Seediscussions,stats,andauthorprofilesforthispublicationat:https://www.researchgate.net/publication/260392254 CationRadical[3+2]CycloadditionofChalcone Epoxides:AFacileSynthesisofHighly SubstitutedTetrahydrofurans ArticleinSynlett·February2004 ImpactFactor:2.42·DOI:10.1055/s-2003-44966 CITATIONS READS 26 88 6authors,including: CongdeHuo WeipingZhang TheNorthwestNormalUniversity UniversityofScienceandTechnologyofCh… 36PUBLICATIONS365CITATIONS 168PUBLICATIONS2,041CITATIONS SEEPROFILE SEEPROFILE LiYang NanjingMedicalUniversity 167PUBLICATIONS1,746CITATIONS SEEPROFILE Availablefrom:CongdeHuo Retrievedon:11May2016 LETTER 251 Cation Radical [3+2] Cycloaddition of Chalcone Epoxides: A Facile Synthesis of Highly Substituted Tetrahydrofurans CationRadical[3+2]Cycload iton Congde Huo, Xiaodong Jia, Wei Zhang, Li Yang, Jianming Lü, Zhong-Li Liu* National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China Fax +86(931)8625657; E-mail: [email protected] Received 11 November 2003 Abstract: Cycloaddition of electron-rich chalcone epoxides with electron-rich olefins was efficiently catalyzed by tris(4-bromophenyl)aminium hexachloroantimonate producing poly-substituted tetrahydrofuran derivatives in high yield. Key words: cation radical, cycloaddition, epoxides, tetrahydrofurans Substituted tetrahydrofurans are important synthetic targets due to their presence in a variety of natural products1 with wide range of biological activities.2 Therefore, new synthetic approaches have continuously emerged for construction of the tetrahydrofuran subunit.3,4 Shim and Yamamoto5 have reported a palladium-catalyzed [3+2] cycloaddition of vinyl oxiranes with olefins, but the olefin must be activated by substitution of two electron-withdrawing groups with at least one cyano group, i.e., the olefin must be highly electron deficient. Electronwithdrawing substituents on olefins are also essential for the free radical mediated [3+2] cycloaddition of vinyl oxiranes with olefins.6 As a part of our ongoing research program on the synthetic potential of cation radical induced reactions7 we found recently that tris(4-bromophenyl)aminium hexachloroantimonate (TBPA+·SbCl6–), which has been widely used to initiate cation radical cycloaddtion reactions,8 could efficiently catalyze the cross cycloaddition of aromatic imines and electron-rich olefines to form tetrahydroquinolines.9 Since cation radical initiation can carry out polarity umpolung,8 it is expected that [3+2] cycloaddition between oxiranes and electronrich olefins may be able to take place by cation radical initiation. We report herein a cation radical induced [3+2] cycloaddition of electron-rich chalcone epoxides with electron-rich olefins that produces multi-substituted tetrahydrofuran derivatives in high yield. An anhydrous CH2Cl2 solution (20 mL) of the activated trans-chalcone epoxide (1, 0.55 mmol) and the electronrich olefin (2, 0.5 mmol) was added dropwise a catalytic amount of tris-(4-bromophenyl)aminium hexacholoantimonate (TBPA+, 0.025 mmol) suspended in anhydrous CH2Cl2 (20 mL) at ambient temperature under stirring. The reaction completed within 30 minutes as monitored by TLC, producing tetrahydrofuran