Real hypersurfaces in a complex space form
and the generalized Tanaka-Webster connection
The 13th International Workshop
on Differential Geometry and Related Fields
5 – 7 Nov., 2009
Kyungpook National University
Mayuko Kon
Department of Mathematics,
Hokkaido University
Osaka City University
Table of Contents
Preliminaries
g-Tanaka-Webster connection
Holomorphic distribution
・ shape operator
・ Ricci tensor
・ sectional curvature
1. Preliminalies.
M n (c) : complex space form,
4c : holomorphic sectional curvature,
J : complex structure,
M : a real hypersurface in M n (c),
N : unit normal vector field,
・ almost contact metric structure
JX X ( X ) N ,
g
: induced connection.
We put
(φ,ξ,η,g )
JN
2 X X ( X ) , 0,
(X ) 0, ( X ) g ( X , ),
g (X , Y ) g ( X , Y ) ( X ) (Y ).
( X Tx M ).
・ Gauss and Weingarten formulas
~
X Y X Y g ( AX , Y ) N ,
~
X N AX .
( A : shape operator)
・ Hopf hypersurface
M : real hypersurface of CP n .
M : Hopf hypersurface : function , A .
def
・ the equation of Gauss
R : the Riemannian curvature tensor field of M .
R( X , Y ) Z c{g (Y , Z ) X g ( X , Z )Y g (Y , Z )X
g (X , Z )Y 2 g (X , Y )Z }
g ( AY , Z ) AX g ( AX , Z ) AY .
S : the Ricci tensor of M .
S ( X , Y ) (2n 1)cg ( X , Y ) 3cg ( X , ) g (Y , )
trAg ( AX , Y ) g ( AX , AY ).
・ the equation of Codazzi
( X A)Y (Y A) X
g ( X , )Y g (Y , )X 2 g (X , Y ) .
M : totally umbilic
M : totally η-umbilic
M :Einstein
AX aX
def
(X Tx M )
AX aX bg (X , )
def
S ( X , Y ) ag ( X , Y )
def
(X , Y Tx M )
M :pseudo-Einstein S ( X , Y ) ag ( X , Y ) bg ( X , ) g (Y , )
def
⇒ Are there any other useful condition?
⇒ Or, any other useful connection?
→ section 3
→ section 2
■ Examples of real hypersurfaces.
Example 1.1.
S 2n1 {( z1,, zn1 ) C n1 | nj11| z j |2 1},
: S 2n1 CP n .
M 0 ' (2n, t ) : {( z1 ,, zn1 ) S 2n1 | nj1| z j |2 t | zn1 |2 }
M 0 (2n 1, t ) : ( M 0 ' (2n, t ))
(t 0).
geodesic hypersphere, type A 1
▲ compact totally η-umbilical real hypersurface in CP n
cot
A
cot
0
,
2 cot 2
0
t cot 2 ,
A 2 cot 2.
type A 2
M ' (2n, m, t ) : {( z1 ,, zn1 ) S 2 n1 | mj1| z j |2 t nj 1m 2 | z j |2 }
2 p 1 2 q 1 2q 1
S 2 p 1
S
2n
2n
M (2n 1, m, t ) : (M ' (2n, m, t )).
t 0,
,
p
m
1
,
q
n
m
1
▲ a tube of radius over CP p
cot
cot
A
0
0
tan
tan
M (2n 1, m, t ) : pseudo-Einstein t
,
2 cot 2
m 1
.
nm
t cot 2 ,
A 2 cot 2 .
type B
M ' (2n, t ) : {( z1 ,, zn1 ) S 2 n1 || nj11 z j 2 |2 t}
(t 0).
M (2n 1, t ) : (M ' (2n, t )).
▲ a tube of radius over Q n 1
A
cot( / 4)
0
cot( / 4)
tan( / 4)
,
0
tan( / 4)
2 cot 2
M (2n 1, t ) : pseudo-Einstein t
1
.
n 1
t cot 2 ,
A 2 cot 2 .
Theorem 1.2 (Cecil and Ryan, Takagi).
Let M be a totally η-umbilical real hypersurface of
CP n , n 2 , then M is locally congruent to a geodesic
hypersphere.
Theorem 1.3 (Cecil and Ryan, Kon).
