Dynamics of non natural bodies Anne Lemaître Facultés Universitaires Notre-Dame de la Paix (merge with UCL failed) naXys (NAmur Center of Complex SYstems) March 21, 2011 Dynamics of non natural bodies Introduction Namur’s specialities Dynamics of natural bodies I I I I I I I Moon Mercury Asteroids Galilean satellites Saturnian satellites Exoplanets Galaxies and universe (cosmology) Dynamics of non natural bodies Introduction Namur’s specialities Dynamics of natural bodies I I I I I I I Moon Mercury Asteroids Galilean satellites Saturnian satellites Exoplanets Galaxies and universe (cosmology) but also of artificial satellites I Artificial satellite (H. Claes - 81) I Critical inclination (F. Delhaise - 92) I Lunar satellite (B. De Saedeleer - 06) Dynamics of non natural bodies Introduction Present situation I Influence of French Post-doc Florent Deleflie I Stéphane Valk, Nicolas Delsate, Charles Hubaux : PhD on artificial satellite dynamics I ROMEO Team : BepiColombo mission : Julien Dufey I (Post-doc at ESA) Reasons I I I I Personal affinity Softwares conception Easier future careers ? 100 % male scientists Dynamics of non natural bodies Introduction Present situation I Influence of French Post-doc Florent Deleflie I Stéphane Valk, Nicolas Delsate, Charles Hubaux : PhD on artificial satellite dynamics I ROMEO Team : BepiColombo mission : Julien Dufey I (Post-doc at ESA) Reasons I I I I Personal affinity Softwares conception Easier future careers ? 100 % male scientists I Presentation of results, perspectives from 2008 to nowadays I Space debris I Artificial satellites I Techniques used and improved Dynamics of non natural bodies Outline Introduction Space Debris Symplectic integrators Earth shadowing effects Telluric planet satellite Dynamics of non natural bodies Space Debris Space debris population Catalogued objects (NASA) I There are about 15 000 objects larger than 10 cm TLE (Two Lines Elements) in a catalogue I About 350 000 objects larger than 1 cm I More than 3 × 108 objects larger than 1 mm Composition of the catalogue I I I I I 6 % Operational spacecrafts 24% Non-operational spacecrafts 17% Upper stages of rockets 13% Mission related debris 40% Debris mostly generated by explosions & collisions Dynamics of non natural bodies Space Debris Optical observations in high-altitude orbits Catalogue Observations [Schildknecht et al., 2005] Dynamics of non natural bodies Space Debris Direct radiation pressure acceleration The acceleration of a geostationary debris due to the direct radiation pressure : 2 a A r − r arp = Cr Pr , r − r m r − r I Cr is the non-dimensional reflectivity coefficient (0 < Cr < 2), I Pr = 4.56 10−6 N/m2 is the radiation pressure per unit of I I I mass for an object located at a distance of a = 1 AU, r is the geocentric position of the space debris; r is the geocentric position of the Sun, A is the exposed area to the Sun of the space debris, m is the mass of the space debris. Non-gravitational force Object A/m (m2 /kg) Object A/m (m2 /kg) Lageos 1 and 2 GPS (Block II) 0.0007 0.02 Moon Space debris 1.3 10−10 ??? Dynamics of non natural bodies Space Debris Direct radiation pressure acceleration Order of magnitude of the perturbations 10 -2 GM 10-4 J2 Acceleration [km/s2] 10-6 2 A/m 40 m /kg A/m 10 m2/kg 10-8 2 A/m 1 m /kg Sun Moon J22 10-10 2 A/m 0.01 m /kg J3 10-12 10-14 Jupiter -16 10 10000 15000 20000 25000 30000 35000 Distance ftom the Earth’s center [km] 40000 45000 50000 Dynamics of non natural bodies Space Debris Averaged