Supporting Information
Main Group-Tellurium Heterocycles Anchored by a PV2N2 Scaffold and Their
Sulfur/Selenium Analogs
Andreas Nordheider, Katharina Hüll, Joanna K. D. Prentis, Kasun S Athukorala Arachchige,
Alexandra M. Z. Slawin, J. Derek Woollins and Tristram Chivers*
Table of Contents
I.
II.
Experimental Section - Experimental Procedures............................................................ 2
I.1
SYNTHESIS OF 18 ........................................................................................................ 2
I.2
SYNTHESIS OF 18Se ..................................................................................................... 2
I.3
SYNTHESIS OF 18S ...................................................................................................... 2
I-4
SYNTHESIS OF 19 ........................................................................................................ 3
X-ray Crystallography................................................................................................... 4
References............................................................................................................................. 7
I.
Experimental Section - Experimental Procedures
The syntheses of 18 and 19 were performed according to the general procedure for metathetical
reactions, in the experimental section of this paper. Owing to the high air-sensitivity of the products
and decomposition in solution, characterization was limited to NMR and MS data.
I.1
SYNTHESIS OF 18
Reagents: EtAsCl2 (103 mg, 0.59 mmol) and 4 (500 mg, 0.59 mmol) yielding a red compound. All
attempts of crystallisation and further purification failed.
31
P NMR (109.37 MHz, [D8]toluene): δ [ppm] = −135.7 (s, 1J(P,Te) = 1122 Hz, 2J(P,P) = 12.9 Hz).
125
Te NMR (85.24 MHz, [D8]toluene): δ [ppm] = 476.7 (1J(P,Te) = 1126 Hz).
MS (EI+, m/z), 706.0 [M+] (calculated: 706.0 [M+]).
I.2
SYNTHESIS OF 18Se
Reagents: EtAsI2 (214 mg, 0.60 mmol) and 2 (500 mg, 0.60 mmol, 1 eq).
Yield of 18Se ca. 42 % according to the integrated 31P NMR spectrum.
31
P NMR (109.37 MHz, [D8]THF): δ [ppm] = −76.9 (s, 1J(P,Se) = 460.4 Hz, 2J(P,P) = 51.4 Hz).
77
Se NMR (51.52 MHz, [D8]THF): δ [ppm] = 284.3 (1J(Se,P) = 461.0 Hz, 3J(Se,P) = 12.7 Hz).
I.3
SYNTHESIS OF 18S
Reagents: EtAsI2 (241 mg, 0.68 mmol, 1 eq) and 1 (500 mg, 0.59 mmol).
Yield according to 31P NMR spectrum: 79 %
31
P NMR (109.37 MHz, [D8]THF): δ [ppm] = −52.9 (s).
MS (EI+, m/z): 514.1 [M+] (calculated: 514.1 [M+]).
I-4
SYNTHESIS OF 19
Reagents: PhSbCl2 (159 mg, 0.59 mmol, 1 eq) and 4 (500 mg, 0.59 mmol) yielding a brown-red
compound. All attempts of crystallisation and further purification failed.
31
P NMR (109.37 MHz, [D8]toluene): δ [ppm] = −140.6 (s, 1J(P,Te) = 1136 Hz, 2J(P,P) = 7.8 Hz).
125
Te NMR (85.24 MHz, [D8]toluene): δ [ppm] = 316.8 (1J(P,Te) = 1137 Hz, 3J(P,Te) = 21 Hz).
II.
X-ray Crystallography
Colorless
chunks
of
[(tBuNP(µ-NtBu)2PNtBu)(µ-SeP(tBu)Se)]
(13aSe)
suitable
for
X-ray
crystallography were isolated after recrystallization from n-hexane. The molecular structure of 13aSe
is illustrated in Figure 1.
Figure 1: Molecular structure of 13aSe. Hydrogen atoms omitted for clarity. The phosphorus atom is disordered
over two positions; the bond lengths incorporating P2 are thus not reliable. Selected bond lengths (Å) and angles
(o): Se1–P1 2.2685(19), Se1–P2 2.210(4), Se1–P2’ 2.184(4), P1–N1 1.503(6), P1–N2 1.683(6), P1–N2’
1.688(6), P2–C9 1.869(10), N1–C1 1.454(10), N2–C5 1.499(9); P1–Se1–P2 99.17(11), P1–Se1–P2’ 100.02(11),
Se1–P1–N1 117.1(2), Se1–P1–N2 105.3(2), Se1–P1–N2’ 103.8(2), N1–P1–N2 120.2(3), N1–P1–N2’ 121.3(3),
N2–P1–N2’ 83.6(3), Se1–P2–Se1 115.78(17), Se1–P2–C9 103.32(18), P1–N1–C1 143.1(5), P1–N2–P1’
96.1(3).
The tricyclic compound 13aSe is isostructural with the tellurium analog 7a1 and exhibits a similar
displacement of the central PIII atom as well as disorder of the tBu group attached to this phosphorus
atom. However, the PV–Se bond lengths of 2.2685(19) Å2 are typical for P–Se single bonds and
comparable with literature examples, e.g. 2.276(2) Å for [Ph(Se)P-µ-Se]2.3
The structure of [(tBuNP(µ-NtBu)2PNtBu)(µ-SeAs(Et)Se)] (18Se) was determined by X-ray
crystallography after recrystallization from n-hexane at −40 °C (Figure 2).