Let M be a connected complete pseudo-Einstein
n
CP
, n 3 , then M is congruent to
real hypersurface of
M 0 (2n 1, t ), M (2n 1, m, (m 1/ n m)) , or M (2n 1,1/(n 1)).
Example 1.4.
H12n1 {( z0 ,, zn ) C n1 | | z0 |2 nj1| z j |2 1}, : H 2 n1 CH n .
M ' p ,q (t ) : {( z1 ,, zn1 ) H12 n1 | t ( | z0 |2 pj1| z j |2 nk p 1| zn1 |2 }
1 2q 1 t
H12 p 1
S
t 1
1 t
M p,q (t ) : ( M ' p,q (t ))
(t 0).
n q 1
a tube of radius over CH
M 0,n1 (t ) : geodesic hypersphere
tanh
tanh
A
0
0
coth
coth
,
2 coth 2
t tanh 2 , A 2 coth 2.
holosphere
L(t ) : {( z1 ,, zn ) H12 n1 || z0 z1 |2 t} (t 0).
M n* (t ) : ( L(t )).
▲ totally η-umbilical real hypersurface of CH n
0
1
A
.
1
2
0
Theorem 1.5 (Montiel).
Let M be a totally η-umbilical real hypersurface of
CH n , n 3, then M is locally congruent to one of the
following:
2
(a) a geodesic hypersphere M 0,n1 (tanh ),
2
M
(tanh
),
(b)
n1,0
(c) holosphere M n* .
★ A connected, complete real hypersurface M in
CH n , n 3 is pseudo-Einstein
⇔
M is totally η-umbilic.
2. g-Tanaka-Webster connection
For a contact metric manifold (Tanno)
^
X Y : X Y ( X )(Y ) (Y ) X ( X )Y .
For a real hypersurface of a Kaehler manifold (Cho)
^ (k )
X Y : X Y g (AX ,Y ) (Y )AX k ( X )Y .
k : nonzero real number.
A A 2k
g-Tanaka-Webster connection coincides with
the Tanaka-Webster connection.
Then we have
^ (k )
^ (k )
0,
c. f .
X AX ,
^ (k )
^ (k )
0, 0,
g 0.
( X )Y (Y ) AX g ( AX ,Y ) .
Def.
^
^ (k ) ^ (k )
^ (k ) ^ (k )
^ (k )
R( X ,Y ) Z : X Y Z Y X Z [ X ,Y ] Z ,
^
^
S (Y , Z ) : tr{ X R( X ,Y ) Z }.
■ Problem
^
We want to study the shape operator A , the Ricci tensor S ,
^
n
the sectional curvature K of a hypersurface of CP
with respect to some conditions for g-Tanaka-Webster
connection.
(Early results)
M n (c) : complex space form,
4c : holomorphic sectional curvature.
Theorem 2.1 (Cho, 2008).
M : Hopf hypersurface of M n (c)
(c 0).
^
R0
⇒ M is locally congruent to one of the following:
(a)
n
CH
,
a horosphere in
1
2
2
(b) a homogeneous tube over Q and RP (CH )
in CP 2 (CH 2 ).
Theorem 2.2 (Cho, 2008).
M : Hopf hypersurface of M n (c)
X ,Y ,
^
S ( X ,Y ) L( X ,Y ),
(c 0).
L : Levi form.
⇒ M is locally congruent to one of the following:
n
CH
,
a
horosphere
in
(a)
n
n
(b) a geodesic hypersphere in CP or CH ,
(c) a homogeneous tube over CH n 1 in CH n ,
1
2
2
Q
RP
(
RH
)
a
homogeneous
tube
over
and
(d)
in CP 2 (CH 2 ).
(Our results)
Theorem 2.3.
M : real hypersurface of CP n ( n 3), k 2 4,
^
X , Y Tx M ,
( : function).
S ( X ,Y ) g ( X ,Y )
⇒
M is locally congruent to
(i) a geodesic hypersphere with k 2 (2n 2)(2n ),
(ii) a tube over a totally geodesic CP p (1 p n 2).
Theorem 2.4.
M : real hypersurface of CH n ( n 3),
^
X , Y Tx M ,
S ( X ,Y ) g ( X ,Y )
⇒
M is locally congruent to
( : function).
