From Pressure to Depth Estimation of underwater vertical position Havbunnskartlegging og Inspeksjon 6.-8. Februar 2008 Geilo Ove Kent Hagen Avd Maritime Systemer FFI Underwater pressure measurement Sea surface Atmospheric pressure Water level MSL Pressure field = Hydrostatic pressure field + Dynamic pressure field Pressure sensor Dynamic near field: • Current-Hull effects Vehicle reference point • Wave-Body interactions Hydrostatic pressure ∂p = ρg ∂z ere h p os m t A ean c O Jorden Earth Jorden z Vehicle • The pressure p equals the weight per unit area of the water and atmosphere column above the vehicle • There exists a 1-1 relationship between pressure and depth z • Rule of thumb: 10 m water depth = 1 atmosphere • Challenges: – The density ρ depends on pressure and hence on depth – Gravitational acceleration g depends on the vehicle’s position Density Density of sea water ρ0 • Depends on pressure ρ > ρ0 ρ < ρ0 • Depends on temperature Sa lt • Depends on salinity ρ > ρ0 ”Measuring” the density of sea water • CTD (Conductivity, Temperature, Density) – Pressure, p – Temperature, T – Conductivity, C C S = SPSS-78 , T , p C0 • Salinity is estimated by UNESCO formula ”Practical Salinity Scale (1978)” (PSS-78) IES-80 density at atmospheric pressure 30 10 0 2 1030 • Density is estimated by UNESCO formula 25 1025 ”International Equation of Sate of sea water (1980)” 1020 15 1015 1010 10 30 10 28 10 26 10 24 10 22 10 20 10 18 10 16 10 14 10 12 10 10 10 08 5 10 06 10 10 04 1005 10 32 ρ = ρ IES-80 ( S , T , p) Temperature [degC] (IES-80) 20 0 5 10 15 20 25 Salinity [psu] 30 35 40 1000 Hydrostatic pressure to depth from a CTD profile • Measure the conductivity C(p) and temperature profile T(p) in the water column • Estimate the salinity profile S ( p ) = SPSS-78 (C ( p ), T ( p), p ) • Integrate the hydrostatic equation from vehicle depth to the water level z p 1 ∫0 g(φ , Λ, z )dz = ∫0 ρ ( p) dp Latitude and longitude p 1 1 z 1 + γ z z g 0 (φ ) = ∫ dp ρ IES ( S ( p), T ( p), p) 2 0 A crude model of gravitation CTD profile UNESCO Pressure to Depth Standard ocean: S=35 psu and T=0 °C – Specific volume V = VIES-80 (S , T , p) = 1 ρIES-80 (S , T , p) – Specific volume anomaly δ = δ IES-80 (S , T , p) = VIES-80 (S , T , p) − VIES-80 (35,0, p) p p 1 1 z= VIES-80 (35, 0, p )dp + δ IES-80 ( S ( p ), T ( p ), p )dp ∫ ∫ g(φ , p) 0 9.8 0 Standard ocean UNESCO equation: - Integral: 4’th order polynomial fit in p - Gravitation: Geopotential height anomaly - Cumulative numerical integration of the profile - Thereafter, table look-up with linear interpolation g(φ , p ) = g 0 (φ )(1 + γ p p) International equation of gravity at surface Increasing linearly with pressure (depth) Hydrostatic pressure to depth below MSL 1. Subtract atmospheric pressure at sea surface CTD profile & Geopotential height anomaly 2. Use the standard ocean UNESCO equation for pressure to depth below the sea surface 3. Estimate geopotential height anomaly from the CTD profile, and add to depth 4. Subtract estimated water level above MSL Breiangen, December 2001 Slowly varying error Surface wave induced pressure field Predicted depth error due to dynamic wave pressure field 0 0.6 5 0.4 10 • Waves attenuate with depth – High attenuation: wind waves – Low attenuation: swells 15 0.2 z [m] 20 0 25 • The field becomes more regular with depth Significant wave height: 5 m, Peak time period: 8 s, Water depth: 80 m 30 5 -0.2 JONSWAP JONSWAP JONSWAP JONSWAP 35 4.5 -0.4 40 surface wave spectrum at 5 m depth at 10 m depth at 15 m depth 4 45 -0.6 3.5 -150 -100 -50 0 x [m] 50 100 150 200 • Swell and wind waves: – Period: 0.2 – 15 s – Frequency: 5 – 0.06 Hz 3 S(ω) [m2s] 50 -200 2.5 2 1.5 • No longer 1-1 between pressure and