Week 7 – Derivative - II c) x4 + y 4 = 2xy 3 d) cos3 x = sin(x + y) e) x2/3 + y 2/3 = 5 Implicit Differentiation: An equation involving x and y may define y as a function of x. This is called an implicit function. For example, 2 2 x + y = 1, f) (x2 + y 2 )2 = 50xy Inverse Functions: If f has an inverse, then y ye + 2x − cos y = 0 f f −1 (x) = x define y implicitly. y = x3 − 5x2 , y = cos(x2 − ex ) Differentiating both sides and using chain rule, we obtain: define y explicitly. 1 d −1 f (x) = 0 −1 dx f f (x) Exercise 7-1: We know that y is a function of x. Is it explicit or implicit function? Exercise 7-4: Using the information about √ derivative of f = x2 , find the derivative of x. a) y = x3 + sin x + xex b) y = 1 1 + sin2 (πx) Exercise 7-5: Using the information about derivative of f = ex , find the derivative of ln x. c) 3xy + x2 y 3 + x = 5 1 d ln |x| = , dx x if a > 0 and a 6= 1 d) ex + ey = tan(xy) The derivative of y can be found without solving for y. This is called implicit differentiation. The main idea is, x 6= 0 d 1 loga x = , x 6= 0 dx x ln a d x a = ax ln a dx • Differentiate with respect to x • Solve for y 0 Logarithmic Differentiation: Logarithm transforms products into sums. This helps in finding derivatives of some complicated functions. For example if Exercise 7-2: Find the slope of the tangent line to the curves at the given points: √ a) x2 + y 2 = 4 at (1, 3). b) x2 + 3xy − (x − y)3 = 4 c) x4 + y 4 = 8xy y= (x3 + 1)(x2 − 1) x8 + 6x4 + 1 at (1, 1). then at (2, 2). ln y = ln(x3 + 1) + ln(x2 − 1) − ln(x8 + 6x4 + 1) Exercise 7-3: Find a) dy dx y0 3x2 2x 8x7 + 24x3 = 3 + 2 − 8 y x + 1 x − 1 x + 6x4 + 1 √ √ x+ y =1 This is called logarithmic differentiation. b) xy = tan xy 1 Exercise 7-6: Find y 0 x−1 a) y = ln x+1 Function Domain Range sin−1 x −1 6 x 6 1 −π/2 6 y 6 π/2 cos−1 x −1 6 x 6 1 06y6π b) y = ln ln x c) y = ex−ln x tan−1 x −∞ 6 x 6 +∞ −π/2 < y < π/2 d) y = 2−x cot−1 x −∞ 6 x 6 +∞ 0<y<π e) y = x sin ln x sec−1 x |x| > 1 0 6 y < π/2, π/2 < y 6 π csc−1 x |x| > 1 −π/2 6 y < 0, 0 < y 6 π/2 f) y = xx g) y = xln x The graphs of some of these functions are given below: y π/2 h) y = ln xln x √ 3 i) y = x5 − x − 1 6x + 7 4 y = sin−1 x x −1 Inverse Trigonometric Functions: We have to restrict the ranges to find the inverses of trigonometric functions. Otherwise, they won’t be one-to one. Note that if x = tan y 1 −π/2 then y −1 y = arctan x or y = tan x π y = cos−1 x π/2 x −1 2 1 y y = tan−1 x Function π/2 Derivative sin−1 x √ 1 1 − x2 cos−1 x √ −1 1 − x2 x −2 2 −π/2 Exercise 7-7: Find the following angles: 1 a) cos−1 2 1 b) cos−1 √ 2 c) csc−1 2 1 1 + x2 cot−1 x −1 1 + x2 sec−1 x 1 √ |x| x2 − 1 csc−1 x −1 √ |x| x2 − 1 Exercise 7-9: Find y 0 a) y = cos−1 x3 −1 d) cot−1 √ 3 b) y = sin−1 (1 − s) We can find the derivatives of the inverse trigonometric functions as follows: If y = arctan x then tan y = x. Evaluating the derivative of both sides, we find c) y = tan−1 y0 = 1 1+t d) y = sec−1 ln x (1 + tan2 y) y 0 = 1 ⇒ tan−1 x 1 1 = 2 1 + tan y 1 + x2 e) y = csc−1 1 x f) y = cos−1 sin x Exercise 7-8: Find derivatives of y = arcsin x, y = arccos x and y = sec−1 x using the same method. Review Exercises Exercise 7-10: Find y 0 a) x2 y 2 + 8xy − 4x4 = 20 b) xey + yex + xy = 72 c) y 3 + y = 2 cos x 3 Exercise 7-11: Find y 0 at the indicated point: a) x3 + y 3 = 9xy at (2, 4) b) 5x4/5 + 10y 6/5 = 15 at (1, 1) Exercise 7-12: Find the equation of the tan√ gent line to x + xy = 6 at (4, 1) Exercise 7-13: Find y 0 2 sin θ a) y = ln θeθ √ b) y = s s−1 c) y = 5x−3 ln x d) y = x−2 (3 + x)(1 + x2 ) x e) y = arcsin(et ) f) y = arccos 1 1 − ln t g) y = earctan x h) y = sin sec−1 x i) y = cos tan−1 x j) y = ln3 (x2 + 1) — End of WEEK — Author: Dr. Emre Sermutlu Last Update: November 9, 2016 4
© Copyright 2026 Paperzz