CHAPTER 1 Solutions Key Foundations of Algebra b. 63(12) = 756 bottles; 63(25) = 1575 bottles; 63(50) = 3150 bottles 4a. 63s ARE YOU READY? PAGE 3 1. E; a result of subtraction 2. B; a number that is multiplied by another number to form a product THINK AND DISCUSS 1. addition - increase by, sum of; subtraction - decreased by, difference of; multiplication - multiplied by, product of; division - divided by, quotient of 3. A; the distance around a figure 4. D; the number of square units a figure covers 5. 23 + 6 = 29 6. 156 ÷ 12 = 13 7. 18 × 96 = 1728 8. 85 - 62 = 23 10. 0.32 - 0.18 = 0.14 2. Both types of expressions may contain numbers and operation. Algebraic expressions may also contain variables. 11. 29.34 + 0.27 = 29.61 12. 4 - 1.82 = 2.18 3. 13. 0.7 × 0.6 = 0.42 14. 2.5 × 0.1 = 0.25 9. 2.18 + 6.9 Words Algebra Addition 3 more than x x+3 1 less than y y -1 15. 1.5 × 1.5 = 2.25 16. 3.04 × 0.12 = 0.3648 Subtraction Multiplication The product of 2 and n 2n 17. 6.15 ÷ 3 = 2.05 18. 8.64 ÷ 2 = 4.32 Division The quotient of x and 4 x÷4 19. 7.2 ÷ 0.4 = 18 20. 92.7 ÷ 0.3 = 309 21. __3 × __1 5 2 3×1 = _____ 5×2 3 = ___ 10 4 7 × __ 23. __ 7 8 7×4 = _____ 8×7 28 1 = ___ = __ 56 2 2 = __ 4 2 + __ 25. __ 5 5 5 1 1 + __ 27. __ 2 4 3 2 + __ 1 = __ = __ 4 4 4 EXERCISES 1 2 ÷ __ 22. __ 3 6 6 2 × __ = __ 3 1 2×6 = _____ 3×1 12 = 4 = ___ 3 2 24. 4 ÷ __ 3 3 = 4 × __ 2 12 = 6 = ___ 2 3 __ 2 = __ 1 __ 26. - 1 = __ 8 8 8 4 4 2 __ __ 28. 3 9 6 4 = __ - __ 9 9 GUIDED PRACTICE 1. variable 2–9. Possible answers given 2. 5 less than n; n decreased by 5 3. the quotient of f and 3; f divided by 3 4. c increased by 15; the sum of c and 15 5. 9 decreased by y; y less than 9 6. one-twelfth x; the quotient of x and 12 7. the sum of t and 12; t increased by 12 8. the product of 8 and x; 8 groups of x 9. x decreased by 3; the difference of x and 3 10. 45h 12. a - c =3-2=1 14. b ÷ c 4÷2=2 1-1 VARIABLES AND EXPRESSIONS, PAGES 6-11 16a. 0.5d CHECK IT OUT! 11. w + 4 13. ab 3 · 4 = 12 15. ac 3·2=6 b. 0.5d 0.5(2) = 1 0.5(4) = 2 0.5(10) = 5 1. Possible answers given PRACTICE AND PROBLEM SOLVING a. 4 decreased by n; n less than 4 17. the product of 5 and p; 5 groups of p b. the sum of 9 and q; q added to 9 18. 4 decreased by y; the difference of 4 and y c. the quotient of t and 5; t divided by 5 19. the sum of 3 and x; 3 increased by x d. the product of 3 and h; 3 times h. 2a. 65t c. 32d b. p - n =9-2=7 20. the product of 3 and y; 3 times y b. m + 5 21. negative 3 times s; the product of negative 3 and s 3a. mn =3·2=6 22. the quotient of r and 5; one-fifth r c. p ÷ m =9÷3=3 23. 14 decreased by t; the difference of 14 and t 24. the sum of x and 0.5; x increased by 0.5 1 Holt McDougal Algebra 1 25. t + 20 26. 8n 27. 6 - 5 = 1 28. 5 + 3 = 8 29. 6 ÷ 3 = 2 30. 