JEE ADVANCED 2017_21-05-17 (PAPER-II)_Code-0
[1]
MATHEMATICS
SECTION 1 (Maximum Marks : 21)
This section contains SEVEN questions
Each question has FOUR options (A), (B), (C) and (D), ONLY ONE of these four options is correct.
For each question, darken the bubble corresponding to the correct option in the ORS.
For each question, marks will be awarded in one of the following categories :
Full Marks
: +3
If only the bubble corresponding to the correct option is darkened.
Full Marks
:0
If none of the bubbles is darkened.
Negative Marks : –1
37.
In all other cases.
Let S = {1, 2, 3,...,9}. For k = 1, 2,....5, let Nk be the number of subsets of S, each containing five
elements out of which exactly k are odd. Then N1 + N2 + N3 + N4 + N5 =
[A] 125
[B] 210
[C] 252
[D] 126
Ans. (D)
Sol. In’s odd Nos, are five(s) and even number = 4 (four)
N1 4 C 4 5 C1 5
N2 4 C3 5 C2 4 10 40
N3 4 C2 5 C3 6 10 60
N4 4 C1 5 C4 4 5 20
N5 4 C 0 5 C 5 1
38.
N1 + N2 + N3 + N4 + N5 =5 + 40 + 60 + 20 + 1 = 126
The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y – 2z = 5
and 3x – 6y – 2z = 7, is
[A] 14x 2y 15z 3
[B] 14x 2y 15z 27
[C] 14x 2y 15z 1
[D] 14x 2y 15z 31
Ans. (D)
Equation of plane
(x 1)a (y 1)b (z 1)c 0
Also, 2a b 2c 0 and 3a 6b 2c 0
....(i)
a b c
14 2 15
Equation of plane is 14x + 2y + 15z = 31
Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1
Helpline No. : 9569668800 | 7544015993/4/6/7
JEE ADVANCED 2017_21-05-17 (PAPER-II)_Code-0
[2]
39.
Let O be the origin and let PQR be an arbitrary triangle. The point S is such that
OP OQ OR OS OR OP OQ OS OQ OR OP OS . Then the triangle PQR has S as its
[A] incentre
[B] circumcentre
[C] orthocentre
[D] centroid
Ans. (C)
Sol. (OQ OR) (OP OS) 0
....(i)
(OP OQ) (OR OS) 0
....(ii)
QR PS 0 and
PQ RS 0
S is orthocentre of PQR
40.
How many 3 3 matrices M with entries from {0, 1, 2} are there, for which the sum of the diagonal entries
of MTM is 5?
[A] 162
[B] 135
[C] 126
[D] 198
Ans. (D)
a b c
Sol. Let m d e f
g h i
sum of diagonal elements of MT M is a2 b2 c 2 d2 e2 f 2 g2 h2 i2 5
Here, any five entries are 1, rest zero
or any seven entries are zero and rest are 1 and 2.
so, 9 C5 9 C7 2 198
41.
Three randomly chosen nonnegative integers x,y and z are found to satisfy the equation x + y + z = 10.
Then the probability that z is even, is
[A]
6
11
36
55
[B]
[C]
1
2
[D]
5
11
Ans. (A)
Sol. x + y + z = 10
number of non negative solution =
12
C2 66
x + y = 10 – z, when z is even
number of solution = 11 + 9 + 7 + 5 + 3 + 1 = 36
required probability
6
11
Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1
Helpline No. : 9569668800 | 7544015993/4/6/7
JEE ADVANCED 2017_21-05-17 (PAPER-II)_Code-0
42.
[3]
1 1
If f : R R is a twice differentiable function such that f ''(x) 0 for all x R, and f ,f(1) 1, then
2 2
[A]
1
f '(1) 1
2
[B]
0 f '(1)
1
2
[C]
f '(1) 0
[D] f '(1) 1
Ans. (D)
1
Sol. since f(x) is continuous and differentiable in ,1
2
1
f(1) f
2 1
1
f '(x)
for at least one x ,1
1
1
2
2
But f ''(x) 0 f'(x) is increasing function
1
f '(1) f'(x) for x ,1
2
f '(1) 1
43.
If y = y(x) satisfies the differential equation 8 x
1
9 x dy 4 9 x dx, x 0 and
y(0) 7, then y(256)
[A] 80
[B] 9
[C] 16
Ans. (D)
Sol.
dy
8 x
dx
9 x 4 9 x
Let 4 9 x t 2
dx
t dt
8 x 9 x
y dt 4 9 x C
y(0) 7 C 0
y(256) = 3
Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1
Helpline No. : 9569668800 | 7544015993/4/6/7
[D] 3
JEE ADVANCED 2017_21-05-17 (PAPER-II)_Code-0
[4]
SECTION 2 (Maximum Marks : 28)
This section contains SEVEN questions.
