2 Limits Sheet 2. Limits Exercise 2.1. Find the limits (if exist): a) lim (x2 + 5x − 6) b) lim (−2x7 + 3x2 − 4) x→∞ x→∞ 2 x + 3x x→∞ x2 − 1 x2 − 2 g) lim x→∞ x x−1 j) lim x→∞ −x2 + 2x − 1 (1 − 2x)3 m) lim x→∞ (2x + 3)2 (1 − 7x) d) lim 2x + 3x x→∞ 3x3 + x + 1 x5 + 2x2 + 5x h) lim x→∞ −2x3 + 1 x3 + 2x − 1 k) lim x→∞ 3x4 + x 1 − 2x √ n) lim x→∞ 2 + x e) lim x→∞ 2 2x + 3x − 7 x→∞ x2 + 4x − 2 t) lim x+1 1 x2 −1 v) lim x→∞ 3 6x3 − 1 x→∞ 3x3 + 2x − 4 −3x3 + 1 i) lim x→∞ −5x2 + 4 x2 + 2x − 1 l) lim 3 x→∞ x + 2x − 1 √ 2+ x o) lim x→∞ 1 − 2x f) lim r) lim 3 −x2 +2 x→∞ x2 +1 x 2 5 +x x→∞ x3 −1 q) lim 2 x+2 x→∞ x→−∞ 2 x2 x p) lim e x+1 s) lim 3 c) lim (2x5 − 3x5 + x2 − 1) x3 − 2x2 x→−∞ 5x3 + x2 − x + 2 u) lim x3 + 5x w) lim x→∞ x − 1 x) lim y) lim 5 z) lim (−2x + 5x − 7) x4 +5x−6 1 aa) lim x→−∞ e ab) lim (−2x6 + 5x − 4) ac) lim 3x x4 +2x2 +3 3 x→∞ x→∞ x→−∞ Exercise 2.2. Find the limits: a) lim (x2 + 5x − 6) x→1 x→−∞ x2 + 1 x→3 x2 − 1 b) lim 3 +2x−7 x→−∞ x2 −1 e x+1 ad) lim (−2x5 + 6x4 − 3x + 7) x→−∞ √ c) lim x x2 + 5 x→2 Find the limits: x2 + 6x − 16 x2 − x − 2 a) lim b) lim x→2 x→−1 x−2 x+1 x2 cos x x→0 3x d) lim Exercise 2.3. x2 − 2x − 3 x→3 3−x c) lim x2 + 3x − 4 x→−4 x2 + 5x + 4 d) lim Find the one-sided limits of f at the point x0 ,if: 1 1 1 , x0 = 3 b) f (x) = , x0 = 3 c) f (x) = , x0 = 3 a) f (x) = x−3 3−x (3 − x)2 1 x+1 1 d) f (x) = , x0 = 1 e) f (x) = 2 , x0 = 2 f) f (x) = 2 x−1 , x0 = 1 x−1 x −4 1 1 x g) f (x) = 4 x2 −4 , x0 = 2 h) f (x) = e 4−x2 , x0 = −2 i) f (x) = 1 , x0 = 0 1 + ex Decide, if the two-sided limits exist. Exercise 2.4. Exercise 2.5. Find the limit (one-sided or two-sided): Last update: October 23, 2013 1 REFERENCES References a) lim x+1 x→2 x − 2 x2 + x e) lim x→2 2 − x b) lim x2 + 4x + 3 x→1 x−1 2 x −1 f) lim x→4 4 − x c) lim x2 + 2x − 3 x→−2 x+2 2 x −x−6 g) lim x→1 1−x x2 − 5x x→3 x + 3 x2 − x − 2 h) lim1 1 − 2x x→ 2 x+1 i) lim 2 x→1 x + 2x − 3 x2 − 2x − 3 j) lim x→−2 x2 + 2x x+3 k) lim x→3 −x2 + 2x + 3 x2 + 3x − 10 l) lim x→−1 −x2 − 5x − 4 Exercise 2.6. Exercises 167 [1, pp. 7478]. Exercise 2.7. Exercises 164 [1, pp. 8790]. Answers d) lim a) ∞, b) −∞, c) −∞, d) 1, e) 23 , f) 2, g) ∞, h) −∞, i) ∞, j) 0, k) 0, l) 0, m) 27 , n) −∞, o) 0, p) e, q) ∞, r) 0, s) 1, t) 2, u) 51 , v) 1, w) ∞, x) 0, y) ∞, z) −∞, aa) 0, ab) −∞, ac) 0, ad) ∞. 5 Exercise 2.2. a) 0, b) , c) 6, d) 0. 4 5 Exercise 2.3. a) 10, b) −3, c) −4, d) . 3 Exercise 2.4. a) ∞, −∞, b) ∞, −∞, c) ∞, ∞, d) −∞, ∞, e) −∞, ∞, f) 0, ∞, g) 0, ∞, h) 0, ∞, i) 0, 0. Exercise 2.5. a) does not exist, the one-sided limits are: −∞, ∞, b) does not exist, the one-sided limits are: −∞, ∞, c) does not exist, the one-sided limits are: ∞, −∞, d) −1, e) does not exist, the one-sided limits are: ∞, −∞, f) does not exist, the one-sided limits are: ∞, −∞, g) does not exist, the one-sided limits are: −∞, ∞, h) does not exist, the one-sided limits are: −∞, ∞, i) does not exist, the one-sided limits are: −∞, ∞, j) does not exist, the one-sided limits are: ∞, −∞, k) does not exist, the one-sided limits are: ∞, −∞, l) does not exist, the one-sided limits are: −∞, ∞. Exercise 2.1. References [1] Homann et al., Applied Calculus for Business, Economics, and McGraw-Hill International Edition, Expanded eleventh edition. Last update: October 23, 2013 The Social and Life Sciences , 2
© Copyright 2026 Paperzz