
π‘₯β†’βˆ’3 (π‘₯
+ 3)(π‘₯ βˆ’ 1) π‘₯β†’βˆ’3 π‘₯ βˆ’ 1
4
Math 110,
19/1/1431H
Exam2–A
14
Hence π‘₯ = βˆ’3 is not a vertical asymptote.
To chuck that π‘₯ = 1 we take the limit
+
π‘₯+3
lim 𝑓 (π‘₯) = lim
π‘₯β†’1+
π‘₯β†’1+
+
= ∞.
(π‘₯ βˆ’ 1)(π‘₯ + 3)
Hence π‘₯ = 1 is a vertical asymptote.
(1pts )
𝑦
29. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 is continuous at π‘₯ = 0.
3
2
(a) True
1
(b)
 False
-4
-3
-2
-1
1
-1
Solution:
since lim 𝑓 (π‘₯) = 2 βˆ•= βˆ’1 = lim 𝑓 (π‘₯), then lim 𝑓 (π‘₯) does not exist.
π‘₯β†’0+
(1pts )
𝑦 = 𝑓 (π‘₯)
π‘₯β†’0
π‘₯β†’0βˆ’
π‘₯2 βˆ’ 2π‘₯ βˆ’ 15
=
π‘₯β†’βˆ’3
π‘₯2 + 9
30. lim
(a)
 0
(b)
βˆ’4
3
Solution:
4
3
(d) Does Not Exist
(c)
(βˆ’3)2 βˆ’ 2(βˆ’3) βˆ’ 15
π‘₯2 βˆ’ 2π‘₯ βˆ’ 15
=
π‘₯β†’βˆ’3
π‘₯2 + 9
(βˆ’3)2 + 9
9 + 6 βˆ’ 15
=
9+9
0
=0
=
18
lim
-2
2
3
π‘₯