Figure 2: Molecular structure of 18Se. Hydrogen atoms omitted for clarity. The arsenic atom is disordered over
two positions, consequently the bond lengths involving the As1 atom are not reliable. Selected bond lengths (Å)
and angles (o): Se1–P1 2.268(3), Se2–P2 2.270(3), P1–N1 1.513(9), P1–N4 1.663(9), P1–N3 1.692(9), P2–N2
1.510(8), P2–N4 1.664(9), P2–N3 1.685(9), As1–C17–1.897(15), Se–As 2.280-2.314; N1–P1–N4 119.3(5), N1–
P1–N3 120.4(5), N4–P1–N3 83.0(4), N1–P1–Se1 117.9(4), N4–P1–Se1 105.9(3), N3–P1–Se1 104.3(3), N2–P2–
N4 120.8(5), N2–P2–N3 118.7(5), N4–P2–N3 83.3(4), N2–P2–Se2 117.3(3), N4–P2–Se2 105.3(3), N3–P2–Se2
105.8(3), C18–C17–As1 118.6(12).
The disordered As1 atom in 18Se is displaced by 0.824-0.844 Å out of the mean plane of the
N1P1Se1Se2P2N2) framework. The P–Se bond distances of 2.268(3) and 2.270(3), respectively, are
comparable to typical P–Se single bonds (e.g. 2.273(2) Å for Δ4-1,4,2λ5-selenazaphospholine4,
2.276(2) Å for [Ph(Se)P-µ-Se]23, 2.3021(9) Å in PhSe–P{NV[N(Np)Ar]3}25, 2.274(1)-2.297(1) Å for
(iPr2PSe)2Se6). The structural motif P–Se–As–Se–P in 18Se is to the best of our knowledge unknown
in the literature, whereas the Se–As–Se scaffold is not unusual. The Se–As bond distance of 2.2802.314 Å (not fixed due to disorder) is in the range of reported values, e.g. As7Se4− (d(As–Se) =
2.378(3)-3.172(3) Å)7, the Ph2AsSe− (d(As–Se) = 2.341(2) Å) and Ph2AsSe2− (d(As–Se) = 2.2498(7)2.2637(8) Å).8
Table 1. Crystallographic Data for 13aSe and 18Se.
Compound
Empirical formula
13aSe
C20H45N4P3Se2
18Se
C18H41AsN4P2Se2
Formula weight
592.44
608.34
Temperature (°C)
93
125
colorless chunk
yellow prism
Crystal dimensions (mm )
0.90x0.60x0.40
0.90x0.60x0.40
Crystal system
orthorhombic
orthorhombic
a (Å)
16.403(4)
10.532(3)
b (Å)
10.200(2)
12.899(3)
c (Å)
16.820(4)
19.465(4)
α (°)
90.0000
90.0000
β (°)
90.0000
90.0000
90.0000
90.0000
Volume (Å )
2814.1(11)
2644.3(11)
Space group
Pbcn
P 21 21 21
Z value
4
4
1.398
1.528
1224.00
1232.00
µ (Mo-Kα) (cm )
2.813
4.172
No. of reflections measured
14849
16707
Rint
0.0829
0.0692
Min. and max. transmissions
0.745, 0.894
0.557, 0.846
Reflection/parameter ratio
2455 (141)
4643 (253)
Residuals: R1 (I > 2.00σ(I))
0.0750
0.0602
Residuals: wR2 (all reflections)
0.1106
0.1523
1.073
1.099
1.60
0.90
−1.39
−1.24
Crystal color, habit
3
γ (°)
3
3
Dcalc (g/cm )
F000
−1
Goodness of fit indicator
−
3
Maximum peak in final diff. map (e /Å )
−
3
Minimum peak in final diff. map(e /Å )
References
(1)
Nordheider, A.; Chivers, T.; Schön, O.; Karaghiosoff, K.; Athukorala Arachchige, K. S.;
Slawin, A. M. Z.; Woollins, J. D. Chem. Eur. J. 2014, 20, 704.
(2)
Because of these disorders in the X-ray structure the PIII–Se values cannot be reliably
discussed.
(3)
Bhattacharyya, P.; Slawin, A. M. Z., Woollins, J. D. J. Chem. Soc., Dalton Trans. 2001, 3,
300.
(4)
Burger, K.; Ottlinger, R.; Frank, A.; Schubert, U. Angew. Chem. Int. Ed. 1978, 17, 774.
(5)
Agarwal, P.; Piro, N. A.; Meyer, K.; Müller, P.; Cummins, C. C. Angew. Chem. Int. Ed. 2007,
46, 3111.
(6)
Ngyuen, C. Q.; Adeogun, A.; Afzaal, M.; Malik, M. A.; O’Brien, P. Chem. Commun. 2006,
2179.
(7)
Angilella, V.; Mercier, H.; Belin, C. J. Chem. Soc., Chem. Commun. 1989, 1654.
(8)
Kanda, T.; Mizoguchi, K.; Kagohashi, S.; Kato, S. Organometallics 1998, 17, 1487.
© Copyright 2026 Paperzz