5 · 6 = 30 42a. Let p represent the weight of an object on Earth in pounds; 0.38p b. p = 120 + 44 = 164 0.38p = 0.38(164) = 62.31 lbs 31a. h - 40 43a. 47.84 + m b. h - 40 (40) - 40 = 0 (44) - 40 = 0 (48) - 40 = 0 (52) - 40 = 0 b. 58.53 - s 44. Both algebraic and numerical expressions contain numbers and operations, but algebraic expressions also contain variables. 34. 17 - b; possible answer: Sarah started with 17 apples, but lost b of them. Verbal Algebraic x = 12 x = 14 x reduced x-5 12 - 5 = 7 14 - 5 = 9 by 5 45. 7 more than x+7 12 + 7 = 19 14 + 7 = 21 x x 14 12 =7 =6 46. The quotient of x and 2 2 2 2 47. The sum of x+3 12 + 3 = 15 14 + 3 = 17 x and 3 35. y + 10; possible answer; April had y CDs and then got 10 more. TEST PREP 36a. air pressure 48. C; b fewer than 3. 32. To evaluate an expression is to find its value. To do this, substitute values for the variables and perform all the indicated operations. 33. 2x; possible answer: Jim has twice as many aunts as Carly, who has x aunts. _ c. 14.7 + 0.445d = 14.7 + 0.445(8) = 14.7 + 3.56 = 18.26 psi 51. 2ab = 2(6)(3) = 36 41. 52. 2x + y = 2(4) + (5) = 8 + 5 = 13 53. 3x ÷ 6y = 3(6) ÷ 6(3) =1 A = 9(8) = 72 in 2 A = 9(11) = 99 in 2 c. A = · w or w 40. 49. F; 12 - 5 CHALLENGE AND EXTEND 38a. P = 2 + 2w 39. __ 50. B; Sarah has driven the difference of 25 and x. b. depth below the water in feet. 37. A = · w A = 9w 2 A = 9(1) = 9 in A = 9(9) = 81 in 2 __ 54. Let h represent the number of hours used in a month when h is more than 20 hours. 9.95 + 0.50(h - 20) = 9.95 + 0.50(35 - 20) = 9.95 + 0.50(15) = $17.45 b. P = 2 + 2w = 2(14) + 2(8) = 28 + 16 = 44 cm d. A = w = (8)(14) = 112 cm 2 x 1 2 3 4 x + 12 (1) + 12 = 13 (2) + 12 = 14 (3) + 12 = 15 (4) + 12 = 16 x 1 5 10 15 10x 10(1) = 10 10(5) = 50 10(10) = 100 10(15) = 150 x 12 20 26 30 x÷2 (12) ÷ 2 = 6 (20) ÷ 2 = 10 (26) ÷ 2 = 13 (30) ÷ 2 = 15 SPIRAL REVIEW 55. 180° - (45° + 90°) = 45° 56. 180° - (120° + 40°) = 40° 57. 180° - (30° + 60°) = 90° 58. 25% = 25 1 ____ = __ 100 4 50 1 59. 50% = ____ = __ 100 2 3 75 60. 75% = ____ = __ 100 4 100 61. 100% = ____ = 1 100 62. add 8 to the previous term; 36, 44, 52 63. multiply the previous term by 3; 729, 2187, 6561 64. Add 1 to the previous term, then add 2, and then add 3, and so on; 17, 23, 30. 2 Holt McDougal Algebra 1 3 1 right, then 12 left. 17. -11 __ ; start at 0, move __ 4 4 3 2 18. 5 __ ; start at 0, move __ left, then 6 right. 5 5 1-2 ADDING AND SUBTRACTING REAL NUMBERS, PAGES 14-19 CHECK IT OUT! 19. -18 + (-12) = -30 1a. 4; Start on -3 and move 7 to the right. 20. -2.3 + 3.5 = 1.2 b. -10; Start on -3 and move 7 to the left. 21. (-15) + 29 = 14 22. -4.8 + (-5.4) = -10.2 23. 12 - 22 = -10 3 1 = - __ 1 24. - __ - - __ 4 4 2 c. 1.5; Start on -5 and move 6.5 to the right. 2a. -12 b. -35.8 c. -16 ( ) ( ) 1 1 - -3 __ b. __ 2 2 8 = __ = 4 2 3a. -8 c. -2 25. 38 - (24.6) = 13.4 ( ) 3 __ 2 - - __ 1 1 = __ 4 + __ 1 = __ 2 + __ 26. __ = 7 = 1 __ 3 6 2 3 2 6 6 6 27. Since we are trying to find the difference of the two temperature, we subtract 17° by -6°. 17 - (-6) = 23° 4. 