Each question has FOUR options (A), (B), (C) and (D), ONE OR MORE THAN ONE of these four options(s)
is (are) correct.
For each question, darken the bubble(s) corresponding to all the correct options(s) in the ORS.
For each question, marks will be awarded in one of the following categories :
Full Marks
: +4
If only the bubble(s) corresponding to the correct option(s) is(are) darkened.
Partial Marks
: +1
For darkening a bubble corresponding to each correct option, provided NO
incorrect option is darkened
Zero Marks
: 0
Negative Marks : –2
If none of the bubbles is darkened
In all other cases
For example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will
result in +4marks; darkening only (A) and (D) will result in +2 marks; and darkening (A) and (B) will result
in –2 marks, as a wrong option is also darkened.
44.
If the line x = divides the area of region R {(x,y) R 2 : x 3 y x, 0 x 1} into two equal part, then
[A] 0
1
2
[B]
24 42 1 0
[C]
4 4 2 1 0
[D]
1
1
2
Ans. (B, D)
1
Sol.
(x x
3
0
)dx
1
4
3
So, (x x )dx
0
or
1 x2 x4
8 2
4 0
2 4 1
2
4 8
or 2 4 4 2 1 0,
Clearly
2 1
1
2
,1
1
2
(not valid)
1
1.
2
Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1
Helpline No. : 9569668800 | 7544015993/4/6/7
JEE ADVANCED 2017_21-05-17 (PAPER-II)_Code-0
[5]
cos(2 x) cos(2 x) sin(2 x)
45.
If f(x) cos x
sin x
cos x
sin x , then
sin x
cos x
[A] f(x) attains its maximum at x = 0
[B] f(x) attains its minimum at x = 0
[C] f '(x) 0 at more than three points in (, )
[D]
f '(x) 0 at exactly three points in (, )
Ans. (A, C)
Sol.
f(x) cos 2x(cos2 x sin2 x) cos 2 x( cos 2 x sin2 x) sin 2 x( sinx cosx sinx cosx)
f(x) cos 2 x cos 2 2x (sin2 2 x)
f(x) cos 2 x cos 4 x
f(x) is maximum at x 0,
f '(x) 2 sin2x 4 sin 4x
2sin2x 8 sin 2x cos 2x
f '(x) 2sin 2 x(1 4cos2 x)
f '(x) 0 at 7 points is x ( , )
46.
If I
98
k 1
k 1
k
[A] I
k 1
dx , then
x x 1
49
50
[B] I
49
50
[C] I loge 99
[D] I loge 99
Ans. (A,C)
98 k 1
Sol. I
k 1 k
98 k 1
I
k 1 k
47.
k 1
dx
x x 1
k 1
dx
x x 1
Let f x
[A]
[C]
98 k 1
k 1 k
98 k 1
k 1 k
k 1
dx
x k 1
2
dx
1
x dx ln99
k 1 k
98
k 1
x 1
98 k 1
k 1
98
1
1
49
k 2 K 1 100 50
1 x 1 | 1 x |
1
cos
for x 1. Then
| 1 x |
1 x
lim f x 0
[B]
lim f x does not exist
[D]
x 1
x 1
lim f x 0
x 1
lim f x does not exist
x 1
Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1
Helpline No. : 9569668800 | 7544015993/4/6/7
JEE ADVANCED 2017_21-05-17 (PAPER-II)_Code-0
[6]
Ans. (B,C)
Sol.
f x
1 x 1 | 1 x |
| 1 x |
cos
1
1 x
for x 1
lim f x lim
1 2x x 2
1
cos
0
1 x
1 x
lim f x lim
1 x2
1
1
cos
lim 1 x cos
x 1
1 x x 1
1 x
x 1
x 1
x 1
x 1
which does not exist.
48.
