Sample Calculus II Exam #2 No calculators or notes. Mastery Exam Compute the following antiderivatives. You need not simplify your answers. You must answer at least 7 of 10 correctly. No partial credit given. Z 7 1. (8 points) 3x3 + − 5x−2/3 dx. x Solution: Z 2. (8 points) Solution: Z 3 4 x + 7 ln(x) − 15x1/3 + C. 4 sin2 (2x) dx. 2 1 − cos(4x) dx 2 Z Z 1 1 1 1 dx − cos(4x) dx = x − sin(4x) + C. = 2 2 2 8 Z sin (2x) dx = Z 3. (8 points) arcsin(5x) dx. Solution: Integration by Parts using u(x) = arcsin(5x) and v 0 (x) = 1 gives ! Z Z 5 arcsin(5x) dx = x arcsin(5x) − x p dx. 1 − (5x)2 Letting u = 1 − (5x)2 one has Z p √ 5x du = x arcsin(5x)− √ = x arcsin(5x)−2 u+C = x arcsin(5x)−2 1 − (5x)2 +C. u 5x Calculus 2 Sample Exam #2, Page 2 of 5 Z 4. (8 points) x2 ln(x) dx. 0 2 Solution: Integration Z by Parts using u(x) = ln(x) and v (x) = x gives 1 3 1 1 3 1 1 x ln(x) − x dx = x3 ln(x) − x3 + C. 3 x 3 3 9 Z 5. (8 points) x2 Z Solution: 3 dx. − 2x − 3 3 dx = 2 x − 2x − 3 Z 3 dx = (x + 1)(x − 3) Z A B + dx. Solvx+1 x−3 ing 3 = A(x − 3) + B(x + 1) = (A + B)x + (B − 3A) 3 3 and B = − . Continuing, one gets 4 4 Z Z 3 1 3 1 3 3 dx − dx = ln(|x + 1|) − ln(|x − 3|) + C. 4 x+1 4 x−3 4 4 one obtains A = Z 6. (8 points) x3 e2x dx. Solution: Using Integration by Parts with u(x) = x3 and v 0 (x) = e2x one gets Z Z Z 1 1 3 3 2x 3 1 2x e − (3x2 ) e2x dx = x3 e2x − x2 e2x dx. x e dx = x 2 2 2 2 Using Integration by Parts again with u(x) = x2 and v 0 (x) = e2x one gets Z Z 1 3 2x 3 2 1 2x 1 2x 1 3 2x 3 2 2x x e − x e − (2x) e dx x e dx = x e − 2 2 2 2 2 2 Z 1 3 3 = x3 e2x − x2 e2x + xe2x dx. 2 4 2 Using Integration by Parts yet again with u(x) = x and v 0 (x) = e2x one gets Z Z 1 3 2x 3 2 2x 3 1 3 2x 3 2 2x 3 1 2x 1 2x 2x x e − x e + xe dx = x e − x e + x e − 1 e dx 2 4 2 2 4 2 2 2 1 3 3 3 = x3 e2x − x2 e2x + xe2x − e2x + C. 2 4 4 8 Calculus 2 Sample Exam #2, Page 3 of 5 Z 7. (8 points) 5x dx. 2 + 8x2 Solution: Letting u = 2 + 8x2 one has Z Z 5x 1 5 5 5 dx = du = ln(|u|) + C = ln(2 + 8x2 ) + C. 2 2 + 8x 16 u 16 16 Z 8. (8 points) 2−x dx. x2 + 4 Solution: Letting u = x/2 and w = x2 + 4 one has Z Z Z 1 x 2−x dx = 2 dx − dx 2 2 2 x +4 x +4 x +4 Z Z 1 x 1 dx − dx = 2 2 2 (x/2) + 1 x +4 Z Z 1 1 1 = du − dw 2 u +1 2 w 1 = arctan(u) − ln(|w|) + C 2 1 = arctan(x/2) − ln(x2 + 4) + C. 2 Z 9. (8 points) cos3 (x) dx. Solution: Letting u = sin(x) one has Z Z cos3 (x) dx = (1 − sin2 (x)) cos(x) dx Z = 1 − u2 du 1 = u − u3 + C 3 1 = sin(x) − sin3 (x) + C. 3 Calculus 2 Sample Exam #2, Page 4 of 5 Z 10. (8 points) sec2 (x)e2 tan(x) dx. Solution: Letting u = 2 tan(x) one has Z Z 1 1 1 2 2 tan(x) sec (x)e dx = eu du = eu + C = e2 tan(x) + C. 2 2 2 Rest of Exam 11. (20 points) Find the area bounded by 2 + sin(θ). Solution: 1 2 Z 2π (2 + sin(θ))2 dθ = 0 = = = = = Z 1 2π 4 + 4 sin(θ) + sin2 (θ) dθ 2 0 Z 1 2π 1 − cos(2θ) 4 + 4 sin(θ) + dθ 2 0 2 Z 1 2π 9 1 + 4 sin(θ) − cos(2θ) dθ 2 0 2 2 2π 1 9 1 θ − 4 cos(θ) − sin(2θ) 2 2 4 0 1 [(9π − 4 − 0) − (0 − 4 − 0)] 2 9π . 2 EXTRA CREDIT 12. (20 points) Find the solution to y ln(x) − xy 0 = 0 so that y(1) = 2. Calculus 2 Sample Exam #2, Page 5 of 5 Solution: y ln(x) − xy 0 = 0 xy 0 = y ln(x) 1 0 ln(x) y = y x Z Z 1 ln(x) dy = dx y x ln(y) = ln2 (x)/2 + C y = eln 2 (x)/2+C = eC eln 2 (x)/2 = Keln 2 (x)/2 Now plugging in (1, 2) one has 2 = K so the answer is y = 2eln 2 (x)/2 .
© Copyright 2026 Paperzz