(a) a geodesic hypersphere with k 2 (2n 2)(2n ),
(b) a tube over a complex hyperbolic hyperplane with
k 2 ( 2n 2)(2n ),
2
(c) a holosphere with k (2n 2)(2n ),
(d) a tube over a totally geodesic CH p (1 p n 2).
Corollary 2.5.
M : real hypersurface of CP n (n 3),
^
S 0.
⇒
M is locally congruent to a geodesic hypersphere,
with k 2 4n( n 1).
M :Einstein
def
^
S ( X ,Y ) g ( X ,Y )
^
S 0.
(X ,Y Tx M )
Corollary 2.6.
n
CP
( n 3)
There are no real
hypersurfaces
of
^
which satisfies R 0.
Theorem 2.1 (Cho, 2008).
M : Hopf hypersurface of M n (c)
(c 0).
^
R0
⇒ M is locally congruent to one of the following:
(a)
n
CH
,
a horosphere in
1
2
2
(b) a homogeneous tube over Q and RP ( RH )
in CP 2 (CH 2 ).
3. Holomorphic distribution.
Hopf hypersurface
M : real hypersurface of M n (c)
M : Hopf hypersurface : function , A .
def
There are some classification theorems for Hopf hypersurfaces
of a complex space form.
⇒
We want to study
・ real hypersurfaces of a complex space form
without the assumption that they are Hopf hypersurfaces.
・ another condition that contains Hopf condition.
T0 : holomorphic distribution
T 0 ( x) : {X Tx (M ) | g ( X , ) 0}
M : ruled real hypersurface
def
T 0 is integrable and its integral manifold is a totally
n1
geodesic submanifold M (c).
M : totally umbilic
M : totally η-umbilic
M :Einstein
AX aX
def
(X Tx M )
AX aX bg (X , )
def
S ( X , Y ) ag ( X , Y )
def
(X , Y Tx M )
M :pseudo-Einstein S ( X , Y ) ag ( X , Y ) bg ( X , ) g (Y , )
def
⇒ Are there any other useful condition?
■ Problem
T0 ( x) { X Tx ( M ) | g ( X , ) 0}.
We want to study the shape operator A , the Ricci tensor S ,
n
the sectional curvature K of a hypersurface of M (c)
with respect to some conditions for T0 .
g ( AX , Y ) ag ( X , Y )
S ( X , Y ) ag ( X , Y )
(X , Y T0 ( x))
(X , Y T0 ( x))
g (( R( X , Y ) S ) Z ,W ) 0
K ( X , ) c
(X , Y , Z ,W T0 ( x))
( X T0 ( x),| X | 1, c : constant )
totally η-umbilic
pseudo-Einstein
RS=0
□ Shape operator
M : real hypersurface of M n (c)(n 3),
We study the following condition:
X , Y ,
i.e.
g ( AX , Y ) ag ( X , Y )
e1 ,, e2 n2 , : o.n.b,
0
a
A
0
a
h1 h2 n 2
h1
h2 n2
b
Aei aei hi ,
2n2
A k 1 hk ek b .
c. f .
totally η-umbilic
0 0
a
A
0
a 0
0 0 b
Theorem 3.1 (Ortega 2002).
M : real hypersurface of M n (c)(n 3),
X , Y ,
g ( AX , Y ) ag ( X , Y )
⇒ M is totallyη-umbilical or a ruled real hypersurface.
▲ Hopf hypersurface
▲ not a Hopf hypersurface
Corollary 3.2.
M : real hypersurface of CP n (n 3),
X , Y ,
⇒
g ( AX , Y ) ag ( X , Y )
M is locally congruent to a geodesic hypersphere,
or a ruled real hypersurface.
Corollary 3.3.
M : real hypersurface of CH n (n 3),
X , Y ,
g ( AX , Y ) ag ( X , Y )
⇒ M is congruent to one of the following:
(a)
(b)
(c)
(d)
a ruled real hypersurface,
a geodesic hypersphere M 0,n1 (tanh 2 ),
M n1,0 (tanh 2 ),
a holosphere M n* .
Theorem 3.4.
M : real hypersurface of M n (c)(n 3),
X , Y , Z ,W ,
g ( R( X , Y ) AZ ,W ) 0
M is a geodesic hypersphere or a ruled real hypersurface.