550 - (-12,468) = 13,018 ft THINK AND DISCUSS 1. Subtraction of a negative number is addition of a positive number. This means you move right on the number line, making the sum greater than the first number. 2. 28. 29. 30. n 312 5.75 7 12 2 -7 5 __ _ n + (-5) 312 + (-5) = 307 5.75 + (-5) = 0.75 7 - 7 + (-5) = -5 12 12 2 2 -7 + (-5) = -12 5 5 __ _ __ _ Points Sum Difference A, B Neg. Neg. 31. B, A Neg. Pos. C, B Neg. Pos. 32. -8 - 3 = -11 33. -9 + (-3) = -12 D, A Pos. Pos. 34. 16 - (-16) = 32 35. 100 - 63 = 37 36. 5.2 - 2.5 = 2.7 37. -4.7 - (-4.7) = 0 7 2 - __ 38. __ 5 8 16 ___ 35 19 ___ = = - ___ 40 40 40 3 2 - ___ 39. __ 5 10 3 1 4 - ___ = ___ = ___ 10 10 10 EXERCISES GUIDED PRACTICE 1. opposite 40a. You are looking for the total profit of January and February, find the sum of the profits. -415 + 1580 = $1165 2. 3; start at 0, move 4 left, then 7 right. 3. -8.5; start at 0, move 3.5 left, then 5 left. 4. -3.6; start at 0, move 5.6 right, then 9.2 left. b. Total profit of January, February, March 1165 + (-245) = $920 1 right. 1 ; start at 0, move 3 right, then 6 __ 5. 9 __ 4 4 6. 91 + (-11) = 80 41. -4 - (-6) = 2 > -7 - 3 = -10 5 9 4=1 7. 1 __ + (-1 __ ) = __ 4 4 42. ⎪-51⎥ = 51 > ⎪0⎥ = 0 4 43. 3 - (-3) = 6 > 0 - (-3) = 3 8. 15.6 + (-17.9) = -2.3 9 5 10 ___ 1 + ___ 1 + __ = - __ = 9. - ___ 16 16 8 6 16 10. 23 - 36 = -13 11. 4.3 - 8.4 = -4.1 6 ___ 1 4 14 __ __ __ 12. 1 - 2 = 5 5 5 5 3 8 __ __ = - = -1 5 5 1 7 4 = ___ 11 = 1 ___ 2 7 + ___ ___ __ 13. - = ___ 5 10 10 10 10 10 44. -3 - 8 = -11 = -22 + 11 = -11 45. ⎪-10 + 5⎥ = 5 < ⎪-15⎥ = 15 46. 9 + (-8) = 1 = -12 + 13 = 1 ( ) 47. Highest location: Telescope Peak, 11,049 ft Lowest location: Badwater, -282 ft Highest - Lowest = 11,049 - (-282) = 11,331 ft ( ) 48. always; possible answer: The value of -2 + n is always two units less than the value of n. 14. Since we are looking for the sum of the decrease, we add the two negative numbers. 49. never; possible answer: -b + (-b) = -2b. If b is not equal to 0, then -2b cannot equal 0 -108.35 + (-507.99) = -616.34 PRACTICE AND PROBLEM SOLVING 50. sometimes; Possible answer: if x ≥ -1, then x + 1 ≥ 0, and if x < -1, then x + 1 < 0 15. 4; start at 0, move 2 left, then 6 right. 51. A; The opposite of -8 should have been added. 16. 4; start at 0, move 6 right, then 2 left. 3 Holt McDougal Algebra 1 52a. plane’s altitude - building’s height = (1800) - (150) = 1650 ft 1-3 MULTIPLYING AND DIVIDING REAL NUMBERS, PAGES 20–25 CHECK IT OUT! 1a. 35 ÷ (-5) = -7 ¶ÊvÌ b. -11(-4) = 44 c. -6(7) = -42 £nääÊvÌ 3 2a. - __ ÷ -9 4 3 1 = - __ - __ 4 9 3 1 ___ = ___ = 36 12 £xäÊvÌ ( ) b. plane’s altitude - diver’s depth = (1800) - (-80) = 1880 ft b. 3 6 ___ ÷ (- __ ) = 5 2 c. - __ ÷ 1 __ 3 6 3(-5) = _____ 6(5) 5(3) = - ____ 6(5) 3 1 = - __ = - __ 6 2 5 10 3 5 ___ × (- __ ) 10 6 3 5 ___ __ =- × 10 6 15 1 ___ = - __ =60 4 £nääÊvÌ ¶ÊvÌ ÊnäÊvÌ ( ) 1 =0 3a. 0 ÷ -8 __ 6 c. 1880 ft; because subtracting a negative number is the same as adding a positive number. b. 2.04 ÷ 0 = undefined c. (-12,350)(0) = 0 53. Possible answer: The first example shows that adding the opposite of 2 is the same as subtracting 2. The second example shows that subtracting the opposite of 2 is the same as adding 2. After adding two numbers, you can get back to the first number by subtracting the second number. 