derivatives 3 in high SYNLETT 2004, No. 2, pp 0251–025402.0 204 Advanced online publication: 08.12.2003 DOI: 10.1055/s-2003-44966; Art ID: U24003ST.pdf © Georg Thieme Verlag Stuttgart · New York yield as a mixture of four stereoisomers (Scheme 1). Careful column chromatographic separation (silica gel, PE/ EtOAc 10:1 to 40:1) gave the four pure stereoisomers, i.e., 2,3-cis-3,5-cis-3 (3-A), 2,3-trans-3,5-cis-3 (3-B), 2,3-cis3,5-trans-3 (3-C), and 2,3-trans-3,5-trans-3 (3-D) in most cases. Their structures were fully identified by HRMS, 1H NMR, 13C NMR and 2D NMR spectroscopy10 and the stereochemistry evaluated by chemical shift considerations and NOESY as exemplified in Figure 1. It is seen from the scheme that when the 2-benzoyl and the 3-aryl groups are in cis-configuration the chemical shifts of the aromatic protons are significantly up-field shifted in comparison with those of the corresponding trans-isomers due to the mutual shielding of the two phenyl rings. In the case of furan (entry 6) substituted product 4 was obtained in lieu of the cycloaddition product 3 because the intermediate cation radical 6 is prone to aromatize (vide infra). The results are listed in Table 1 together with the oxidation potentials of the substrates for discussing the substituent tolerance of the reaction (vide infra). O O R3 Ph O 1 + Ar R2 TBPA+ . Ar Ph O R1 2 R3 R2 R 1 3 Scheme 1 It is seen from Table 1 that this reaction could only take place between electron-rich chalcone epoxides and electron-rich olefins. Unsubstituted chalcone epoxide 1e and nitro-substituted chalcone epoxide 1f showed no cross reaction with 2a under the same experimental conditions (entries 10 and 11). Steckhan and co-workers11 have pointed out that in the case of cation radical [4+2] cycloadditions the oxidation potentials of the diene and the dienophile should not differ by more than 500 mV to ensure a good match of their HOMO energies, hence an efficient reaction. Similar criterion seems also applicable to the present reaction. The differences of the oxidation potentials between 1 and 2 are 120, 100, 130, 200, 110, 100, 330, 360 and 360 mV for entries 1–9 respectively, while the differences for entries 10 and 11 are 400 and over 680 mV respectively. This implies that the HOMO energies of 1 and 2 are close for entries 1–9 to accomplish efficient cross reactions, while they are far apart in the case of entries 10 and 11 for the cross reaction to take place. 252 C. Huo et al. Figure 1 Selected chemical shifts and NOESY correlations for the four stereoisomers of 3a Table 1 LETTER TBPA+·SbCl6– initiated Cycloaddition of Chalcone Epoxides 1 with Olefins 2 Entry 1 Ar Eox (V)a 2 Eox (V)a Products and yields (%)b 1 1a 4-MeOC6H4 1.60 2a 1.72 3a 82 (32/33/19/16) 2 1a 4-MeOC6H4 1.60 2b 1.70 3b 74 (38/36/0/26) 3 1a 4-MeOC6H4 1.60 2c 1.47 3c 70 (39/37/0/24) 4 1a 4-MeOC6H4 1.60 2d 1.40 3d 72 (22/47/13/18) Synlett 2004, No. 2, 251–254 © Thieme Stuttgart · New York LETTER Table 1 Cation Radical [3+2] Cycloaddition 253 TBPA+·SbCl6– initiated Cycloaddition of Chalcone Epoxides 1 with Olefins 2 (continued) Entry 1 Ar Eox (V)a 2 Eox (V)a Products and yields (%)b 5 1a 4-MeOC6H4 1.60 2e 1.71 3e 61 (26/33/20/21) 