Front-side metallization beyond silver paste: Silicide formation / alternative technologies Mónica Alemán, N. Bay, D. Rudolph, T. Rublack, S. W. Glunz Fraunhofer-Institute for Solar Energy Systems ISE Metallization workshop Crystal Clear Utrecht, October 1st 2008 Front-side metallization beyond silver paste: silicide formation/alternative technologies Outlook • Motivation: Low surface doping conc. (Ns) for high efficiencies • Contact technology : Theory and praxis • Interconnection technology – Silicide formation – Nickel silicides – Diffusion of Nickel in Silicon • Alternatives – – Electroless plating • Evaluation for shallow/ deep emitter • Application to industrial processes: Structuring of dielectric layers Laser-induced metal deposition from a solution •Conclusions Front-side metallization beyond silver paste: silicide formation/alternative technologies Motivation: High efficiency cells Low surface doping (Ns) Lower joe for good passivated surfaces Voc , LIMIT = ⎞ kT ⎛ jsc ln⎜⎜ + 1⎟⎟ q ⎝ joe ⎠ Check out also the work from: King, Glunz, Sterk, Cuevas on emitters for high efficiency wafers Source: Oliver Schultz PhD Uni- Konstanz 2005 Front-side metallization beyond silver paste: silicide formation/alternative technologies Contact emitters with higher efficiency potential (low Ns) High Ns allows tunneling, but for low Ns Lower contact resistances required!! (as presented by A. Mette today) How to contact lowly doped emitters? - Altering the Ag pastes to increase the crystallites # (or some other effects?) (check out G. Schubert, D. Pysch, A. Mette, current research by M. Hörteis, A. Ebong) - Formation of the seed layer with alternative materials? Front-side metallization beyond silver paste: silicide formation/alternative technologies Contact technology: Theory metal- silicon FOCUS: Establishing the best contact to silicon Barrier height also depends on deposition method, and processing due to differences in the interface Theory ≠ Praxis! “An Ohmic contact requires as small a barrier height as possible” Measured Barrier heights [φB] as function of the metal work function [φB] for metal/n-Si and metal/p-Si contacts Source: D. Schröder Solar cell contact resistance- A review-, IEEE trans. Electron devices ED31 (1984) Front-side metallization beyond silver paste: silicide formation/alternative technologies Contact technology: What’s possible? • Physical Vapor Deposition – – Evaporation (low melting temperature materials) Sputtering (many different metals) • Chemical Vapor Deposition – Atomic Layer deposition (Cu) • Chemical deposition – Electroless plating : Co, Cu, Ni, Pd – Electrochemical plating: Ag, Cu • Printing technologies (Ag pastes) – Screen-/ Tampon- / Aerosol- / InkJet- printing • Laser enhanced deposition – – – Solid (powders) / or thin metal layers (Al, W, Co, Cr, Ni) Solutions (Ni, Cu, Ag) Gases Front-side metallization beyond silver paste: silicide formation/alternative technologies A look into the IC technology: Silicide formation Chemical bond: metal & semiconductor What happens to and with the interface?? Metal Temperature Silicon Diffusion Interface reactions Metal Silicide Silicon Front-side metallization beyond silver paste: silicide formation/alternative technologies Electrical properties of different silicides Typical resistivity of common silicides used in IC technology (PVD) Source: Nicolet, M.A., and Lau, S.S., “Formation and characterization of transition metal silicides” in VLSI Electronics: Microstructure Science, Vol 6 , 1983 Compound Type of sample and orientation ρ (293K) [µΩ cm] Ni2Si Thin film 24 NiSi Thin film 10.5 NiSi2 Thin film 34 Source: Maex, K., and Van Rossum, M., “Properties of Metal silicides”, published by INSPEC , UK, 1995 Different ρ values for NiSi from different sources Usually given as 13 µΩ.cm Front-side metallization beyond silver paste: silicide formation/alternative technologies Nickel Silicide Formation Bulk Reactions (thermodynamics) vs. Thin Film reaction (kinetics) Non equilibrium Source: Ottaviani, G., J. Vac Sci Technol. 