Eccentricity and Inclination Calculation of a potential : 2 a 2 a A A W = Cr Pr Cr Pr m r − r m r 1 Pn (cos ψ) n=0 r r n Chao (2005) : averaging over the mean anomaly < HSRP 2 A a 3 > = − Cr Pr a e (C1 cos g1 + C2 cos g2 2 2 m r +C3 cos g3 − C3 cos g4 + C4 cos g5 + C5 cos g6 ]. where Ck = Ck (i, ) with i the inclination and the obliquity and gk are linear combinations of λ , and Ω. Non singular cartesian variables X1 = X2 = r 2P r 2Q L L sin e sin sin Ω sin i sin Ω 2 Y1 r 2P = cos e cos L r 2Q i Y2 = L cos Ω sin 2 cos Ω Dynamics of non natural bodies Space Debris Eccentricity and Inclination evolution The long periodic motion of the eccentricity Z sin λ (t) + β0 X1 (t) = − Ln Z cos Y1 (t) = cos λ (t) + α0 Ln and consequently the very long periodic motion of the inclination < X2 (t) >λ −A0 sin (νt + θ0 ) < Y2 (t) >λ sin − A0 cos (νt + θ0 ) Z 2 cos where ν = and Z = 2 2n L 8< Coupling the two degrees of freedom : : 3 2 Cr Pr X1 (t) = Y1 (t) = A m − LnZ ( ar )2 a. Z cos Ln sin λ (t) + B0 sin (νt + φ0 ) cos λ (t) + B0 cos (νt + φ0 ) Dynamics of non natural bodies Space Debris Eccentricity and Inclination evolution 0.4 50 45 0.35 40 0.3 35 Inclination [degree] Eccentricity 0.25 0.2 0.15 30 25 20 15 0.1 10 0.05 5 0 0 0 200 400 600 800 Time [Days] 1000 1200 A/m = 10, 20 or 30 m2 /kg Eccentricities I Period = 1 year I Values as high as 0.55 (A/m = 30 m2 /kg), 1400 1600 0 10 20 30 40 Time [Years] 50 60 70 80 A/m = 5, 10, 20 or 30 m2 /kg Inclinations I Very long periods reduced to 40 years for large A/m. I Maximum value = 2 = 47◦ Dynamics of non natural bodies Space Debris Sensitivity to initial conditions Geostationary space debris + gravity field + Luni-Solar perturbations + Solar Radiation pressure I For A/m << 1 m2 /kg : apparition of chaos near the separatrix of the pendulum (geostationary resonance) Breiter et al (2005) and Wytrzyszczak et al (2007) I For A/m > 1 m2 /kg : apparition and connection of chaos with the value of A/m Valk et al (2009) By numerical integrations (20 000 orbits) and chaos indicators Dynamics of non natural bodies Space Debris Sensitivity to initial conditions Dynamics of non natural bodies Space Debris Numerical chaos indicators d x (t) dt = f (x (t), α ), x ∈ R2n , α is a vector of parameters. x0 , t0 = 0) is a solution of the flow. φ(t, We introduce the tangent vector δ(t) measuring the time evolution of a small initial deviation δ0 with respect to φ(t). The dynamics is given by the variational equations δ˙ = d δ(t) = J(t) δ(t), dt ∂f with J(t) = ∂x |x =φ(t) Dynamics of non natural bodies Space Debris LCN and MEGNO LCN The Lyapounov Characteristic Number λ = lim λ1 (t). t→∞ t 1 δ(φ(t)) δ̇(φ(s)) 1 λ1 (t) = ln = ds t t 0 δ(φ(s)) δ0 δ˙ · δ where δ = δ and δ̇ = δ MEGNO The Mean Exponential Growth factor of Nearby Orbits Y (φ(t)) is based on a modified time-weighted version of the integral form of the LCN (Cincotta et al 2000). 2 Y (φ(t)) = t 0 t δ̇(φ(s)) s ds, δ(φ(s)) 1 Y (φ(t)) = t 0 t Y (φ(s)) ds Dynamics of non natural bodies Space Debris MEGNO properties I Stable, isochronous periodic orbits : Y (t) → 0. I Quasi-periodic (regular) Y (t) → 2 I Chaotic (irregular) Y (t) λ/2 t Breiter et al 2007 Dynamics of non natural bodies Space Debris High area-to-mass - A/m = 1 or 5 m2 /kg 180 × 70 initial conditions → 133 hours MEGNO 4 4 yWAM1ALLmegno x 10 yWAM5ALLmegno x 10 12 6 4.219 4.219 10 5 4.218 4.218 8 4 4.217 4.217 3 4.216 2 6 4.216 4 1 4.215 4.215 2 0 4.214 4.214 0 −1 2 2.5 3 3.5 4 4.5 5 2 2.5 3 3.5 4 4.5 5 Dynamics of non natural bodies Space