depth 1 0.5 Fast varying error 0 0 0.05 0.1 0.15 Frequency [Hz] 0.2 0.25 0.3 Near field effects • The pressure measurement depends on the vehicle’s water referenced velocity and the sensor’s location on the hull: • Counteract through design • Compensate through model • Wave-body interaction: – Long wave approximation: • Wave length >> vehicle dimension • Vehicle (neutrally buoyant) follows the particle path in the waves – Otherwise: • Scattering potential caused by the vehicle’s presence in the incoming waves • Radiation potential caused by the vehicle’s response to the incoming waves – The motion may be counteracted by the vehicle’s control system Uncertain fast and slowly varying errors Robustness needed Precise depth estimation using NavLab • Combine UNESCO pressure to depth with inertial CTD Pressure IMU GPS DVL Tide navigation • Inertial navigation estimates the vehicle’s short term motion with high precision – filters wave induced “pressure sensor noise” Atm Robust Robust noise noise parameters parameters Optional Optional Unesco Unesco P P R R E E P P R R O O C C E E S S T T I I M M A A T T O O R R Cmp NavLab OneClick Automatic processing controller S S M M O O O O T T H H I I N N G G E E X X P P O O R R T T Smoothed Position Attitude Depth Pressure Test with HUGIN 1000 La Spezia, Italy: • Low amplitude swell • Shallow water • Flat seafloor Inertial Measurement Unit: iXSea IMU 120 Doppler Velocity Log: RDI WHN 600 kHz Pressure sensor: FSI Mirco CTD HUGIN 1000 was operated from R/V Leonardo of the Multi beam echo sounder: EM 3000 NATO Undersea Research Centre NavLab post-processing: smoothed depth depthm error (bias and total) and KF-model (1 and 3 sigma) 0.2 std =0.10262 • Bias oscillation period ~ 7.5 s 0.15 • Sea floor depth ~ 17 m 0.1 0.05 • HUGIN’s depth ~ 6 m [m] 0 -0.05 • Wave length of the swells causing the oscillations ~ 100 m -0.1 -0.15 -0.2 -Depth [m] 5110 5120 5130 5140 5150 Time [s] 5160 5170 5180 -5.6 -5.8 -6 -6.2 -6.4 5110 5120 5130 5140 5150 Time [s] 5160 5170 • The long wave approximation is valid – HUGIN follows the wave motion 5180 Altitude control in long waves • • • Waves change the vehicle’s altitude while the pressure stays the same The control system counteracts this by going deeper/shallower The pressure increases/decreases – altitude decreases/increases Same pressure -Depth [m] Altitude increase Pressure increase Altitude decrease -5.6 -5.8 -6 -6.2 -6.4 5110 5120 5130 5140 5150 Time [s] 5160 5170 5180 EM 3000 bathymetry Only hydrostatic pressure to depth conversions Uses the output of Preproc in NavLab EM 3000 bathymetry Kalman filtered depth This is achievable in real-time Uses the output of the Estimator in NavLab EM 3000 bathymetry Filtered by optimal smoothing This is achievable in post-processing Uses the output of Smoothing in NavLab Conclusion • By combining inertial navigation with the UNESCO pressure to depth conversions, precise depth estimates can be made for underwater vehicles, even when operating in the surface wave pressure field • Applications for improved depth estimates: – Improve post-processing of digital terrain models, and seabed imaging – Improve real-time depth control of underwater vehicles – Improve bathymetric measurement inputs to terrain navigation • References: – – – – – Fofonoff & Millard: ”Algorithms for computation of fundamental properties of seawater”, UNESCO Technical Papers in marine science 44, 1983 Hagen & Jalving: ”Converting Pressure to Depth for Underwater Vehicles”, FFI-Rapport, (TBP) Willumsen, Hagen, and Boge: ”Filtering depth measurements in underwater vehicles for improved seabed imaging”, Oceans Europe 2007, Aberdeen www.navlab.net www.ffi.no/hugin
© Copyright 2026 Paperzz