116, 1112 (1979) Surface preparation is a key parameter for the formation of silicides!! Interface plays a major role! Front-side metallization beyond silver paste: silicide formation/alternative technologies Diffusion in Silicon Substitutional diffusion The metal takes the place of the silicon in the crystal Start at low temperatures Slow process Affected by vacancies density & defects Interstitial diffusion The metal goes through the lattice higher temperatures Critical for material optimization: Gettering and material quality improvements Very fast process Not affected by the doping concentration Front-side metallization beyond silver paste: silicide formation/alternative technologies Diffusion coefficient for nickel in silicon Strong variation of the diffusion coefficient for low Vs. high temperatures ion s fu dif he ge? t es han o d c T ss h ic oce h w pr At 1E-3 1E-6 L = D⋅t 1E-9 ti o na l 1E-12 itu 1E-15 Su bs t Diffusion length 2 ⎛ −Ea ⎞ ⎜ ⎟ ⋅ k T ⎝ ⎠ D =D0 ⋅ e Diffusion coefficient cm /s Arrhenius equation Interstitial 1E-18 Substitutional Interstitial 1E-21 1E-24 0 200 400 600 800 1000 1200 1400 Temperature [C] Diffusion of Nickel according to P. Bonzel, Phys Status Solidi, 20 (1967) 493. Cited by G.L.P Berning & Levenson, Thin solid films 55 (1978) 473-482 Front-side metallization beyond silver paste: silicide formation/alternative technologies Example: Diffusion length From the theory for evaporated nickel layers on intrinsic silicon 7 10 With an intrinsic diffusion after 10 minutes @ 600C nickel would go to the other side of the wafer and back! 5 Diffusion length [nm] 10 Ref. line: Emitter 300nm 3 10 With the substitutional diffusion After 10 min @ 600 C the metal would reach 300 nm within the silicon 1 10 Susbt. / Interstitial -1 10 / 1 sec / 1 min / 10 min -3 10 0 200 400 600 800 1000 1200 1400 Temperature [C] Coefficients from Graff “Metal impurities in silicon devices” & P. Bonzel, Phys Status Solidi, 20 (1967) 493. Front-side metallization beyond silver paste: silicide formation/alternative technologies Shunting issues: shallow junctions • Cz with 3 different emitter profiles • ARC SiNx • IJ masking + etching • Al BSF rear • Electroless Ni deposition (seed) • LIP Results with fully plated Ag finger Seed E-less Ni VOC jSC FF η [mV] [mA/cm²] [%] [%] 614.1 35.6 77.7 16.7 M. Alemán, et al, EUPVSEC, Valencia 2008 Front-side metallization beyond silver paste: silicide formation/alternative technologies Shunting issues: shallow junctions Process • Only ~1-2 µm Ag on top of the nickel • Sintering with increasing temp. • Measured with Suns_Voc and IV Results • FF improves due to a reduction of Rs (until 300 C) • pFF starts to decrease ~300 C • Deeper emitter is more resistant • No difference in resistance for the P doping @ Nd>1020cm-3 Metal diffuses very fast in the junction M. Alemán, et al, EUPVSEC, Valencia 2008 Front-side metallization beyond silver paste: silicide formation/alternative technologies Deeper junction / Reference process: 120Ω/sq Emitter Source for doping profile from Oliver Schulz PhD Front-side metallization beyond silver paste: silicide formation/alternative technologies Evaporated references Evaporated VOC jSC FF η Metals [mV] [mA/cm²] [%] [%] Ti-Pd-Ag 663.1 38.8 81.3 20.9 Ni-Ag 663.0 38.8 81.6 21.0 Al-Ag 662.5 38.7 81.2 20.8 • Front evaporated metals Ti-Ag 662.9 38.9 81.5 21.0 • Rear evaporated Al + LFC Cr-Ag 662.5 39.0 81.2 21.0 • Low Ns concentration • FZ 120Ω/sq Emitter • SiO2 rear passivation • SiO2 as front ARC • Area 4 cm2 Source: Ansgar Mette’s PhD Uni- Freiburg 2007 • Thickened by LIP Very good results with different evaporated metals converted into silicides! Front-side metallization beyond silver paste: silicide formation/alternative technologies 120Ω/sq Emitter + E-less Ni Plating + Ag LIP + LFC rear • Low Ns concentration • FZ 120Ω/sq Emitter • SiO2rear passivation Seed • Area 4 cm2 • Thickened by LIP EQE, IQE, R • Structuring: Photolithography • LFC rear-side jSC FF η [mV] [mA/cm²] [%] [%] 38.1 80.4 20.5 Eless Ni 669.1 • SiO2 as front ARC • Evaporated Al VOC 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 eqe iqe reflexion 300 400 500 600 700 800 900 1000 1100 1200 λ [nm] Front-side metallization beyond silver paste: silicide formation/alternative technologies Structuring the dielectric layer: Inkjet printing resist + wet etching Narrow lines possible ~20µm High throughput Low cost M. Alemán, et al, EUPVSEC Valencia, 2008 Front-side metallization beyond silver paste: silicide formation/alternative technologies Structuring the dielectric layer: Laser Chemical Processing (LCP) Laser guided in a solution (with P) Process: Opening SiNx & local high doping with LCP SiNx Seed layer + LIP to finish The doping occurs while opening the dielectric A deep emitter is formed! 