4. distance = (speed)(time) = (5.25 mi/h)(1.5 h) = 7.875 mi THINK AND DISCUSS 54. B; ⎪-3 + 5⎥ = ⎪2⎥ = 2 - 3 + 5 1. a number multiplied by its reciprocal is 1. The 5 4 is __ . reciprocal of __ 5 4 55. F; -12 + 25 - 10 - 3 = 0° 2. TEST PREP 56. C; 5.40 + 4.16 + 7.07 + 5.4 + 9.52 = $31.55 CHALLENGE AND EXTEND Multiplying and Dividing Numbers Multiplication Division pos pos = pos pos ÷ pos = pos 57. -1.2 - 7.8 = -9 pos neg = neg pos ÷ neg = neg neg pos = neg neg ÷ pos = neg 58. -0.2 + 2.1 = 1.9 neg neg = pos neg ÷ neg = pos 59. 9.75 - 7.75 = 2 60. -2.3 + 8.5 = 6.2 EXERCISES 61. Possible answer: subtract 4; -2, -6, -10 GUIDED PRACTICE 1. switch the numerator and denominator. The 1 is __ 2 , or 2. reciprocal of __ 2 1 2. -72 ÷ (-9) = 8 3. 11(-11) = -121 2 2 ; - __ 2 , 0, __ 62. Possible answer: add __ 5 5 5 63. To find the average of the elevations, first find the sum of the elevations then divide by the number of locations. 19,347 + 17,159 + 5051 + 9085 ___________________________ 4 50,642 ______ = = 12,660.5 ft 4 4. -7.2 ÷ (3.6) = -2 5. 5 ÷ 7 7=7 = 5 × __ 5 SPIRAL REVIEW 3 ___ = 0.1875 16 15 66. ___ = 1.25 64. 12 68. 2(180˚) = 360˚ __5 2 = 0.− 65. __ 2 9 4 = 0.−− 67. ___ 36 11 69. 4(180˚) = 720˚ ( ) ( ) 4 ÷ - __ 7 6. __ 5 5 5 4 × - __ = __ 5 7 4(5) ____ =5(7) 20 4 ___ == - __ 7 35 70. 3(180˚) = 540˚ 4 Holt McDougal Algebra 1 ( ) ( ) 1 37. bc = (-3) - __ 2 3 = __ 2 1 36. a ÷ c = (4) ÷ - __ 2 = 4 × (-2) = -8 1 ÷ (4) 38. c ÷ a = - __ 2 1 = - __ 1 × __ 1 = - __ 4 2 8 39. negative 40. zero 41. negative 42. zero 43. positive 44. positive 45. undefined 46. zero 35. ab = (4)(-3) = -12 ( ) ( ) 2 ÷ - __ 1 7. - __ 3 3 2 __ = - × (-3) 3 -2(-3) = _______ = 2 3 16 4 8. - ___ ÷ - __ 5 25 16 5 ___ =× - __ 25 4 -16(-5) = ________ 25(4) 80 4 ____ = __ = 5 100 ( ) 9. 3.8 ÷ 0 = undefined 10. 0(-27) = 0 2 7 ÷ 0 = undefined 11. 0 ÷ __ = 0 12. __ 3 8 13. The total money spent is equal to the product of cost per ticket and the number of tickets sold. ($30)(7,000,000) = $210,000,000 So, about $210,000,000. 47. y ÷ __3 = __3 ÷ __3 4 4 =1 4 ( ) 48. y ÷ 3 9 __3 = -___ ÷ __ 4 15. 8(-4) = -32 16. (-25)(-12) = 300 3 1 17. - ___ ÷ (- __ ) 20 49. y ÷ 15 3 18. ___ ÷ ___ 14 28 3 28 = ___ × ___ 14 15 3(28) ______ = 14(15) 84 2 ____ = = __ 5 210 6 3 = - ___ × (-6) 20 -3(-6) = _______ 20 18 9 = ___ = ___ 20 10 ( ) ( ) ( ) 1 ÷ 1 __ 1 19. -4 __ 2 2 3 9 = - __ ÷ __ 2 2 9 __ __ =- ×2 3 2 9(2) = - ____ 2(3) 18 = - ___ = -3 6 3 1 20. 2 __ ÷ -1 __ 4 2 3 11 ___ ÷ - __ = 4 2 11 2 ___ __ = × 4 3 11(-2) ______ = 4(3) 22 = - ___ 11 = - ___ 12 6 21. 