As an application of this theorem, we have
Theorem 3.5 (Maeda).
n
CP
(n 3),
There are no real hypersurface of
which satisfies RA 0
□ Ricci tensor
Theorem 3.6 (2007).
M : real hypersurface of M n (c)(n 3),
X , Y , Z ,W ,
g ( R( X , Y ) SZ ,W ) 0
M is a pseudo-Einstein real hypersurface.
As an application of this theorem, we have
Theorem 3.7 (Kimura and Maeda).
n
CP
(n 3)
There are no real hypersurface of
which satisfies RS 0.
Theorem 3.8 (Ki, Nakagawa, Suh).
M : real hypersurface of M n (c)(n 3),
X ,Y , Z Tx M ,
R( X ,Y )SZ R(Y , Z )SX R( Z , X )SY 0
M : pseudo-Einstein
Proposition 3.9.
M : real hypersurface of M n (c)(n 3) with constant
principal curvatures.
X , Y ξ ,
g ( SX , Y ) ag ( X , Y )
M is a pseudo-Einstein real hypersurface.
★ NEXT PROBLEM
M : real hypersurface of M n (c)
M : Hopf hypersurface : function , A .
def
We study the condition
: function , S .
● with constant principal curvatures
● g ( A , ) : constant
⇒
Hopf hypersurface
□ Sectional curvature
Theorem 3.10.
M : real hypersurface of M n (c)(n 3),
X , | X | 1,
⇒
K ( X , ) k
(k : constant )
M is congruent to one of the following:
(a) Hopf hypersurface which satisfies A 0 (k c),
(b) totally η-umbilical real hypersurface (k c).
■ Early results
M : real hypersurface of CP m (m 3),
H : sectional curvature on a holomorphic 2-plane,
H ( X ) g ( R( X ,X )X , X ),
X , | X | 1.
Theorem 3.11 (Kimura).
If H is constant, then M is one of the following:
(a) an open subset of a geodesic hypersphere ( H 4),
(b) a ruled hypersurface,
(c) a real hypersurface on which there is a foliation of
codimension two such that each leaf of the foliation
is contained in some CP n1 as a ruled hypersurface ( H 4).
Corollary 3.12.
M : real hypersurface of CP n (n 3),
The focal map r has constant rank on M ,
X , | X | 1,
K ( X , ) k
(k : constant )
⇒
M is congruent to one of the following:
(a) Hopf hypersurface which satisfies A 0 (k 1),
(a-1) a homogeneous real hypersurface which
s
/
4
CP
(1 s n 1),
lies on the tube of radius
over
(a-2) a nonhomogeneous real hypersurface which
lies on the tube of radius / 4 over a Kähler
submanifold N with nonzero principal curvatures 1,
(b) A geodesic hypersphere M (2n 1, t )of radius
(t cot 2 , k t 1).
Corollary 3.13.
M : real hypersurface of CH n (n 3),
The focal map r has constant rank on M ,
X , | X | 1,
K ( X , ) k
(k : constant )
⇒
M is congruent to one of the following:
(a) a tube of radius over an anti-holomorphic submanifold
M which satisfies A 0 (k 1),
(b) a geodesic hypersphere M 0,n1 (t ) of radius (k 1/ t ),
(c) a tube M n1,0 (t ) of radius over a complex hyperbolic
hyperplane (k t ),
*
(d) a holosphere M n .
Thank you for your attention !
Theorem 2.1 (Cho, 2008).
Theorem 2.2 (Cho, 2008).
Theorem 2.3.
Theorem 2.4.
Corollary 2.5.
Corollary 2.6.
Theorem 3.4.
Theorem 3.6.
Proposition 3.9.
Theorem 3.10.
^
R0
X ,Y ,
X , Y Tx M ,
^
S ( X ,Y ) L( X ,Y ),
^
S ( X ,Y ) g ( X ,Y )
^
S 0
^
R0
X ,Y , Z ,W ,
g ( R( X ,Y ) AZ ,W ) 0
X ,Y , Z ,W ,
g ( R( X ,Y )SZ ,W ) 0
X ,Y ,
g ( SX ,Y ) ag( X ,Y )
X , | X | 1, K ( X , ) k (k : constant)
© Copyright 2026 Paperzz