120 Ω/sq Emitter 1 2 3 open + dope seed growth D. Kray et al., S. Diego 33rd PV Conference 2008 Front-side metallization beyond silver paste: silicide formation/alternative technologies Structuring the dielectric layer: Laser ablation Structuring of ~8µm lines possible Ablation of oxides and nitrides with UV Lasers Further diffusion of P within the surface after laser process!! Check: S.A.G.D. Correia & K. Neckermann, EUPVSEC-22, Milan 2007 A. Knorz, submitted to PiP 2008 V. Rana, EUPVSEC-23, Valencia, 2008 M. Alemán PVSEC-17, Fukuoka, 2007 SEM view of a laser ablated line with Nickel on top Front-side metallization beyond silver paste: silicide formation/alternative technologies Structuring the dielectric layer Yet other ideas: Depositing the nitride through a mask Printing an etching paste Any other?? Open the nitride and deposit metal with the laser during the same step? Front-side metallization beyond silver paste: silicide formation/alternative technologies Electrical contacts by Laser micro-sintering Using alternative materials: From metal powders Achieved: Very good aspect ratio Width ~40µm - Thickness ~15-18 µm Good adhesion on textured samples M. Alemán: EUPVSEC-21, Dresden 2006 Inhomogeneous powder layer T. Rublack: EUPVSEC-23 Valencia 2008 SEM section view: interface of a tungsten seed contact on top of a silicon solar cell before plating. Front-side metallization beyond silver paste: silicide formation/alternative technologies Laser-induced metal deposition from an electrolyte Metal is in an electrolyte with or without reducing agents A contact is formed through the nitride Well defined surface for the laser process Laser Glas Contacts Wafer Metal salt D. Rudolph, EUPVSEC-23 Valencia 2008 Front-side metallization beyond silver paste: silicide formation/alternative technologies Laser-induced metal deposition from an electrolyte First experiments already show metal deposition 50µm Microscope & SEM views of a metal finger on top of a silicon wafer after laser processing D. Rudolph, EUPVSEC-23 Valencia 2008 Front-side metallization beyond silver paste: silicide formation/alternative technologies Laser-induced metal deposition from an electrolyte First results! 1Ω cm Cz p-type Results Voc jsc FF η [mV] [mA/cm2] [%] [%] NiCl2 589.6 31.1 47.7 8.8 NiSO4 594.9 33.4 67.7 13.4 50Ω/sq emitter Al-BSF Rear SiNx as ARC No texture D. Rudolph, EUPVSEC-23 Valencia 2008 Front-side metallization beyond silver paste: silicide formation/alternative technologies Conclusions Emitters with low surface doping (Ns) allow higher efficiency potential Contacting low Ns emitters is possible by using materials like Ti, Ni, W Shunting shallow emitters while sintering with e-less Nickel plating is a risk! Independent of the surface concentration (in the range analyzed) Higher resistance to the process with deeper junctions With electroless nickel plating & lowly doped emitters, solar cells have been manufactured reaching FF = 80.5% & η = 20.5% Alternative structuring processes for the ARC are being developed right now! We’re working on several ideas!! A very innovative technology is presented by the laser-induced deposition of metal from an electrolyte. Encouraging results have been achieved! Front-side metallization beyond silver paste: silicide formation/alternative technologies Acknowledgments: Antonio Leimenstoll, Elisabeth Schäffer, Luca Gautero, Andreas Grohe, Jan Specht, Daniel Kray, Annerose Knorz, Rainer Neubauer, Dominik Barucha, Sonja Seitz, Marc Retzlaff, Norbert Kohn, David Stuewe, Anke Herbolzheimer, Denis Erath, Jonas Bartsch, Sybille Hopman, Kuno Mayer, Ansgar Mette, and all the PV people at the Fraunhofer ISE for all the support and good work!
© Copyright 2026 Paperzz