6 1a 4-MeOC6H4 1.60 2f 1.70 4 70 7 1b 3,4-(CH2O2)C6H3 1.39 2a 1.72 3f 76 (26/37/17/20) 8 1c 2,4-(MeO)2C6H3 1.36 2a 1.72 3g 80 (34/31/15/20) 9 1d 3,4,5-(MeO)3C6H2 1.36 2a 1.72 3h 78 (24/33/12/31) 10 1e C 6 H5 2.12 2a 1.72 N.r. 11 1f 4-NO2-C6H4 2a 1.72 N.r. a b >2.4 Oxidation peak potential determined vs SCE by cyclic voltammetry in MeCN using a platinum electrode. Isolated yields based on 2. The diastereomeric ratios of 3-A, 3-B, 3-C and 3-D are shown in parenthesis. It was found that no reaction took place in the absence of the aminium radical TBPA+·, hence the reaction might be rationalized as a cation radical initiated [3+2] chain cycloaddition8 as depicted in Figure 2. Single electron transfer between 1 and TBPA+· produces the cation radical of the chalcone epoxide 1+· which subjects selective Cb-O bond cleavage affording a new cation radical 5. Addition of 5 to the electron-rich olefin 2 forms the cation radical adduct 6, which undergoes the second electron transfer from 1 and/or TBPA followed by ring closure to produce the tetrahydrofuran 3. It is well known that a,b-epoxy ketones can subject various ring-opening processes leading to different products, depending on the substitution and the nature of the reactive intermediate.12 Photoinduced reductive electron transfer via anion radical intermediates gave predominantly b-hydroxy ketones as the result of selective Ca-O bond cleavage,7e,12a–d while oxidative electron transfer via cation radical intermediate gave b-ketone aldehydes and solvent molecule substituted products as the result of selective Cb-O bond cleavage.12e Tin-hydride mediated free radical reactions could proceed via either Ca-O or Ca-Cb bond cleavage depending on the substituents.12a Direct 1 TBPA+. O ET TBPA 1 +. O. 1 O 3 + 5 ET ET Ar Ph Ar 2 Ph O . + R 2 R3 R 1 6 Figure 2 photolysis of a,b-epoxy ketones produced a-diketones, bdiketones and/or aldehydes attributed to the intermediacy of excited triplet state and/or carbonyl ylid, and the later could be trapped by dipolarophiles to give cycloaddition products.12f–h The present work provides a new cycloaddition reaction of epoxides for construction of multisubstituted tetrahydrofurans that is complementary to the palladium catalyzed5 and free radical mediated6 Synlett 2004, No. 2, 251–254 © Thieme Stuttgart · New York 254 LETTER C. Huo et al. approaches which request electron-deficient olefins. Extension to other substrates and studies on the mechanistic details of this reaction are underway in this laboratory. Acknowledgment We thank the National Natural Science Foundation of China (20372030) for financial support. References (1) (a) Moody, C. J.; Davies, M. In Studies in Natural Product Chemistry, Vol. 10; Ata-ur-Rahman, , Ed.; Elsevier: Amsterdam, 1992, 201. (b) Erickson, K. L. In Marine Natural Products, Vol. 5; Scheuer, P. J., Ed.; Academic Press: New York, 1983, Chap. 4, 131. (c) Kim, E.-J.; Tian, F.; Woo, M.