Debris High area-to-mass - A/m = 10 or 20 m2 /kg MEGNO 4 yWAM10ALLmegno x 10 yWAM20AllALLmegno 4.219 15 14 4.2190 4.218 12 4.2180 10 4.217 10 4.2170 4.216 6 Demi−Gd ax 8 4.2160 4.215 5 4 4.2150 4.214 2 4.2140 4.213 0 2 2.5 3 3.5 4 4.5 5 0 120 140 160 180 200 220 Anomal Moye 240 260 280 Dynamics of non natural bodies Space Debris FAM : Frequency Map Analysis Frequency analysis (Laskar 1990, 1993 and 1995) : ∞ I A initial signal f (t) : f (t) = pk e iνk t k=1 I The approximation f (t) : f (t) = N iνk t pk e k=1 I The frequencies νk and the amplitudes pk for k = 1, . . . , N are determined through an iterative scheme. I Two indicators : SDI = log |δδν| of the numerical Second Derivative b | where νa and νb represent the calculation of DTI = log | νaν−ν a the frequency on two different time intervals Diffusion Time Dynamics of non natural bodies Space Debris Identification of the two frequencies : secondary resonances λ with period of 1 year and σ with period of 2.25 years Dynamics of non natural bodies Space Debris Identification of the two frequencies : secondary resonances 112 14 80 12 Mean semi−major axis [km] 60 10 40 20 8 0 6 −20 4 −40 2 −60 0 −80 −2 −100 −120 −126.5 −90 −60 −30 0 30 60 90 120 150 180 210 235.5 Resonant angle [degree] Dynamics of non natural bodies Space Debris Frequency analysis Dynamics of non natural bodies Space Debris Perturbed pendulum μ2 μ 2 H = − 2 −θ̇L+ 3 Re F200 (i) G200 (e) S2200 +F221 (i) G212 (e) S2212 2L a with F200 (i) = 43 (1 + cos i)2 3 and F221 (i) = with G200 (e) = 1 − 52 e 2 + . . . 1 − 52 e 2 . 3 2 sin2 i 0 ψ2200 = 2ω + 2M + 2(Ω − θ) = 2(M + ω + Ω) − 2θ = 2 σ S2200 = C22 cos ψ2200 + S22 sin ψ2200 = C22 cos 2σ + S22 sin 2σ = J22 cos 2(σ − σ0 ). √ The variable σ is conjugated to L = μa . μ2 3μ4 2 H = − 2 − θ̇L + 6 Re J22 cos 2(σ − σ0 ) 2L L 15μ4 2 2 − 6 Re e J22 cos 2(σ − σ0 ). 2L Dynamics of non natural bodies Space Debris Pendulum - semi-major axis and resonant angle μ2 F H = − 2 − θ̇L + 6 cos 2(σ − σ0 ) 2L L I a ageo I Equilibria at different altitudes I Period : 818.7 days = 2.24 years. Breiter et al 2007 Dynamics of non natural bodies Space Debris Second frequency We introduce through e 2 the second frequency, caused by the solar radiation pressure ( = 0) Z e sin X1 (t) = − sin λ (t) + β0 Ln Z cos e cos Y1 (t) = cos λ (t) + α0 Ln For the obliquity equal to 0 : e 2 = (e cos + e sin )2 Z2 2Z 2 2 = + α0 + β0 + (α0 cos λS + −β0 sin λS ) 2 2 LnS L nS e2 = Z2 2Z 2 +γ + γ cos (λS + δ). 2 2 LnS L nS with α0 = γ cos δ and β0 = γ sin δ Dynamics of non natural bodies Space Debris Two frequencies expression The final Hamiltonian is : μ2 F K (L, σ) = − 2 − θ̇L + 6 cos (2σ − 2σ0 ) 2L L 2G − 6 cos (2σ − 2σ0 ) cos (λS + δ), L with F G = 3μ4 = 15μ4 2 2 Re Re2 J22 − J22 15μ4 2 2 Re Z LnS Z2 J22 ( L2 n2 S + γ2) γ 2 cos (2σ − 2σ0 ) cos (λS + δ) = cos (2σ + λS − 2σ0 + δ) + cos (2σ − λS − 2σ0 − δ). I σ librates or circulates I σ̇ = constant. I Only one secondary resonance ? Dynamics of non natural bodies Space Debris Examples based on the second derivatives Dynamics of non natural bodies Space Debris Examples based on the second derivatives Dynamics of non natural bodies Space Debris Examples based on the dissipation Dynamics of non natural bodies Space Debris Action - angle variables I I I I Change of scale (new time) Action-angle variables in the circulation or libration zone Development in Bessel functions New angle : η = λ + δ For the circulation case (k ≡ the distance from the separatrix) : J 2 1 b2 h(ψ, J) = + G cos (k sin ψ) (2 cos ψ cos η) + 2 2 2 J −G sin (k sin ψ) (2 sin ψ cos η) J 2 1 b2 + G J (k) cos(ψ + η) + G J0 (k) cos(ψ − η) + 0 2 2 2 J +G J2 (k) cos (3ψ + η) + G J2 (k) cos (3ψ − η) +G J2 (k) cos (ψ + η) + G J2 (k) cos (ψ − η) +G J1 (k) cos (2ψ + η) − G J1 (k) cos (2ψ − η) 3 2 J0 (k) 1 − k , 4 k J1 (k) , 2 k2 J2 (k) . 