0 · 15 = 0 22. -0.25 ÷ 0 = undefined 23. 0 ÷ 1 = 0 24. __0 ÷ 3 1 =0÷3=0 25. The temperature after 5 days is the total temperature change. Since each day’s decrease is constant, the total temperature is 5d, where d is the constant decrease in degrees. 5d = 5(-3) = -15° 26. 21 ÷ (-3) = -7 28. -6 ÷ (-14) = 14 29. -6.2(10) = -62 31. -3.75(-5) = 18.75 ( ) 4 8 4 3 __ 4 __ = × 8 3 3(4) = ____ 8(3) 1 ___ = 12 = __ 24 2 50. y ÷ __3 = -2__1 ÷ __3 4 4 4 9 4 = - __ × __ 3 4 9(4) = - ____ 4(3) 36 ___ = -3 =12 5 1 ÷ - __ 1 ÷ m = __ 51. __ 2 2 2 1 × - __ 2 = __ 5 2 1(-2) = _____ 2(5) 2 = - __ 1 = - ___ 5 10 1 ÷ __ 7 1 ÷ m = __ 52. __ 2 2 8 8 1 __ __ = × 7 2 1(8) = ____ 2(7) 8 4 ___ = __ = 7 14 1 ÷ m = __ 1 ÷ __ 4 53. __ 2 2 9 9 1 __ __ = × 2 4 1(9) = ____ 2(4) 9 __ = 8 1 ÷ -5 1 ÷ m = __ 54. __ 2 2 1 1 __ __ = ×5 2 1 ____ =2(5) ___ =-1 10 27. -100 ÷ 25 = -4 1 ÷ __ 1=1 30. __ 2 2 56. The underwater cave is 7 times the depth of the original swimming depth before the dive. -20 × 7 = -140 So, -140 ft. ( ) 1 = -5 < 20 ÷ 4 = 5 57. 10 - __ 2 3 ___ 75 1 (-3) = 36 __ = 32. -12 __ 2 2 2 1 =1 33. 17 ___ 17 __3 = __3 ÷ __3 55. To find how many hours Benjamin must take each semester to graduate in 8 semesters, divide total credit hours required by the number of semesters. 120 ÷ 8 = 15. So, 15 hours per semester. 6 3 ___ = __ 7 4 3 16 9(4) = - _____ 16(3) 3 36 ___ = - __ =48 4 PRACTICE AND PROBLEM SOLVING 14. -30 ÷ (-6) = 5 16 9 4 = - ___ × __ 58. 16 ÷ (-2) = -8 < -2(-4) = 8 () 34. 1 2 ÷ 3 = - __ 4 > 5(-2.4) = -12 59. -2 __ 3 9 5 Holt McDougal Algebra 1 60. 20 ÷ 4 = 5 > __3 ÷ (-__1 ) = -__3 4 2 CHALLENGE AND EXTEND 2 61. 2.1(-3.4) = 7.14 = 2.1(-3.4) = 7.14 76. (-2)(-2)(-2) = -8 ( ) 77. 3 1 ÷ __ 1=1 62. 0 - __ = 0 < __ 5 2 2 63a. positive ( )( ) ( )( ) 3 4 - __ 78. 5 - __ 5 4 5 4 (-3) = 3 = __ - __ 5 4 1 64. 12 ÷ -3 = 12(- __ ) 1 65. 75 ÷ 15 = 75( ___ ) 80 1 ___ = 80(- __ ) -121 = -121 ___ 1 67. _____ 11 11 8 ⎪ ⎥ () 5 2 · __ 81. ⎪- __ 5⎥ ⎪2⎥ 5 2 · __ = __ =1 5 2 15 3 1 · __ 2 · __ 82. __ · 2 3 4 3 2 = 1 __ __ 2 3 ( ) ( )( 68. always; A negative divided by a positive is always negative. __4 5 )(__4 )(__1 ) = __1 4 5 ( )( )( ) 3 3 3 27 83. - __ - __ - __ = - ___ 4 4 4 64 5 84. (2 ) = 8 2 = 64 85. possible answer: multiply by -2; -16, 32, -64 9 , - ___ 81 27 , ___ 86. possible answer: multiply by -3; __ 7 7 7 87. possible answer: The numbers are alternating positive and negative multiples of 5; 30, -35, 40 3 2 69. never; A negative times a positive is always negative. 70. sometimes; 4C > C only if C is positive. 71. You know that the product is positive and one factor is negative. If the second factor were positive, the product would be negative, because the product of a negative factor and a positive factor is negative. This is not true, so the second factor must be negative. d 72a. To find the speed, use the formula, r = __ . d t represents the distance, and t represents time. You swam 20 feet in 5 seconds, d = 20 ft, t = 5s. Substitute these values into the formula to find speed. 