-H. J. Nat. Prod. 2000, 63, 1503. (d) Kobayashi, J.; Kubota, T.; Endo, T.; Tsuda, M. J. Org. Chem. 2001, 66, 134. (2) (a) Gottlieb, O. R. In New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity; Springer-Verlag: Berlin/Heidelberg, 1987, 227. (b) Oberlies, N. H.; Jones, J. L.; Corbett, T. H.; Fotopoulos, S. S.; McLaughlin, J. L. Cancer Lett. 1995, 96, 55. (3) For reviews, see: (a) Boivin, T. L. B. Tetrahedron 1987, 43, 3309. (b) Semple, J. E.; Joullie, M. M. Heterocycles 1980, 14, 1825. (c) Harmange, J. C.; Figadére, B. Tetrahedron: Asymmetry 1993, 1711. (d) Postema, M. H. D. Tetrahedron 1992, 48, 8545. (4) For recent examples, see: (a) Ericsson, C.; Engman, L. Org. Lett. 2001, 3, 3459. (b) Vares, L.; Rein, T. J. Org. Chem. 2002, 67, 7226. (c) Pearson, A. J.; Mesaros, E. F. Org. Lett. 2001, 3, 2665. (d) Kamimura, A.; Mitsudera, H.; Matsuura, K.; Omata, Y.; Shirai, M.; Yokoyama, S.; Kakehi, A. Tetrahedron 2002, 58, 2605. (e) Bottex, M.; Cavicchioli, M.; Hartmann, B.; Monteiro, N.; Balme, G. J. Org. Chem. 2001, 66, 175. (f) Liu, B.; Duan, S.; Sutterer, A. C.; Moeller, K. D. J. Am. Chem. Soc. 2002, 124, 10101. (5) Shim, J.-G.; Yamamoto, Y. J. Org. Chem. 1998, 63, 3067. (6) Feldman, K. S.; Fisher, T. E. Tetrahedron 1989, 45, 2969. (7) (a) Jin, M.-Z.; Yang, L.; Wu, L.-M.; Liu, Y.-C.; Liu, Z.-L. Chem. Commun. 1998, 2451. (b) Mao, Y. Z.; Jin, M. Z.; Liu, Z.-L.; Wu, L. M. Org. Lett. 2000, 2, 741. (c) Jin, M.-Z.; Zhang, D.; Yang, L.; Liu, Y.-C.; Liu, Z.-L. Tetrahedron Lett. 2000, 41, 7357. (d) Zhang, W.; Jia, X.; Yang, L.; Liu, Z.-L. Tetrahedron Lett. 2002, 43, 9433. (e) Zhang, J.; Jin, M.-Z.; Zhang, W.; Yang, L.; Liu, Z.-L. Tetrahedron Lett. 2002, 43, 9687. (8) (a) Bauld, N. L. Tetrahedron 1989, 45, 5307. (b) Bauld, N. L.; Bellville, D. J.; Harirchian, B.; Lorenz, K. T.; Pabon, P. A. Jr.; Reynolds, D. W.; Wirth, D. D.; Chiou, H.-S.; Marsh, B. K. Acc. Chem. Res. 1987, 20, 371. (c) Schmittel, M.; Woehrle, C.; Bohn, I. Acta Chem. Scand. 1997, 51, 151. (9) Jia, X.; Lin, H.; Huo, C.; Zhang, W.; Lü, J.; Yang, L.; Zhao, G.; Liu, Z.-L. Synlett 2003, 1707. (10) Representative spectral data for the products: (±)-cic,cis-2Benzoyl-3-(4-methoxyphenyl)-5-phenyl-5-methyl tetrahydrofuran (3a-A): colorless oil. HR-ESI-MS: m/z calcd for C25H24O3 + Na+: 395.1618). Found: 395.1614. 1H NMR (400 MHz, CDCl3): d = 1.73 (s, 3 H, Me), 2.62 (dd, J = 12.4, 12.0 Hz, 1 H, H-4a), 2.67 (dd, J = 12.4, 8.4 Hz, 1 H, H-4e), 3.63 (s, 3 H, MeO), 4.15 (m, 1 H, H-3a), 5.91 (d, J = 8.8 Hz, 1 H, H-2e), 6.51 (d, J = 8.8 Hz, 2 H, Ar), 6.86 (d, J = 8.8 Hz, 2 H, Ar), 7.26 (dd, J = 8.0, 7.6 Hz, 2 H, Bz), 7.32 (t, J = 8.0 Hz, 1 H, Ph), 7.40 (t, J = 8.0 Hz, 1 H, Bz), 7.42 (dd, J = 8.0, 8.0 Hz, 2 H, Ph), 7.57 (d, J = 8.0 Hz, 2 H, Bz), Synlett 2004, No. 2, 251–254 © Thieme Stuttgart · New York 7.68 (d, J = 8.0 Hz, 2 H, Ph). 13C NMR (100.08 MHz, CDCl3): d = 29.3 (Me), 46.2 (C-4), 48.5 (C-3), 55.1 (MeO), 82.6 (C-2), 85.2 (C-5), 113.4 (Ar), 124.8 (Ph), 126.5 (Ph), 127.9 (Bz), 128.1 (Ph), 128.4 (Bz), 129.3 (Ar), 130.3 (Ar), 132.4 (Bz), 136.8 (Bz), 147.7 (Ph), 158.2 (Ar), 198.5 (C=O). (±)-trans,cis-2-Benzoyl-3-(4-methoxyphenyl)-5-phenyl-5methyl tetrahydrofuran (3a-B): colorless oil, HR-ESI-MS: m/z calcd for C25H24O3 + H+: 373.1798. Found: 373.1794. 