8 Dynamics of non natural bodies Space Debris Local resonant analysis We isolate a resonance φ = jψ ± η and we build a canonical transformation between (ψ, η, J, Λ) to (φ, η, J, Γ) defined by : η φ=ψ± j We replace ψ by φ ∓ <h> = or = or = η j J Λ=Γ± j and we average. J J 2 1 b2 + n (Γ ∓ (J0 (k) + J2 (k)) cos φ + ) + G 2 2 2 J j J 2 1 b2 J + n (Γ ∓ J1 (k) cos 2φ + ) − G 2 2 2 J j J 2 1 b2 J + n (Γ ∓ J2 (k) cos 3φ + ) + G 2 2 2 J j with calculation of a specific frequency (period) obtained by new passages to action-angle variables. Dynamics of non natural bodies Space Debris Conclusions I Same analysis for the libration zone I Good agreement of periods and amplitudes of the secondary resonances web I Obliquity : cos = 1 → combinations jψ + 2λ I Objects with high area-to-mass ratios (A/m) are good candidates to the recently discovered debris population, I Such objects present highly irregular (chaotic) dynamics near the geosynchronous region I The numerical investigations (MEGNO and Frequency analysis & Numerical analysis) showed an intricate web of secondary resonances with stable islands I Stability for centuries (hazardous situation or parking orbits) Dynamics of non natural bodies Space Debris Conclusions Publications I I I Valk, S., Lemaître, A., Anselmo, L., Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios influenced by solar radiation pressure, Advances in Space Research, 41, 1077–1090, 2008. Valk, S., Lemaître, A., Deleflie, F., Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence, Advances in Space Research, 43, 1070–1082, 2009. Lemaître, A., Delsate, N., Valk, S., A web of secondary resonances for large A/m geostationary debris. CM & DA, 104, 383–402, 209. Softwares I I I Valk : " resonant " numerical integration of geostationary motions Delsate : NIMASTEP Numerical Integraiton of the Motion of an Artificial Satellite orbiting a TElluric Planet MEGNO and FAM Dynamics of non natural bodies Symplectic integrators Introduction I I I I I Space missions : too short for symplectic integrators Space debris problematic : stability for centuries Excellent symplectic integrators existing Application and adaptation to a new field of applications Four classes of symmetric symplectic integrators (Laskar et Robutel, 2001) have been used. SABA2n (τ ) SABA2n+1 (τ ) SBAB2n (τ ) of order O(τ 2n ε + τ 2 ε2 ) where ε |B|/|A| SBAB2n+1 (τ ) I The Hamiltonian system is separated into two integrable parts : H(v , Λ,r , θ) = A(v ,r , Λ) + B(r , θ) Dynamics of non natural bodies Symplectic integrators Hamiltonian Formalism H(p , q ) = H(v , Λ,r , θ) = Hkepl (v ,r ) + Hrot (Λ) + Hgeo (r , θ) + H3b (r ) + Hsrp (r ) I Hkepl (v ,r ) = v22 − μr I Hrot (Λ) = θ̇ Λ I Hgeo = I H3b − Rμe ∞ n Cnm Vnm (r , θ) + Snm Wnm (r , θ) n=2 m=0 1 = − μi r −ri − rr·3ri i i I Hsrp = 2 a A Pr m r −r (conservative form, without Earth shadow) Dynamics of non natural bodies Symplectic integrators Results 42164.140 km e0 = 0.1 i0 = 0.1 rad Ω0 = 0 rad ω0 = 0 rad M0 = 0 rad JD = 2448281.5 Perturbation : J2 Time span : 100 years Time step : 10 hours CPU time : 3 seconds Integrator : SABA4 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 Time [Years] 60 70 80 90 100 0.100001 0.1 0.0999995 0.099999 