20 r = ___ ft/s = 4 ft/s. 5 b. Time (min) 1 2 5 49 1 · ⎪20⎥ 79. - __ 4 1 (20) = 5 = __ 4 80. 5 · 4 · 3 · 2 · 1 = 120 d. No; it does not matter how many times you multiply by a positive number, the sign does not change. -8 7 7(7) c. The product of two negative numbers is positive. The product of a positive number and a negative number is negative. 66. 7 5(5) 25 = ____ = ___ b. negative 3 __5 · __5 88. possible answer: multiply by 0.5; 0.03125, 0.015625, 0.0078125 89. For a job that takes 4 hours to complete, a cleaning service will charge $49.00 plus the 2 additional hours for $18 per hour. 49 + 2(18) = $85 SPIRAL REVIEW 90. SA = 2(3)(4) + 2(3)(12) + 2(4)(12) = 24 + 72 + 96 = 192 cm 2 Depth (ft) 15 30 75 91. SA = 2(5)(21) + 2(5)(25) + 2(21)(25) = 210 + 250 + 1050 SA = 1510 in c. 5 · 15 = 75 15 + 15 + 15 + 15 + 15 = 75 2 92. 200 - t 93. -5 < 5 94. 14 > - 2 95. 4 = 4 96. -55 = -55 TEST PREP 1 ÷ __ 1= 73. C; Divide to find the number of lemons: 1 __ 2 4 2 3 __ __3 ÷ __1 = __ · 4 = 6. Multiply by $0.45 to find total 2 21 1 4 cost: 6($0.45) = $2.70 1-4 POWERS AND EXPONENTS, PAGES 26-31 74. J; (15 × 12)(1.25) = $225 1a. 2 2 CHECK IT OUT! 75. Clarinets: 1 half note = _1 whole note; 8 half notes = 2 4 whole notes; find the number of quarter notes that have the same length as 4 whole notes; 4 ÷ _1 = 16; 4 the flutes play 16 quarter notes. b. x 3 3 2a. (-5) = (-5)(-5)(-5) = -125 2 b. -6 = -(6)(6) = -36 27 (__43 ) = (__34 )(__34 )(__43 ) = ___ 64 3 c. 3a. 64 = 8 · 8 = 8 2 b. -27 = (-3)(-3)(-3) = (-3) 3 8 4. 2 = 256 6 Holt McDougal Algebra 1 35. -2 3 = -8 = (-1) 3 = -8 THINK AND DISCUSS 1. eight cubed; eight raised to the third power. 2 2 36. -3 = -9 < (-3) = 9 2. 2 6 37. 10 = 100 > 2 = 64 Even Exponent Odd Exponent Positive Base 32 = 9 Positive 33 = 27 Positive Negative Base (-3) = 9 (-3) = -27 Negative 2 2 1 38. 2 = 4 = 4 = 4 7 40. 1 = 1 · 1 · 1 · 1 · 1 · 1 · 1 = 1 3 41. (-4) = (-4)(-4)(-4) = -64 3 Positive 39. 2 3 = 2 · 2 · 2 = 8 3 42. -4 = -(4 · 4 · 4) = -64 EXERCISES 3 43. (-1) = (-1)(-1)(-1) = -1 GUIDED PRACTICE 4 44. (-1) = (-1)(-1)(-1)(-1) = 1 1 ( ) = (__13 )(__13 )(__13 ) = ___ 27 1. the number of times to use the base as a factor 2. 4 2 3. 2 4. 9 2 5. (7)(7) = 49 1 45. __ 3 3 2 46. -2.2 = -(2.2 · 2.2) 6. (-2)(-2)(-2)(-2) = 16 2 ( )( )( )( ) 2 1 __ 1 __ 1 = - ___ 1 __ 1 9. 81 = 9 · 9 = 9 2 8. - __ 2 2 2 2 16 c. A = s = 36 - 9 = 27 in 2 10. 100,000 = (10)(10)(10)(10)(10) = 10 5 11. -64 = (-4)(-4)(-4) = (-4) 1 48. 3 · 3 · 3 · 3 = 3 3 2 21. -(4)(4) = -16 ( )( ) 9 3 3 22. - __ - __ = ___ 5 5 25 23. 49 = (7)(7) = 7 2 24. 1000 = (10)(10)(10) = 10 56. 4 = 2 · 2 = 2 3 25. -8 = (-2)(-2)(-2) = (-2) 27. 64 = (4)(4)(4) = 4 3 2 59. 625 = 5 · 5 · 5 · 5 = 5 6 28. 343 = (7)(7)(7) = 7 61. 