PC 251 Equation Sheet s f0 = f 1 ∓ u/c 1 ± u/c x0 = x − ut p 1 − u2 /c2 y0 = y Classical Physics 1 p2 mv 2 = 2 2m K= p~ = m~v z ~ = ~r × p~ L U= = z t − (u/c2 )x = p 1 − u2 /c2 t0 1 |q1 ||q2 | 4π0 r2 F = 0 m~v p~ = p 1 − v 2 /c2 1 q1 q2 4π0 r mc2 E=p 1 − v 2 /c2 ∆U = q∆V B= mc2 − mc2 1 − v 2 /c2 p E = (pc)2 + (mc2 )2 K=p µ0 i 2r ~ U = −~ µ·B E & M Radiation Kav = 3 kT 2 2d sin θ = nλ 2N 1 N (E) = √ E 1/2 e−E/kT π (kT )3/2 Edof = E = hf = hc/λ 1 kT 2 Kmax = eVs = hf − φ λc = hc/φ Special Relativity ∆t = p ∆t0 I = σT 4 1 − u2 /c2 p L = L0 1 − u2 /c2 λmax T = 2.8978 × 10−3 mK uLc2 ∆t0 = p 1 − u2 /c2 v= I(λ) = v0 + u 1 + v 0 u/c2 2πhc2 1 λ5 ehc/λkT − 1 1 1 1 − = (1 − cos θ) 0 E E me c2 1 Wave Properties of Particles Rutherford-Bohr Model λ = h/p n= ∆x∆p ∼ ~ b = ∆E∆t ∼ ~ p ∆p = (p2av ) − (pav )2 = N (θ) = d = Schrödingers Equation −~2 d2 ψ + U (x)ψ(x) = Eψ(x) 2m dx2 Ψ(x, t) = ψ(x)e−iωt ω = E/~ P (x) = |ψ(x)|2 Z f>θ zZ e2 cot 2K 4π0 |ψ(x)|2 dx = 1 rn = a0 = En = EH = λ = rn = x2 Z |ψ(x)|2 dx P (x1 : x2 ) = x1 Z [f (x)]av = En = ψ0 (x) En ω0 = a0 n2 Z2 , En = −EH 2 Z n me mp m= me + mp ∞ |ψ(x)|2 f (x)dx Hydrogen Atom −∞ r = 1 θ 2 a0 n2 4π0 ~2 = 0.0529 nm m e2 EH − 2 n m e4 = 13.6 eV 32π 2 20 ~2 2 2 1 n1 n2 2 R∞ n1 − n22 ~ = |L| ψn (x) ntπb2 2 2 2 nt zZ e 1 4 4r2 2K 4π0 sin (θ/2) 1 zZe2 4π0 K ∞ −∞ NA ρ M Lz 2 sin L L h2 n2 for n = 1, 2, 3, ... 8mL2 mω 1/4 0 nπx e−( √ p l(l + 1) ~ = ml ~ ∆Lz ∆φ ≥ ~ Hydrogen quantum numbers principle: n = 1, 2, 3, ... angular momentum: l = 0, 1, 2, ..., n − 1 magnetic: ml = 0, ±1, ±2, ..., ±l spin magnetic: ms = ± 21 km/2~)x2 ~π 1 = n+ ~ω0 for n = 0, 1, 2, ... 2 r k = m ~ µ ~ L = −(e/2m)L ~ µ ~ S = −(e/2m)S 2 ~ = |S| p Decay processes Alpha: A ZXN → 3/4~ for s = 1/2 Beta: = ±1/2~ Sz Selection rules for photon emission: ∆l = ±1, ∆ml = 0, ±1 A−4 0 4 Z−2 X N −2 + 2 He2 A A 0 − Z X N → Z+1 X N −1 + e + ν̄e , A A 0 + Z X N → Z−1 X N +1 + e + νe , A A 0 − Z X N + e → Z−1 X N +1 + νe Gamma: A ∗ ZXN → A ZXN +γ Spectroscopic notation: Nuclear Reactions s(l = 0), p(l = 1), d(l = 2), f (l = 3), ... R = σN I0 /S = φσN Normalization condition in spherical polar coordinates: Z ∞ Z 2π Z π |ψ(r, θ, φ)|2 r2 sin θ dθ dφ dr 1= 0 0 a(t) = λN = R(1 − e−λt ) Q = (mi − mf )c2 0 Particle Physics Many-Electron Atoms Filling order: 1s, 2s, 2p, 3s, 3d, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d Adding angular momenta l1 and l2 : Lmax = l1 + l2 Lmin = |l1 + l2 | ML = ml1 + ml2 Nuclear Structure & Decay R = R0 A1/3 , R0 = 1.2 fm Conservation Laws Baryon number Lepton flavor Charge Quark flavor (except in Weak) 2 B = [N mn + Zm(11 H0 ) − m(A Z XN )]c mc2 = ~c/x a = λN λ = Cosmology ln 2/t1/2 N = N0 e−λt a = a0 e−λt v = H0 d H0 = 72 km/s/Mps 3
© Copyright 2026 Paperzz