Characterization of Individual Chinese Soil Particles by the Combined Use of Low-Z Particle EPMA and ATR-FT-IR imaging Techniques BoHwa Kim, Hae-Jin Jung, Md Abdul Malek, Young-Chul Song, and Chul-Un Ro* Department of Chemistry Inha University, KOREA Introduction ◈ Airborne mineral dust ▶ The most abundant particulate matters in coarse atmospheric aerosols ▶ Arid and semi-arid areas, such as Saharan desert and central China, are major sources of airborne mineral dust. ▶ Mineral dust aerosols can react with atmospheric gaseous pollutants such as SOx and/or NOx → modified physicochemical properties of mineral dust ▶ Mineral dust can influence global climate directly by scattering and absorbing solar radiations, and indirectly by serving as cloud condensation nuclei (CCN). ▶ Airborne mineral particles – from soil minerals ◈ Chinese soil particles at arid and desert areas ▶ Sources of Asian Dust particles ▶ Asian Dust particles can experience chemical modification during long range transport to Korea. ▶ Detailed characterization of Chinese soil particles is important to understand the characteristics of Asian Dust particles. ◈ Objectives ▶ Characterization of Chinese soils on a single particle level by the combined use of two single particle analytical techniques such as quantitative low-Z particle EPMA and ATR-FT-IR imaging * Low-Z particle EPMA for the elemental concentration and morphology (It has limitation to clearly identify different mineral types having similar composition but different crystal structures) * ATR-FT-IR imaging for the functional groups, molecular species, and crystal structure ▶ 2 loess samples and 4 desert samples Sampling sites Hungshan Shaptou Ganquan Zhangbei Minqin Luochuan Type Site Locations (Altitude) loess Luochuan 35.5°N, 109.2°E (1094 m) desert Shaptou 37.3°N, 105.0°E (1330 m) loess desert desert desert Ganquan Minqin Hungshan Zhangbei 36.4°N, 109.2°E (1029 m) 38.3°N, 102.5°E (1378 m) 42.1°N, 116.3°E (1266 m) 41.2°N, 114.5°E (1416 m) ◈ Previous studies on these Chinese soil samples ▶ Single-particle characterization of soil samples collected at various arid areas of China, using low-Z particle electron probe X-ray microanalysis (Kim et. al., Spectrochim. Acta B, 2006 ) * Analysis using SEM/EDX - loess soils : aluminosilicates, CaCO3 - desert soils : aluminosilicates, SiO2 ▶ Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils (Jeong, JGR, 2007) * Analysis using XRD - silt soil : rich-calcite, phyllosilicates - sandy soil : quartz, plagioclase, K-feldspar Experimental ◈ SEM/EDX and ATR-FT-IR imaging measurement ▶ Low-Z particle EPMA based on SEM/EDX - SEM (JEOL JSM-6390) equipped with Oxford SATW ultrathin window EDX detector - Condition • accelerating voltage : 10 kV • measuring time : 30 sec • beam current : 1.0 nA • substrate : Ag foil ▶ ATR-FT-IR imaging - Perkin Elmer Spectrum 100 FT-IR spectrometer - Spectrum Spotlight 400 FT-IR optical microscope - ATR accessory : Ge IRE crystal, diameter : 600 μm - Mercury Cadmium Telluride (MCT) array detector - pixel size : 1.56 μm - spectral resolution of 4 cm-1 at the range of 680 to 4000 cm-1 Low-Z particle EPMA (Electron Probe X-ray Microanalysis) for single particle analysis 1. SEM-EDX (Scanning Electron Microscopy – Energy Dispersive X-ray Spectrometer) - Individual Particle Analysis * shape and size : secondary / backscattered electron images * chemical compositions : X-ray spectrum 2. Ultra-thin window EDX for low-Z elements detection (e.g., C, N, O, F) 3. Metallic collecting substrates for minimizing charging effect (e.g., Ag, Al) 4. Monte Carlo calculation for Quantification 5. Chemical speciation of aerosol particles – Expert System Monte Carlo Calculation for Quantification Measurement Electron detector Simulation Electron beam with 10keV X-ray detector 1000 metal foil SEM Intensity(arb. units) 100 CaCO3 measured data Ca O Simulated C 10 1 0.1 0.01 0 1 2 3 4 5 6 7 8 9 10 X-ray Energy (keV) Measured and simulated spectra for a CaCO3 standard particle on a Be substrate ATR-FT-IR imaging for single particle analysis ♦ ATR-FT-IR (Attenuated Total Reflectance-FT-IR Spectrometry) - Individual Particle Analysis * location : optical image * functional groups, molecular species, and crystal structure : IR spectra Dual detector d = 600 ㎛ Visible radiation ▲ ATR imaging accessory Cassegrain system Motorized sample stage Ge crystal – sample contact surface ▲ sample IR radiation ◄ Ge crystal for imaging Images for Luochuan loess soil particles 3 1 2 4 13 16 15 14 18 17 12 5 19 28 20 25 27 30 29 31 46 47 39 49 53 48 43 41 45 50 56 57 44 42 40 59 60 51 62 54 58 61 64 68 52 55 65 69 66 63 67 22 34 33 37 3 2 13 16 15 14 17 29 49 51 * 52 46 48 50 56 57 * 58 53 54 22 45 59 60 55 (c) PCA image 62 63 44 * 64 41 39 42 * 68 69 65 66 33 37 40 67 34 22 23 46 45 44 62 39 41 43 34 32 31 64 66 65 67 33 37 35 38 40 36 42 68 36 72 70 71 4 13 * 14 12 15 19 18 28 26 29 35 38 2* 1 17 24 32 43 21 20 25 3 16 * 21 20 31 47 61 9 23 25 27 30 * * 8 7 19 18 26 28 * 11 10 12 11 10 19 70 69 71 72 (b) Optical image 6 5 4 8 9 63 (a) Secondary electron image 1 27 30 47 56 48 50 57 53 59 51 60 58 54 61 52 55 70 71 7 6 4 5 24 49 36 72 26 29 35 38 14 12 18 17 28 32 13 15 16 21 23 3 1 2 24 26 8 9 10 11 7 6 49 27 30 46 47 48 50 56 57 59 51 *53 58 61 60 54 * 55 52 6 5 9 * 11 10 20 23 24 25 63 44 ** 62 * 65 21 * 22 32 31 45 * 8 7 43 41 42 40 64 66 39 37 38 33 35 36 * 68 69 * 34 72 70 * * 71 67 (d) Transmission signal Image at single wavenumber of 1000cm-1 X-ray spectra and elemental concentrations of typical loess soil particles Elemental Concentration (at. %) Si C 7.3 Al 2.1 O O 40.3 Si 46.4 Ag-L Mg 0.8 Ca 3.0 Al C Mg O C Ca Elemental Concentration (at. %) Mg C 3.0 Al 14.0 Si O 47.5 Si 19.0 Mg 7.6 K 1.6 Ag-L C K Fe 6.5 Fe Al (d) Montmorillonite/MgCO3/Fe Elemental Concentration (at. %) C 14.4 Al 3.9 O Si O 54.1 Si 10.7 C Al Ag-LCa Mg 1.1 Ca 14.1 Mg Ag-L (a) Quartz/Calcite O Elemental Concentration (at. %) C 15.7 O 65.7 Ca Ca 18.6 (b) Calcite O (c) Montmorillonite/Calcite Elemental Concentration (at. %) C 12.6 Al 13.3 Ag-L C O 49.9 Si 