100 = 10 · 10 = 10 3 b. Since there are 3 tails, Becky’s score is 3 = 27 1.25 days c. If the coin is fair, about half the tosses should result in heads and half should result in tails. Becky’s score is increasing by a greater factor each time the coin lands tails up, so she will probably win. 2 25 ≈ 34,000,000 < 3 25 ≈ 847,289,000,000 30. Any number other than zero raised to an even power is positive. Zero raised to any power other than zero is zero. 34. 1 9 = 1 4 62. 125 = 5 · 5 · 5 = 5 3 4 Then you write an expression that represents the problem. There was one protozoan on a slide 5 days ago, and the number has doubled 4 times since. 1 × 2 × 2 × 2 × 2 = 2 4 = 16 So there are 16 protozoas now. 2 2 33. 4 = 16 = 2 = 16 3 63. 81 = 3 · 3 · 3 · 3 = 3 64a. Since there are 5 heads, Mark’s score is 2 5 = 32 5 days ______ = 4, So the number has doubled 4 times. 32. 5 2 = 25 < 2 5 = 32 2 4 4 60. -8 = -(2 · 2 · 2) = -2 3 29. First you need to find how many times the number of protozoas has doubled. 31. 3 2 < 3 3 3 57. 16 = 4 · 4 = 4 2 58. 16 = (-2)(-2)(-2)(-2) = (-2) 3 26. 1,000,000 = (10)(10)(10)(10)(10)(10) = 10 ( )( )( ) ( ) 1 __ 1 __ 1 = __ 1 53. __ 9 9 9 9 3 2 19. (3)(3)(3) = 27 20. (-4)(-4) = 16 4 54. A = s = 24 2 = 576 cm 2 55. First round 22.7 cm to 20 cm V = s 3 ≈ 20 3 = 8000 cm 3 Then round 22.7 cm up, to 25 cm V = s 3 ≈ 25 3 = 15,625 cm 3 So a good esitmate is between 8000 cm 3 and 15,625 cm 3. 17. 3 3 3 5 52. (-7)(-7)(-7) = (-7) PRACTICE AND PROBLEM SOLVING 18. 5 49. 6 · 6 = 6 2 51. (-1)(-1)(-1)(-1) = (-1) 5 15. (3)(3)(3)(3)(3) = 3 = 243 16. 5 2 4 50. 8 · 8 · 8 · 8 · 8 = 8 13. 81 = (3)(3)(3)(3) = 3 4 14. 36 = (-6)(-6) = (-6) b. A = s 2 = 3 2 = 9 in 2 47a. A = s = 6 2 = 36 in 2 7. (-2)(-2)(-2)(-2)(-2) = -32 12. 10 = 10 3 2 65a. 10 = 100 10 3 = 1000 10 4 = 10,000 b. The exponent is the same as the number of zeros in the answer. 7 Holt McDougal Algebra 1 F 66a. p = __ A 50 1 psi p = ____ = __ 100 2 ( ) 1 - __ 4 86. __ 2 5 1(-4) = _____ 2(5) -4 2 ___ = - __ = 5 10 85. -20(-14) = 280 b. First determine the number of square inches in a square foot. 1 ft = 12 in. 1 2 ft 2 = 12 2 in 2 1 ft 2 = 144 in 2 1-5 ROOTS AND REAL NUMBERS, PAGES 32-37 F p = __ A = 64 4 psi ____ = __ 144 CHECK IT OUT! 9 1a. √ 4= TEST PREP 4 c. √ 81 = 67. C; 9 2 = 81 = 3 · 3 · 3 · 3 68. G; (-16)(-16)(-16)(-16) = (-16) √ 70. H; because 100 is an even number. ( CHALLENGE AND EXTEND 2 2 2 72. (2 3)(2 3)(2 3) = 8 · 8 · 8 = 512 2 2 b. side = 30 - 2(2.5) = 25ft 74.a. A = s = 30 2 = 900 ft Area = 25 2 = 625 ft 2 c. A = 900 - 625 = 275 ft 2 d. 275 ÷ 10 = 27.5; 28 bags 4 10 + 9 + 9 + 12 + 12 __________________ 78. 5 52 = ___ = 10.4 5 79. 5 minus x; x less than 5 1. _2 = 0.6; _3 = 0.6; both numbers are rational, _2 is 5 3 3 3 repeating _ is a terminating decimal 5 2. Rational number __1 __1 -2.25 3 4 Yes Irrational number √21 1+3+5+7+9 _______________ No 5 = 25 ___ =5 Integer -15 5 Yes No Whole number 0 Yes 81. c divided by d; the quotient of c and d 82. the sum of a and b; b more than a 84. 