Recent Advances in the Recovery and Purification of Actinium Isotopes E. P. Horwtiz1, D. R. McAlister1 and J.T. Harvey2 1PG Research Foundation, Inc. Lisle, IL 2Northstar Medical Radioisotopes, Madison, WI National Meeting of the ACS, Spring 2012 San Diego, CA The Chemistry of the Actinide and Transactinide Elements 500 Pu 400 Pages 300 200 Th 100 Ac 0 Pa U Np Am Cm Bk Cf Es Fm-Lr Sources of Actinium Isotopes 233U 1.6 x 105 y 229Th 235U 7.3 x 103 y 7.1 x 108 y 231Th 225Ra 231Pa 26 h 3.2 x 104 y 227Ac 10.0 d 227Th 22 y 14.8 d 225Ac 18.7 d 223Ra 11.7 d Decay of Actinium-225 225Ac 10.0 d 5.6 – 5.8 MeV 221Fr 4.8 m 6.1 – 6.3 MeV 217At 32 ms 213Bi 7.067 MeV 45.6 m 213Po 4.2 ms 2% 213Tl 209Pb 2.2 m 8.375 MeV Charge to Radius Ratio for Selected Trivalent Cations Element Effective Ionic Radius (CN = 6) Charge to Radius Ratio Ac3+ 1.12Å 2.68 La3+ 1.03Å 2.91 Ce3+ 1.01Å 2.97 Pu3+ 1.00Å 3.00 Am3+ 0.975Å 3.08 Extractants O O O P OH O P OH O HEH[EHP] HDEHP 3(HY)2 + M3+ ↔ M(HY2)3 + 3H+ O R N R O O N R R 3TODGA + M3+ + 3NO3- ↔ M(TODGA)3(NO3)3 Selectivity of HDEHP and HEH[EHP] 10 7 10 6 10 5 10 4 10 3 HDEHP HEH[EHP] Y Lu k' Relative to La on LN2 = 1 Yb 10 Tm Ho Dy Am Eu Sm Ac 1 10 0 Ce Y Tb 2 10 Er Pr Nd La Gd Pm Am Ac 10 -1 56 58 60 62 64 Z 66 68 70 72 Selectivity of TODGA 10 5 Er 10 4 Tb Sm Eu Am 10 3 Tm Lu Gd 2 Pm Am 10 Ho Pm Dy Gd Nd Ho Tm Lu Pr Tb Er Yb Ce Dy La Eu Ac k' 10 Yb 1 Pr Sm Nd Ce Ac 10 0 La 0.05 M HNO3 0.50 M HNO3 10 -1 56 58 60 62 64 66 68 70 72 Z Y Y k’ Ac from HNO3 on TODGA and HDEHP Resins 10 4 HDEHP 10 3 TODGA 10 2 10 1 10 0 k' 10 -1 10 -2 10 -1 10 0 [HNO3], M 10 1 ppm/mL vs. Bed Volumes of Eluate o Slurry Packed 25-53 mm LN Resin, Preconditioned with 0.50 M (Na,H)OAc, 50(1) C 10 10 2 Load 0.50 M (Na,H)OAc pH = 4.5 1 Eluant 0.10 M HNO3 225 Strip 4.0 M HNO3 Ac 1 mg Ce 1 mg Pr 1 mg Nd ppm La, Ce, Pr, Nd 2 225 cpm/mL (10 ) Ac 1 mg La 10 0 10 -1 10 -2 Background 10 -3 0 5 10 Flow Rate = 5 mL/min Column diameter = 1.1 cm 2 = 5.3 mL/cm /min Column length = 21.0 cm = 3.8 min/Bed Volume Column volume = 20.0 mL Pressure = 8 psi LN lot # LF12013 = 2.8 (Ac/La) 15 20 Bed Volumes 25 30 35 Ac-225 Sources ORNL-150mCi Th-229 (on-going; ~600mCi Ac-225 annually INL-27MT LWBR fuel; ~14MT unirradiated + ~13MT “lightly irradiated” (~5000mCi/month Ac-225) Chemical Separation of Th-229 from existing U-233 stocks (~6000mCi/month Ac-225) Cyclotron Production via Ra-226(p,2n)Ac-225 (~200mCi/month/cyclotron) Photonuclear transmutation via Ra-226(g,n)Ra-225Ac-225 (~400mCi/month/LINAC) Reactor production of Th-229; Ra-226Th-229 or Th228(n,g)Th-229 High Energy Proton Spallation of Th-232 (~10,000mCi/month) Spallation Lighter Nuclide 1p 1 232 90 Th 1n 0 High energy protons strip neutrons and fragments from thorium forming lighter nuclides. Fragments can also combine with thorium to form heavier nuclides. Light Nuclides Formed by Spallation of Thorium Target with Protons 90Th 230, 228, 227, 226 63Eu 147, 146 89Ac 227, 225 61Pm 148m 88Ra 225, 223 58Ce 144, 141, 139 84Po 210, 209, 208, 206 56Ba 140, 133, 131 82Pb 210 39Y 88 70Yb 169 38Sr 90, 85 64Gd 153, 148, 146 21Sc 46 Heavy Nuclides Formed by Spallation of Thorium Target with Protons 91Pa 233, 231, 230 92U 233, 232, 230 Target Dissolution Physical De-cladding Cu clad target (0.127 cm Cu) 35g Th Metal (2.3 x 1.0 x 1.3 cm) Dissolve in minimum volume of 7M HNO3 + 0.1M HF (~100mL) Adjust to 4M HNO3, Add Boric acid SX Process DA[AP] U(VI) and Tetravalent Actinide Selective Extractant O C5H11O C5H11O P C5H11 Diamyl amylphosphonate (DA[AP]) Th4+ + 4NO3- + 2E ↔ Th(NO3)4∙2E UO22+ + 2NO3- + 2E ↔ UO2(NO3)2∙2E Ac, Ra no significant extraction Tandem Column System for the rapid Extraction and Purification of Ac-225 Raffinate from SX Process 3M HNO3 Th, Pa, U Ra, Ac, Ln, Y, Sc, Po Y, Sc, Ln(Z>Pm), Po To Recycle Ac, La-Pm Ra, Sr La-Pm Ac Spallation Yields of Actinium Isotopes (5.9x1016 protons on 30g Th-232) Isotope Half-life 89Ac-225 10 d 89Ac-226 29 h 89Ac-227 22 y Atoms uCi 7.7 x 1013 1.7 x 103 N/A 7.3 x 1013 N/A 2.0 Acknowledgement The authors wish to thank Del Bowers and George Vandegrift, CST Division, Argonne National Laboratory, for their help in processing the irradiated Th target. The authors also wish to thank Vivian Sullivan of Argonne National Laboratory for her assistance with the analysis of sample fractions by gamma spectroscopy
© Copyright 2025 Paperzz