If f : is a differentiable function such that f ' x 2f x for all x , and f(0) = 1, then
[A] f(x) is increasing in 0,
[B]
f ' x e2x in 0,
[C] f x e2x in 0,
[D]
f x is decreasing in 0,
Ans. (A,C)
Sol.
f ' x 2 f x e
f ' x 2e
f x 0
f ' x 2 f x e2x f ' x 2e2x f x 0
.......(i)
d 2x
e f x 0 x
dx
Let g x e2x f x
for x 0, g x g 0
e 2x f x 1
f x e2x x 0,
Now, from equation (i)
e2x f ' x 2e2x f x
e2x f ' x 2 x 0,
f ' x 2e2x f ' x 0 x 0,
Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1
Helpline No. : 9569668800 | 7544015993/4/6/7
JEE ADVANCED 2017_21-05-17 (PAPER-II)_Code-0
49.
If g x
sin 2x
sin x
[7]
sin1 t dt , then
[A] g' 2
2
[B]
g' 2
2
[C] g' 2
2
[D]
g' 2
2
Ans. (None is correct)
50.
Let and be nonzero real numbers such that 2 cos cos cos cos 1 . Then which of the
following is/are true?
[A] tan 3 tan 0
2
2
[B]
3 tan tan 0
2
2
[C] tan 3 tan 0
2
2
[D]
3 tan tan 0
2
2
Ans. (A,C)
Sol.
2 cos cos cos cos 1 . Let tan
1 y2 1 x 2
2
2
1 x2
1 y
1 x2
2
1 x
y, tan x
2
2
1 y2
1 y 2 1
2 1 y2 1 x 2 1 x 2 1 y 2
1 x 1 y 1 x 1 y
2
tan
3 tan
2
2
tan
3 tan 0 and tan 3 tan 0
2
2
2
2
2
2
2
2 x 2 y 2 x 2 y 2 x 2 3y 2 x 3 y
Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1
Helpline No. : 9569668800 | 7544015993/4/6/7
JEE ADVANCED 2017_21-05-17 (PAPER-II)_Code-0
[8]
SECTION – 3 (Maximum Marks : 12)
This section contains TWO paragraphs
Based on each paragraph, there will be TWO questions
Each question has FOUR option (A), (B), (C) and (D). ONLY ONE of these four option is correct.
For each question, darken the bubble corresponding to all the correct option in the ORS.
For each question, marks will be awarded in one of the following categories :
Full Marks
: +3
Zero Marks : 0
If only the bubble corresponding to the correct option is darkened.
In all other cases.
Paragraph-1
51.
Let O be the origin, and OX, OY, OZ be three unit vectors in the directions of the sides QR, RP, PQ ,
respectively, of a triangle PQR.
OX OY
[A] sin P R
[B]
sin2R
[C]
sin P Q
[D] sin Q R
Ans. (C)
P
Sol. In PQR
Since P Q
Now,
OX OY | 1| | 1| sin P Q | nˆ |
OX OY sin P Q
52.
Q
R
If the triangle PQR varies, then the minimum value of cos P Q cos Q R cos R P is
[A]
3
2
[B]
3
2
[C]
5
3
[D]
5
3
Ans. (A)
Sol. Since, P Q R
cos P Q cos Q R cos R P
cos R cos P cos Q
cosP cosQ cosR
P
Q
R
1 4 sin sin sin
2
2
2
Since minimum value will be at
P QR
3
Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1
Helpline No. : 9569668800 | 7544015993/4/6/7
JEE ADVANCED 2017_21-05-17 (PAPER-II)_Code-0
[9]
P
Q
R
1 1 1
3
1 4 sin sin sin 1 4
2
2
2
2
2
2
2
Minimum value will be
3
2
Paragraph-2
Let p, q be integers and let , be the roots of the equation, x 2 x 1 0 , where . For n = 0, 1,
2,..., let an pn qn
FACT : If a and b are rational numbers and a b 5 0 , then a = 0 = b.
53.
If a 4 28 , then p + 2q =
[A] 12
Ans. (A)
[B] 21
[C] 14
[D] 7
2
Sol. Given x x 1 = 0
1 5
1 5
,
2
2
Also, x 2 x 1
2 1, 2 1
4
a 4 p 4 q 4
1 5
1 5
28 p
q
2
2
4
28 16 p q p q 4 5 p q 30 20 5 p q 25 p q
28 16 56 p q 24 5 p q
56 7 p q 3 5 p q 7 p q 8 3 5 p q 0
p q 8 p q 0
54.
p q 4
p 2q 12
[B]
[C]
a12
[A] a11 2a10
a11 a10
a11 a10
Ans. (B)
Sol.
A12 p12 q12
p10 1 q10 1
x 2 x 1
p11 p10 q11 q10 A11 A10
Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1
Helpline No. : 9569668800 | 7544015993/4/6/7
[D] 2a11 a10
© Copyright 2026 Paperzz