Integration By Parts Formula udv uv vdu I. Guidelines for Selecting u and dv: (There are always exceptions, but these are generally helpful.) “L-I-A-T-E” Choose ‘u’ to be the function that comes first in this list: L: Logrithmic Function I: Inverse Trig Function A: Algebraic Function T: Trig Function E: Exponential Function Example A: x 3 ln x dx *Since lnx is a logarithmic function and x 3 is an algebraic function, let: u = lnx dv = (L comes before A in LIATE) 3 x dx 1 du = dx x v= x 3 3 x dx x4 4 ln xdx uv vdu (ln x) x4 4 x4 1 4 x dx (ln x) x4 1 3 x dx 4 4 x4 1 x4 (ln x) C 4 4 4 x4 x4 (ln x) C 4 16 www.rit.edu/asc ANSWER Page 1 of 7 Example B: sin x ln(cos x) dx u = ln(cosx) (Logarithmic Function) dv = sinx dx (Trig Function [L comes before T in LIATE]) du = v= sin x 1 ( sin x) dx tan x dx cos x sin x dx cos x ln(cos x) dx uv vdu (ln(cos x))( cos x) ( cos x)( tan x)dx cos x ln(cos x) (cos x) sin x dx cos x cos x ln(cos x) sin x dx cos x ln(cos x) cos x C ANSWER Example C: sin 1 x dx *At first it appears that integration by parts does not apply, but let: u sin 1 x (Inverse Trig Function) dv 1 dx (Algebraic Function) du 1 1 x2 dx v 1dx x sin 1 x dx uv vdu (sin 1 x)( x) x 1 1 x2 dx 1 x sin 1 x (1 x 2 ) 1 / 2 (2 x) dx 2 x sin 1 x x sin 1 x 1 (1 x 2 )1 / 2 (2) C 2 1 x2 C www.rit.edu/asc ANSWER Page 2 of 7 II. Alternative General Guidelines for Choosing u and dv: A. Let dv be the most complicated portion of the integrand that can be “easily’ integrated. B. Let u be that portion of the integrand whose derivative du is a “simpler” function than u itself. Example: x 3 4 x 2 dx *Since both of these are algebraic functions, the LIATE Rule of Thumb is not helpful. Applying Part (A) of the alternative guidelines above, we see that x 4 x 2 is the “most complicated part of the integrand that can easily be integrated.” Therefore: dv x 4 x 2 dx u x 2 (remaining factor in integrand) du 2 x dx 1 (2 x)(4 x 2 )1 / 2 dx 2 1 1 2 (4 x 2 ) 3 / 2 (4 x 2 ) 3 / 2 3 2 3 v x 3 x 4 x 2 dx 4 x 3 dx uv vdu 1 1 ( x 2 ) (4 x 2 ) 3 / 2 (4 x 2 ) 3 / 2 (2 x) dx 3 3 x2 1 (4 x 2 ) 3 / 2 (4 x 2 ) 3 / 2 (2 x) dx 3 3 x2 1 2 (4 x 2 ) 3 / 2 (4 x 2 ) 5 / 2 C 3 3 5 x2 2 (4 x 2 ) 3 / 2 (4 x 2 ) 5 / 2 C Answer 3 15 www.rit.edu/asc Page 3 of 7 III. Using repeated Applications of Integration by Parts: Sometimes integration by parts must be repeated to obtain an answer. Note: DO NOT switch choices for u and dv in successive applications. Example: x 2 sin x dx u x 2 (Algebraic Function) dv sin x dx (Trig Function) du 2 x dx v sin x dx cos x x 2 sin x dx uv vdu x 2 ( cos x) cos x x 2 cos x 2 x 2 x dx cos x dx Second application of integration by parts: u x (Algebraic function) (Making “same” choices for u and dv) dv cos x (Trig function) du dx v cos x dx sin x x 2 sin x dx x 2 cos x 2 [uv vdu] x 2 cos x 2 [ x sin x sin x dx] x 2 cos x 2 [ x sin x cos x c] x 2 cos x 2 x sin x 2 cos x c www.rit.edu/asc Answer Page 4 of 7 Note: Example: After each application of integration by parts, watch for the appearance of a constant multiple of the original integral. e x cos x dx u cos x (Trig function) dv e x dx (Exponential function) du sin x dx v e x dx e x e x cos x dx uv vdu cos x e x e x ( sin x) dx cos x e x e x sin x dx Second application of integration by parts: u sin x (Trig function) (Making “same” choices for u and dv) dv e x dx (Exponential function) du cos x dx v e x dx e x e e x x cos x dx e x cos x (uv vdu) cos x dx e x cos x sin x e x e x cos x dx Note appearance of original integral on right side of equation. Move to left side and solve for integral as follows: 2 e x cos x dx e x cos x e x sin x C e x cos x dx 1 x (e cos x e x sin x) C 2 Answer Practice Problems: www.rit.edu/asc Page 5 of 7 1. 3x 2. 3. x 4. x 5. cos 6. (ln x) 7. x 8. e 9. x 10. x(ln x) e x dx ln x dx x2 2 cos x dx sin x cos x dx 1 x dx 2 dx 9 x 2 dx 3 2x sin x dx x 1 dx 2 1 3 dx Solutions: www.rit.edu/asc Page 6 of 7 1. 3xe x 3e x C u 3x dv e x dx 2. ln x 1 C x x u ln x dv 3. x 2 sin x 2 x cos x 2 sin x C 1 dx x2 u x2 dv cos x dx 4. x cos 2 x sin 2 x C 4 8 note: sin 2 x sin x cos x 2 ux dv sin 2 x cos x dx 5. x cos 1 x u cos 1 x 1 x2 C dv dx 6. u (ln x) 2 x(ln x) 2 2 x ln x 2 x C dv dx 7. x2 2 (9 x 2 ) 3 / 2 (9 x 2 ) 5 / 2 C 3 15 u x2 dv (4 x 2 )1 / 2 x dx 8. 2e 2 x sin x e 2 x cos x C 5 5 u sin x dv e 2 x dx 9. 2 x 2 ( x 1) 3 / 2 8 x( x 1) 5 / 2 16( x 1) 7 / 2 C 3 15 105 u x2 dv ( x 1)1 / 2 dx 10. 1 C 2(ln x) 2 u 1 (ln x) 3 3 (ln x) dv www.rit.edu/asc 1 dx x Page 7 of 7
© Copyright 2025 Paperzz