18.5 Mg Si K Ca Mg 1.5 K 1.7 Ca 2.6 Al Elemental Concentration (at. %) C 12.5 Al 12.1 Al Ag-L Na O 33.1 Si 34.9 Si C Na 4.8 Ca 2.0 Ca (e) Muscovite/Calcite (f) Na-feldspar/Calcite O ATR-FT-IR spectra of typical loess soil particles 797, 779 : Si-O 1383 : CO32- (a) Quartz/Calcite (Ganquan) 1062 : Si-O 1176: Si(Al)-O (Heulandite) (b) Calcite (Luochuan) 1398 834: AlMg-O (c) Montmorillonite/Calcite (Luochuan) 796 1412 871 : CO321008: Si-O ATR-FT-IR spectra of typical loess soil particles 3412 : OH 1478, 1428 : CO32776 : Si-Si 970: Si-O (d) Montmorillonite/MgCO3/Fe (Ganquan) 746 : Si-O (e) Muscovite/Calcite (Luochuan) 1434 : CO32- 1436 : 912 : AlAl-OH CO32- 984 822 : Al-O 870 : CO32- 746 (f) Na-feldspar/Calcite (Ganquan) 788 : Si-Si 1118, 1084 : Si-O 988 866 X-ray spectra and elemental concentrations of typical desert soil particles O C Elemental Concentration (at. %) Si C 2.5 Al 2.6 O 63.5 Si 28.5 Al Ag-L (a) Cristobalite Elemental Concentration (at. %) C 3.8 Al 8.6 O Si O 57.6 Si 21.5 Al Na Na 5.5 C Elemental Concentration (at. %) O Si C 17.4 Mg 1.5 Al Ag-L O 46.3 Al 5.9 C Mg Na 0.4 Si 12.4 Ca Ca 1.1 Fe Fe 14.1 Fe (b) Montmorillonite/Fe Elemental Concentration (at. %) C 9.4 Al 11.7 AlSi Ag-L O 54.9 Si 17.8 C Mg K Mg 1.3 K 3.7 O (c) Montmorillonite O Elemental Concentration (at. %) C 2.6 Al 21.2 Si K O 40.7 Si 25.4 Mg Ag-L Mg 1.1 K 7.5 C Al Ag-L (d) Na-feldspar Elemental Concentration (at. %) C 10.5 Al 16.9 Si Al O 50.5 Si 19.2 C Mg Mg 1.0 Fe 1.0 Ag-L O (e) K-feldspar (f) Muscovite ATR-FT-IR spectra of typical desert soil particles 794 : Si-O 1050 : Si-O (a) Cristobalite (Shaptou) (b) Montmorillonite/Fe (Hungshan) 772 1042 : Si-O (c) Montmorillonite (Zhangbei) 1638 : H2O 760 : Si-Si 1638 : OH (feldspar) 1004 : Si-O 800 : Si-O ATR-FT-IR spectra of typical desert soil particles 795, 760 : Si-Si (d) Na-feldspar (Shaptou) 1026, 974 : Si(Al)-O 1152, 1093 : Si-O 735, 728 : Si(Al)-Si 852 : AlMg-OH (montmorillonite) (e) K-feldspar (Minqin) 1112 : Si-O 733 776 : Si-Si (f) Muscovite (Minqin) 1031, 1003 : Si(Al)-O 754 : Al-O-Si 3605 : OH 916 : AlAl-OH 980 : Si-O 821 : Al-O Relative abundances of mineral types observed in Chinese soils Relative abundances (%) Loess Desert ite c l Ca Si ite ies ies ies ies ie s ies c c c c c l c c e e e e a e e /C sp sp sp sp sp sp e r t 2 e e e e g i t O t a i it it n n ni Si at ul sp ni ov o i c p l d illo c i l l a r i t A m o us Fe or on m er M t m c V t n n Fe Mo Mo O2 lc i a /C te Mineral types r he t O s Conclusions ◈ In loess soils, the most abundant particles are observed to be silicates minerals mixed with calcite. ◈ Desert soils have higher content of SiO2 than the loess soils do. ◈ Low-Z particle EPMA and ATR-FT-IR imaging techniques provide complimentary information on the physicochemical characteristics of the same individual soil particles. ◈ low-Z particle EPMA for the information on the morphology and elemental concentrations ◈ ATR-FT-IR imaging for the information on the functional group, molecular species, and crystal structure
© Copyright 2026 Paperzz