1H NMR (400 MHz, CDCl3): d = 1.67 (s, 3 H, Me), 2.61 (dd, J = 12.4, 7.6 Hz, 1 H, H-4a), 2.79 (dd, J = 12.4, 7.6 Hz, 1 H, H-4e), 3.77 (s, 3 H, MeO), 4.12 (m, 1 H, H-3a), 5.25 (d, J = 8.0 Hz, 1 H, H-2a), 6.80 (d, J = 8.8 Hz, 2 H, Ar), 7.15 (d, J = 8.8 Hz, 2 H, Ar), 7.42 (dd, J = 8.0, 8.0 Hz, 2 H, Bz), 7.33 (t, J = 7.6 Hz, 1 H, Ph), 7.55 (t, J = 8.0 Hz, 1 H, Bz), 7.44 (dd, J = 7.6, 7.6 Hz, 2 H, Ph), 7.99 (d, J = 8.0 Hz, 2 H, Bz), 7.57 (d, J = 7.6 Hz, 2 H, Ph). 13C NMR (100.08 MHz, CDCl3): d = 30.5 (Me), 48.2 (C-4), 46.8 (C-3), 55.2 (MeO), 86.3 (C-2), 86.3 (C-5), 114,0 (Ar), 124.5 (Ph), 126.7 (Ph), 127.8 (Bz), 128.3 (Bz), 128.8 (Ph), 129.2 (Ar), 131.8 (Ar), 133.1 (Bz), 135.9 (Bz), 148.2 (Ph), 158.4 (Ar), 197.4 (C=O). (±)-cis,trans-2-Benzoyl-3-(4-methoxyphenyl)-5-phenyl-5methyl tetrahydrofuran (3a-C): colorless oil. HR-ESI-MS: m/z calcd for C25H24O3 + Na+: 395.1618. Found: 395.1608. 1 H NMR (400 MHz, CDCl3: d = 1.90 (s, 3 H, Me), 2.58 (dd, J = 12.0, 11.5 Hz, 1 H, H-4a), 2.81 (dd, J = 12.4, 7.2 Hz, 1 H, H-4e), 3.63 (s, 3 H, MeO), 3.70 (m, 1 H, H-3a), 5.72 (d, J = 9.1 Hz, 1 H, H-2e), 6.53 (d, J = 8.8 Hz, 2 H, Ar), 6.91 (d, J = 8.8 Hz, 2 H, Ar), 7.20 (dd, J = 8.0, 7.6 Hz, 2 H, Bz), 7.32 (t, J = 7.5 Hz, 1 H, Ph), 7.35 (t, J = 8.0 Hz, 1 H, Bz), 7.42 (dd, J = 7.5, 7.5 Hz, 2 H, Ph), 7.49 (d, J = 7.6 Hz, 2 H, Bz), 7.56 (d, J = 7.5 Hz, 2 H, Ph). 13C NMR (100.08 MHz, CDCl3): d = 30.2 (Me), 45.4 (C-4), 48.1 (C-3), 55.0 (MeO), 82.4 (C-2), 85.6 (C-5), 113.3 (Ar), 124.7 (Ph), 126.7 (Ph), 127.3 (Bz), 127.8 (Bz), 128.3 (Ph), 129.2 (Ar), 130.0 (Ar), 132.3 (Bz), 136.5 (Bz), 147.0 (Ph), 158.2 (Ar), 198.9 (C=O). (±)-trans,trans-2-Benzoyl-3-(4-methoxyphenyl)-5-phenyl5-methyl tetrahydrofuran (3a-D): colorless oil. HR-ESI-MS: m/z calcd for C25H24O3 + H+: 373.1798. Found: 373.1797. 1H NMR (400 MHz, CDCl3): d = 1.75 (s, 3 H, Me), 2.53 (dd, J = 12.4, 12.4 Hz, 1 H, H-4a), 2.85 (dd, J = 12.4, 6.0 Hz, 1 H, H-4e), 3.77 (s, 3 H, MeO), 3.80 (m, 1 H, H-3a), 5.25 (d, J = 9.2 Hz, 1 H, H-2a), 6.82 (d, J = 8.8 Hz, 2 H, Ar), 7.23 (d, J = 8.8 Hz, 2 H, Ar), 7.43 (dd, J = 8.0, 8.0 Hz, 2 H, Bz), 7.29 (t, J = 7.6 Hz, 1 H, Ph), 7.37 (d, J = 7.6 Hz, 2 H, Ph), 7.39 (dd, J = 7.6, 7.6 Hz, 2 H, Ph), 7.55 (t, J = 8.0 Hz, 1 H, Bz), 8.01 (d, J = 8.0 Hz, 2 H, Bz). 13C NMR (100.08 MHz, CDCl3): d = 30.9 (Me), 45.2 (C-3), 48.3 (C-4), 55.2 (MeO), 86.0 (C-2), 86.3 (C-5), 114.0 (Ar), 124.8 (Ph), 126.7 (Ph), 128.0 (Bz), 128.3 (Bz), 128.8 (Ph), 129.3 (Ar), 131.6 (Ar), 133.0 (Bz), 136.2 (Bz), 147.1 (Ph), 158.4 (Ar), 196.6 (C=O). (11) (a) Mlcoch, J.; Steckhan, E. Tetrahedron Lett. 1987, 28, 1081. (b) Habert, U.; Steckhan, E.; Blechert, S.; Wiest, O. Chem.–Eur. J. 1999, 5, 2859. (12) (a) Hasegawa, E.; Ishiyama, K.; Kato, T.; Horaguchi, T.; Shimizu, T. J. Org. Chem. 1992, 57, 5352. (b) Hasegawa, E.; Kato, T.; Kitazume, T.; Yanagi, K.; Hasegawa, K.; Horaguchi, T. Tetrahedron Lett. 1996, 39, 7079. (c) Hasegawa, E.; Chiba, N.; Nakajima, A.; Suzuki, K.; Yoneoka, A.; Iwaya, K. Synthesis 2001, 1248. (d) Hasegawa, E.; Ishiyama, K.; Kashiwazaki, H.; Horaguchi, T.; Shimizu, T. Tetrahedron Lett. 1990, 31, 4045. (e) Cossy, J.; Ibhi, B. S.; Aclinou, P. Tetrahedron 1991, 47, 7775. (f) Kato, H.; Tezuka, H.; Yamaguchi, K.; Nowada, K.; Nakamura, Y. J. Chem. Soc., Perkin Trans. 1 1978, 1029. (g) Lee, G. A. J. Org. Chem. 1978, 43, 4256. (h) Hallet, P.; Muzart, J.; Pete, J. P. J. Org. Chem. 1981, 46, 4275.
© Copyright 2026 Paperzz