Solution Assignment #8 True or False: (1) True (2) True (3) True (4) True (5) False 6.) b %Skill check 6 p=3.25*[1/6 1]; q=[1/24 11/24 1 0]; sys=tf(p,q); [mag,phase,w]=bode(sys); [Gm,Pm,Wcg,Wcp]=margin(mag,phase,w) Script Run Gm = 5.2850e+03 Pm = 54.8907 (Phase margin) Wcg = 262.3778 Wcp = 2.5586 (Cross over frequency) 7.) a p=[1 0.2]; q=[1/8 11/8 19/4 5]; sys=tf(p,q); bode(sys) The gain margin is ∞ so the system is stable Bode Diagram ï10 Magnitude (dB) ï20 ï30 ï40 ï50 ï60 ï70 45 Phase (deg) 0 ï45 ï90 ï135 ï180 ï2 10 ï1 10 0 10 Frequency (rad/sec) Figure Skill check 7 1 10 2 10 8.) d 9 ! 9 ![ 9 − 4!! − !(12! − !! )] ! ! = = (!" + 1)( !" ! + 3!" + 9) 9 − 4! ! − !(12! − ! ! ) At limiting K, imaginary of L(s)=0 => ω=0 or ! = 2 3 rad/s 9 ! 9 − 4!! − ! 12! − !! − 351 ! !"#$ ! ! = −1 => = −1 => ! ! 9 − 4! − ! 12! − ! 1521 !!! ! = −1 => ! = 4.33 9.) a %Skill check 9 p=4.3*9*[0.2 1]; q=[1 4 12 9]; sys=tf(p,q); [mag,phase,w]=bode(sys); [Gm,Pm,Wcg,Wcp]=margin(mag,phase,w) Script run Gm = 5.1077 Pm = 28.1321 Wcg = 7.1834 Wcp = 3.7548 10.) d %Skill check 10 p=[1 1]; q=[4 1 0 0]; sys=tf(p,q); [mag,phase,w]=bode(sys); [Gm,Pm,Wcg,Wcp]=margin(mag,phase,w) Script run Gm = 1.3693e-05 Pm = -35.7368 Wcg = 0.0037 Wcp = 0.6537 The phase margin is negative so the system is unstable 11.) b ! − 180 => ! = 3.3564 !"#/! 4 20 log ! + 20log ( !" + 4 )+20log( !! )=0 (eq11) using ! = 3.3564 !"#/! in (eq11) we get K=2.15 !!" = 180 + !"#!! 12.) a Replace ! !!.!! !" !!.!!!! !.!!!! and repeat the procedure of question #11 14.) c p=[-0.3 1]; q=[3/50 1/2 1 0]; sys=tf(p,q); bode(sys) grid on Bode Diagram 40 System: sys Frequency (rad/sec): 1.37 Magnitude (dB): ï3.05 Magnitude (dB) 20 0 ï20 ï40 ï60 ï80 270 Phase (deg) 225 180 135 90 45 0 ï1 10 0 10 Frequency (rad/sec) 15.) a %Skill check 15 p=[1 4]; q=[1 6 5 0]; sys=tf(p,q); [mag,phase,w]=bode(sys); [Gm,Pm,Wcg,Wcp]=margin(mag,phase,w) 1 10 2 10 Gm = 7.2196e+04 Pm = 58.1073 Wcg = 268.7613 Wcp = 0.6678 Word Match (in or, top to bottom): f, e, k, b, j, a, i, d, h, c, g E9.16 The phase approximation is E9.24 Using the Nyquist criterion, we have P=1 and N=0 which implies Z=N+P=1. Hence the system has root in the right half-plane. E9.25 p=[11.7]; q=[1/200 3/20 1 0]; sys=tf(p,q); bode(sys) grid on p=[11.7]; q=[1/200 3/20 1 0]; sys=tf(p,q); bode(sys) grid on Using the bode plot of the loop transfer function CP9.2 Figure a) Figure b) Figure c) CP9.4 CP9.10 Figure CP9.10 E10.3 Figure E10.3 E10.14 Figure E10.14 E10.20 Figure E10.20
© Copyright 2026 Paperzz