0.0999985 0.099998 0.0999975 0.099997 0.0999965 0.099996 0.0999955 Argument of perigee [rad] Longitude of asc. node [rad] = Semi-major axis [km] a0 0.1 0.09999 0.09998 0.09997 0.09996 0.09995 0.09994 0.09993 0.09992 Resonant angle [rad] I I I I I Initial conditions : Inclination [rad] I Eccentricity Keplerian elements 42164.2 42164.1 42164 42163.9 42163.8 42163.7 42163.6 42163.5 42163.4 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Dynamics of non natural bodies Symplectic integrators Conclusions I I I I I I I Symplectic integrator : precise, fast, robust (Ch. Hubaux) Long time integrations : parking orbits, stability islands TLE : 15 000 objects of size > 10 cm Synthetic population of debris of any size (power law) : naXys Huge number of initial conditions Present collaboration with A. Rossi : first publication Indirect application : Carletti T., Hubaux Ch. and Libert A.-S., MNRAS, Global symplectic integrators (application to exoplanetary systems) Dynamics of non natural bodies Earth shadowing effects Cylindric geometry Solar Radiation Pressure (SPR) is not a continuous function Dynamics of non natural bodies Earth shadowing effects Cylindrical Earth shadow (non-singular orbital elements) I Cylindrical Earth shadow is crossed when (Escobal, 1976) : r 2 cos2 ψ = r 2 − RE2 with r · r = r r cos ψ I After some algebra : p 2 (β(r ) cos V +ξ(r ) sin V )2 +RE2 (1+ke cos V +he sin V )2 −p 2 = 0 with p = a(1 − e 2 ), V the eccentric longitude, he = e sin and ke = e cos . I An analytical solution of this equation can be found and the boundaries V1 and V2 of the Earth shadow are known as function of a, e, r . I Problem : no Hamiltonian formalism. Dynamics of non natural bodies Earth shadowing effects Geocentric cartesian coordinates Cylindrical Earth shadow : r · r + r r 2 − RE2 < 0 This condition is introduced in the computation of the SRP perturbation: ∇r Hsrp ⇒ ∇r [Hsrp S(r )] where S is a switch function : ⎧ r · r 2 ⎨ + r − RE2 < 0 1 if S(r ) = r ⎩ 0 otherwise Dynamics of non natural bodies Earth shadowing effects Averaged Earth shadowing effects Ideas : Kozai (1961) - Aksnes (1976) I I I I Geostationary orbit : resonant averaging process Classical averaging method : integration from 0 to 2π Interruption in the effect of the solar radiation pressure Replaced by an integration from 0 to the "entrance anomaly" and from the "exit anomaly" to 2π. I Calculation of increments (in particular Δa) I Special adjustment of the initial conditions I Pubication Valk S. and Lemaître A., Semi-analytical investigations of high area-to-mass ratio geosynchronous space debris including Earth’s shadowing effects, Advances in Space Research 42, 1429–1443, 2008. Dynamics of non natural bodies Earth shadowing effects Numerical integration: 25 years Dynamics of non natural bodies Earth shadowing effects Umbra and penumbra The shape of the cone is introduced in the SRP perturbation: ∇r Hsrp ⇒ ∇r [Hsrp S(r , α, β)] Dynamics of non natural bodies Earth shadowing effects Continuous formulation I Numerous hypotheses I An hyperbolic function 1 formulation 0.9 I Adaptation of the umbra and 0.8 0.7 penumbra behaviors S I Inserted in the symplectic 0.6 0.5 integrator for large A/m 0.4 I Checked by NIMASTEP I Discovery of a very long 0.3 periodic effect, depending on A/m 0.2 0.1 0 0 5 10 15 20 25 Time [1.14 min] 30 35 40 45 Dynamics of non natural bodies Earth shadowing effects Long term evolution of semi-major axis period Period [years] 15000 10000 5000 0 3.8 4 4.2 4 x 10 4.4 a0 [km] 20 