College Math Name: __________________________________ 2.4 Converse, Inverse and Contrapositive Period: __________ Given the conditional statement, write the converse, inverse, and the contrapositive in ifโฆthen form. 1. If beauty were a minute, then you would be an hour. Identify: p: _____________________________________ q: ________________________________________ Converse (๐ โ ๐): ___________________________________________________________________________ Inverse (~๐ โ ~๐): __________________________________________________________________________ Contrapositive (~๐ โ ~๐): ____________________________________________________________________ 2. If it isnโt broke, then donโt fix it. Identify: p: _____________________________________ q: ________________________________________ Converse: ___________________________________________________________________________ Inverse: __________________________________________________________________________ Contrapositive: ____________________________________________________________________ 3. ๐ โ ~๐ Converse: _____________________________ 4. ~๐ โ ~๐ Converse: _____________________________ Inverse: ______________________________ Inverse: ______________________________ Contrapositive: ________________________ Contrapositive: ________________________ Write each statement in the form โif p, then q.โ If p, then q If, q p is sufficient for q q is necessary for p p implies q All p are q p only if q q if p 5. All integers are rational numbers. Rule: ___________________ If p, then q form: _____________________________________________________ ____________________________________________________ 6. Doing crossword puzzles is sufficient for driving me crazy. Rule: ___________________ If p, then q form: _____________________________________________________ _____________________________________________________ 7. If I finish studying, Iโll go to the party. Rule: ___________________ If p, then q form: _____________________________________________________ _____________________________________________________ 8. Being in Baton Rouge is sufficient for being in Louisiana. Rule: ___________________ If p, then q form: _____________________________________________________ _____________________________________________________ Write the statement in all forms. 9. โIf I get a job, then I will make moneyโ Identify: p: _______________________________________ q: ________________________________________ If p, q: _______________________________________________________________________________________ p implies q: __________________________________________________________________________________ p only if q: ___________________________________________________________________________________ p is sufficient for q: ____________________________________________________________________________ q is necessary for p: ____________________________________________________________________________ All p are q: ___________________________________________________________________________________ q if p:________________________________________________________________________________________ Identify if each statement is true or false using your biconditional rules. 10. 5 = 9 โ 4 if and only if 8 + 2 = 10 11. 3 + 1 โ 6 if and only if 8 โ 8 12. 8 + 7 โ 15 if and only if 3 × 5 โ 9 13. 6 × 2 = 14 if and only if 9 + 7 โ 16
© Copyright 2026 Paperzz