SCIENTIFIC METHOD STEPS CSc21 Fall 2014 As more proof that there is no one way to "do" science, different sources describe the steps of the scientific method in different ways. Some list three steps, some four and some five. Fundamentally, however, they incorporate the same concepts and principles. Image courtesy William Harris For our purposes, we're going to say that there are five key steps in the method. Step 1: Make an observation Almost all scientific inquiry begins with an observation that piques curiosity or raises a question. For example, when Charles Darwin (1809-1882) visited the Galápagos Islands (located in the Pacific Ocean, 950 kilometers west of Ecuador), he observed several species of finches, each uniquely adapted to a very specific habitat. In particular, the beaks of the finches were quite variable and seemed to play important roles in how the birds obtained food. These birds captivated Darwin. He wanted to understand the forces that allowed so many different varieties of finch to coexist successfully in such a small geographic area. His observations caused him to wonder, and his wonderment led him to ask a question that could be tested. Step 2: Ask a question The purpose of the question is to narrow the focus of the inquiry, to identify the problem in specific terms. The question Darwin might have asked after seeing so many different finches was something like this: What caused the diversification of finches on the Galapagos Islands? Here are some other scientific questions: What causes the roots of a plant to grow downward and the stem to grow upward? What brand of mouthwash kills the most germs? Which car body shape reduces air resistance most effectively? What causes coral bleaching? Does green tea reduce the effects of oxidation? What type of building material absorbs the most sound? Coming up with scientific questions isn't difficult and doesn't require training as a scientist. If you've ever been curious about something, if you've ever wanted to know what caused something to happen, then you've probably already asked a question that could launch a scientific investigation. Step 3: Formulate a hypothesis The great thing about a question is that it yearns for an answer, and the next step in the scientific method is to suggest a possible answer in the form of a hypothesis. A hypothesis is often defined as an educated guess because it is almost always informed by what you already know about a topic. For example, if you wanted to study the air-resistance problem stated above, you might already have an intuitive sense that a car shaped like a bird would reduce air resistance more effectively than a car shaped like a box. You could use that intuition to help formulate your hypothesis. Generally, a hypothesis is stated as an "if … then" statement. In making such a statement, scientists engage in deductive reasoning, which is the opposite of inductive reasoning. Deduction requires movement in logic from the general to the specific. Here's an example: If a car's body profile is related to the amount of air resistance it produces (general statement), then a car designed like the body of a bird will be more aerodynamic and reduce air resistance more than a car designed like a box (specific statement). Notice that there are two important qualities about a hypothesis expressed as an "if … then" statement. First, it is testable; an experiment could be set up to test the validity of the statement. Second, it is falsifiable; an experiment could be devised that might reveal that such an idea is not true. If these two qualities are not met, then the question being asked cannot be addressed using the scientific method. http://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm HOW TO USE THE SCIENTIFIC METHOD The scientific method is the backbone of all rigorous scientific inquiry. A set of techniques and principles designed to advance scientific inquiry and further the accumulation of knowledge, the scientific method has been gradually developed and honed by everyone from the philosophers of ancient Greece to the scientists of today. While there are some variations on the method and disagreement over how it should be used, the basic steps are easy to understand and invaluable not only to scientific research but also to solving everyday problems. Steps 1. Observe. It is curiosity that breeds new knowledge. The process of observation, sometimes called "defining the question," is simple. You observe something that you can't readily explain with your existing knowledge, or you observe some phenomenon that is explained by existing knowledge but which may have another explanation. The question, then, is how do you explain that phenomenon--what causes it to occur? 2. Research the existing knowledge about the question. Suppose you observe that your car won't start. Your question is, why won't it start? You may have some knowledge about cars, so you'll tap into that to try to figure it out. You may also consult your owner's manual or look online for information about the problem. If you were a scientist trying to figure out some strange phenomenon, you could consult scientific journals, which publish research that other scientists have already done. You'd want to read as much about your question as possible, because the question may have already been answered, or you may find information that will help you form your hypothesis. Use the Scientific Method 3. Form your hypothesis. A hypothesis is a possible explanation for the phenomenon you observed. It is more than a guess, though, because it is based upon a thorough review of the existing knowledge of the subject. It's basically an educated guess. The hypothesis should posit a cause-effect relationship. For example, "My car won't start because I am out of gas." It should suggest one possible cause for the effect, and it should be something that you can test and which you can use to make predictions. You can put gas in your car to test the "out of gas" hypothesis, and you can predict that if the hypothesis is correct, the car will start once you add gas. Stating the effect like a fact is more like a real hypothesis. For those who are still stuck, use the "if" and "then" statement: If I try to start my car and it doesn't, then it is out of gas. 4. Test your hypothesis. Design an experiment that will either confirm or fail to confirm the hypothesis. The experiment should be designed to try to isolate the phenomenon and the proposed cause. In other words, it should be "controlled." Going back to our simple car question, we can test our hypothesis by putting gas in the car, but if we put gas in the car and change the fuel filter, we can't know for sure whether the lack of gas or the filter was the problem. For complex questions, there may be hundreds or thousands of potential causes, and it can be difficult or impossible to isolate them in any single experiment. Keep impeccable records. Experiments must be reproducible. That is, other people must be able to set up a test in the same way that you did and get the same result. It's important, therefore, to keep accurate records of everything you do in your test, and it's essential that you keep all your data. Today there are archives set up which store the raw data gathered in the process of scientific research. If other scientists need to find out about your experiment they can consult these archives or ask you for your data. It's critical that you be able to provide all the details. 5. Analyze your results and draw conclusions. Hypothesis testing is simply a way to collect data that will help you either confirm or fail to confirm your hypothesis. If your car starts when you add gas, your analysis is pretty simple--your hypothesis was confirmed. In more complicated tests, however, you may not be able to figure out whether your hypothesis is confirmed without first spending considerable time looking at the data you gathered in your hypothesis testing. Furthermore, whether the data confirms or fails to confirm the hypothesis, you must always be on the lookout for other things, socalled "lurking" or "exogenous" variables, that may have influenced the results. Suppose that your car starts when you add gas, but at the same time the weather changed and the temperature increased from below freezing to well above freezing. Can you be sure the gas, and not the change in temperature, caused the car to start? You may also find that your test is inconclusive. Perhaps the car runs for a few seconds when you add gas, but then dies again. 6. Report your findings. Scientists generally report the results of their research in scientific journals or in papers at conferences. They report not only the results but also their methodology and any problems or questions that arose during their hypothesis testing. Reporting your findings enables others to build upon them. 7. Conduct further research. If the data failed to confirm your initial hypothesis, it's time to come up with a new hypothesis and test it. The good news is, your first experiment may have provided you with valuable information to help you form a new hypothesis. Even if a hypothesis is confirmed, further research is necessary to ensure that the results are reproducible and not just a one-time coincidence. This research is often performed by other scientists, but you may also wish to further investigate the phenomenon yourself. http://www.wikihow.com/Use-the-Scientific-Method
© Copyright 2026 Paperzz