BASIC DERIVATIVE RULES Note: a and k are constants. Sum Rule: d dx [ f (x) + g(x) ] = Constant Rule: d dx [ k ! f (x) ] = k ! f "(x) Power Rule: d dx !" x n #$ = n % x n&1 d dx Product Rule: [ f (x) ! g(x) ] = d dx Chain Rule: d dx Quotient Rule: f "(x)g(x) + f (x)g"(x) [ f (g(x)) ] = ! f (x) $ = "# g(x) %& f !(x) + g!(x) f !(g(x)) " g!(x) f ' (x)g(x)( f (x) g ' (x) g 2 (x) Derivatives of Special Functions: d dx (constant) = 0 d dx (x) = 1 d dx (sin x) = cos x d dx (cos x) = ! sin x d dx (tan x) = sec 2 x d dx (cot x) = ! csc 2 x d dx (sec x) = sec x tan x d dx (csc x) = ! csc x cot x d dx (a x ) = ( ln a ) a x d dx (e x ) = e x d dx (sin !1 x) = d dx (ln x) = d dx (cos!1 x) = ! d dx (tan !1 x) = d dx (sec !1 x) = 1 1! x 2 1 1! x 2 1 1+ x 2 1 x 1 x x 2 !1 BASIC INTEGRAL FORMULAS Sum Rule: ! [ f (x) + g(x) ] dx = ! f (x)!dx + ! g(x) dx Constant Rule: " k ! f (x)dx = k " f (x)dx Integrals of Special Functions: ! ! (e x ) dx = e x + C ! (x n )dx = " ln x dx = x ln x ! x + C ! ( ) dx = ln ! (cos x)dx = sin x + C " (sin x)dx = ! cos x + C ! (sec2 x)dx = tan x + C ! (sec x tan x)dx = sec x + C " (csc x cot x)dx = ! csc x + C " (csc2 x)dx = ! cot x + C " " dx 1+ x 2 (k)dx = kx + C dx 1! x 2 = sin !1 x + C 1 x 1 n+1 x n+1 + C x +C = tan !1 x + C x ! (a x )dx = lna a + C "x dx x 2 !1 = sec !1 x + C
© Copyright 2026 Paperzz