10 15 5 Am [m2/kg] Initial conditions : e0 = 0, i0 = Ω0 = ω0 = M0 = 0, JD0 = 2448281.5 Dynamics of non natural bodies Telluric planet satellite Motivation I Sabbatic stay in 2008 at Grasse (F. Deleflie) I CNES : B. Meyssignac - BepiColombo mission (ROMEO contract) I I I I I I I I Fast numerical stability analysis for the probe : FAM (Laskar) Interpretation of results : OK but surprising structures Collaboration with N. Delsate in January 2009 Collaboration with Ph. Robutel a few months after Completely different map and analysis (NIMASTEP) Interesting region of frozen orbits revisited Context : any telluric planet and even asteroid satellite Paper published in CM&DA in 2010 by Delsate, Robutel, Lemaitre and Carletti. Dynamics of non natural bodies Telluric planet satellite First Results concerning BepiColombo Dynamics of non natural bodies Telluric planet satellite Problems of the analysis I Nothing similar obtained by NIMASTEP I Exchange of emails, numerical simulations, Ph. Robutel’s expertise I Different time scales (presence of escapes after 6 weeks) I No consideration of "crashes" on Mercury’s surface (Mercury is a point mass and the planet can be crossed) Dynamics of non natural bodies Telluric planet satellite Revisited map Dynamics of non natural bodies Telluric planet satellite Dynamics over 30 years The system of differential equations describing the probe motion is given by ¨ +r ¨ rp ¨ pot +r ¨r =r Upot (r , λ, φ) U ¨ rp r = = = μ μ − + r r μ C r Pr XX ∞ n Rp r n=2 m=0 r · r 1 − r − r r 3 a r − r 2 n Pnm (sin φ)(Cnm cos mλ + Snm sin mλ) A r − r m r − r with A/m < 0.01 Dynamics of non natural bodies Telluric planet satellite Dynamics of the eccentricity vector Eccentricity amplitude SDI Dynamics of non natural bodies Telluric planet satellite Simplified Hamiltonian I Successive tests to keep the minimum to reproduce this map I No radiation pressure, J2 and C22 , i = 0, quadripolar I Average over the short periodic effects (longitudes of the I satellite and Sun) Final averaged Hamiltonian : ! 3ε " ε H2 K = I εJ2 = J2 4G 3 J2 RE2 a5 1−3 G2 and + 3b 8 ε3b = 2 5 (1 − G ) 1− H2 G2 M 3 (1−e 2 )3/2 M a ! 2 2 sin ω − H − 2 + 2G ⇒ I K ≡ KJ2 + KKozai−Lidov I K (ω, Ω, G , H) = K (ω, −, G , H) : H is constant I Heureuse coïncidence γ= 2 # εJ2 ε3b Dynamics of non natural bodies Telluric planet satellite Equilibria Curves obtained by ∂K ∂ω =0= ∂K ∂G Dynamics of non natural bodies Telluric planet satellite Phase spaces Dynamics of non natural bodies Telluric planet satellite Phase spaces Dynamics of non natural bodies Telluric planet satellite Phase spaces Dynamics of non natural bodies Telluric planet satellite Conclusions I J2 acts as a protector for the Kozai-Lidov mechanism for the eccentricity I slowing down their apparition I slowing down the motion of e to 1 when H tends to 0 I A small region is missing here it mathematical curiosity I J3 changes the positions of the previous equilibria I Frozen orbits : already known (numerically, partially analytically) I Our contribution : general analytical frame and analysis I Already used for satellites of asteroids and Mercury (by us), for Europa, Mars, Venus, etc (by others) I Fast answer in a recent review of paper (eccentricity changing of behavior) I Publication : Delsate, N.,Robutel Ph., Lemaître, A. and Carletti, T.: Frozen orbits at high eccentricity and inclination, CM&Da 108, 275-300. Dynamics of non natural bodies Telluric planet satellite Conclusions Thank you for your attention !
© Copyright 2026 Paperzz