College Math Name: 2.4 Converse, Inverse and Contrapositive

College Math
Name: __________________________________
2.4 Converse, Inverse and Contrapositive
Period: __________
Given the conditional statement, write the converse, inverse, and the contrapositive in ifโ€ฆthen form.
1. If beauty were a minute, then you would be an hour.
Identify: p: _____________________________________ q: ________________________________________
Converse (๐‘ž โ†’ ๐‘): ___________________________________________________________________________
Inverse (~๐‘ โ†’ ~๐‘ž): __________________________________________________________________________
Contrapositive (~๐‘ž โ†’ ~๐‘): ____________________________________________________________________
2. If it isnโ€™t broke, then donโ€™t fix it.
Identify: p: _____________________________________ q: ________________________________________
Converse: ___________________________________________________________________________
Inverse: __________________________________________________________________________
Contrapositive: ____________________________________________________________________
3. ๐‘ โ†’ ~๐‘ž
Converse: _____________________________
4. ~๐‘ โ†’ ~๐‘ž
Converse: _____________________________
Inverse: ______________________________
Inverse: ______________________________
Contrapositive: ________________________
Contrapositive: ________________________
Write each statement in the form โ€œif p, then q.โ€
If p, then q
If, q
p is sufficient for q
q is necessary for p
p implies q
All p are q
p only if q
q if p
5. All integers are rational numbers.
Rule: ___________________ If p, then q form: _____________________________________________________
____________________________________________________
6. Doing crossword puzzles is sufficient for driving me crazy.
Rule: ___________________ If p, then q form: _____________________________________________________
_____________________________________________________
7. If I finish studying, Iโ€™ll go to the party.
Rule: ___________________ If p, then q form: _____________________________________________________
_____________________________________________________
8. Being in Baton Rouge is sufficient for being in Louisiana.
Rule: ___________________ If p, then q form: _____________________________________________________
_____________________________________________________
Write the statement in all forms.
9.
โ€œIf I get a job, then I will make moneyโ€
Identify: p: _______________________________________ q: ________________________________________
If p, q: _______________________________________________________________________________________
p implies q: __________________________________________________________________________________
p only if q: ___________________________________________________________________________________
p is sufficient for q: ____________________________________________________________________________
q is necessary for p: ____________________________________________________________________________
All p are q: ___________________________________________________________________________________
q if p:________________________________________________________________________________________
Identify if each statement is true or false using your biconditional rules.
10.
5 = 9 โˆ’ 4 if and only if 8 + 2 = 10
11.
3 + 1 โ‰  6 if and only if 8 โ‰  8
12.
8 + 7 โ‰  15 if and only if 3 × 5 โ‰  9
13.
6 × 2 = 14 if and only if 9 + 7 โ‰  16