0 ÷ =0 No Natural number 25 24 (-1)2 4 √ 80. 6 times n; the product of 6 and n 8 4 ÷ ___ 83. __ 5 25 25 4 × ___ = __ 5 8 4(25) _____ = 5(8) 5 100 = ____ = __ 40 2 d. , , , , term. dec. No 77. b. , , term. dec. THINK AND DISCUSS SPIRAL REVIEW 30 ___ = 7.5 √ c. irrational 2 3 c. 2 + 3 = 5; the sum of the exponents in 4 and 4 5 is the exponent in the product 4 . = ) 4a. ; repeating decimal 2 75a. 4 = 4 · 4 43 = 4 · 4 · 4 b. 4 2 · 4 3 = (4 · 4) · (4 · 4 · 4) = 4 5 4 √ 3. 2.9 = 24.389 3.03 = 27 Since 26 is closer to 3.03 than it is to 2.93, the length of the side of the cube, to the nearest tenth, is 3.0 ft. 2 7+7+8+8 ____________ 1 1 · __ 1 · __ 1 = __ b. __ 2 2 2 8 3 __1 = __1 8 2 3 73. (-4 )(-4 )(-4 )(-4 ) = (-16)(-16)(-16)(-16) = 65,536 76. √4 34 = 3 2 · __ 2 = __ 4 2a. __ 3 3 9 __4 = __2 9 3 2 4 __ 2 __ = - ___ c. - · 7 7 49 2 4 = - __ - ___ 7 49 4 69. B; the number is negative 71. (2 2)(2 2)(2 2) = 4 · 4 · 4 = 64 b. - √ 25 = - √ 5 2 = -5 √ 22 = 2 EXERCISES __6 GUIDED PRACTICE 7 1. Possible answer: √ 3 64 = √ 82 = 8 2. √ 8 3. - √ 225 = - √ 15 2 = -15 Holt McDougal Algebra 1 4. 3 3 (-64) = √ (-4) 3 √ 4 = 5. √625 √4 54 = 5 3 31. 4.0 = 64 4.1 3 = 68.921 Since 68 is closer to 4.1 3 than to 4.0 3, the length of the side of the paperweight, to the nearest tenth of a centimeter is 4.1. = -4 3 3 6. √ 81 = √ 92 = 9 7. - √ 27 = - √ 3 3 = -3 3 3 -27 = - √ (-3) 3 = 3 9. - √ 16 = - √ 4 2 = -4 8. - √ 1 · __ 1 = ___ 1 10. __ 4 4 16 1 = __ 1 ___ 4 16 1 · __ 1 1 = - __ 12. - __ 3 3 9 __ 1 __ = -1 3 9 2 · __ 2= 2 · __ 11. __ 3 3 3 3 8 = ___ 27 3 · __ 3 = ___ 9 13. __ 8 8 64 9 = __ 3 ___ 8 64 8 ___ 1 = ___ 1 1 · __ 14. __ 6 6 36 1 = __ 1 ___ 6 36 2 · __ 4 2 = - ___ 16. - __ 9 9 81 2 4 = - __ - ___ 9 81 1 · __ 1= 1 · __ 15. __ 4 4 4 3 1 = ___ 64 1 ___ √ ( √ √ ( √ ) ) √ 32. , repeating decimal 27 __2 3 33. , terminating decimal, , , 34. , terminating decimal, 35. irrational 36a. s = √343 3 3 = 7 cm = √7 3 √ √ 64 __1 4 b. A = s 2 = 7 2 = 49 cm 2 64 > √ 63 37. 8 = √ 38. √ 88 > 9 = √ 81 39. 6 = √ 36 < √ 40 40. 3 = 0.6 < 0.61 9 = __ ___ √ 25 5 1046 mi = 38.−−− 1485 mi = 45 mi/h 42. _______ 41. _______ 740 mi/h 33 h 27 h , repeating decimal , terminating decimal, , , ( )( )( ) 831 mi = 34.625 mi/h 44. ______ 424 mi = 47.− 1 mi/h 43. ______ 24 h 9h , terminating decimal , repeating decimal 1 - __ 1 - __ 1 = - ____ 1 17. - __ 5 5 5 125 3 1 = - __ 1 - ____ 5 125 √ 45. always; mixed numbers can be written as improper fractions 2 18. 6.7 = 44.89 6.8 2 = 46.24 Since 45 is closer to 6.7 2 than 6.8 2, the length of the floor to the nearest tenth is 6.7 ft. 46. Never; the decimal form of an irrational number is a nonterminating, nonrepeating decimal. 19. , terminating decimal, 47. Always; every terminating decimal can be written as a fraction whose denominator is a power of 10. 20. , repeating decimal 2 is irrational, but -6.2 is rational. 48. Sometimes; - √ 21. irrational 49. No; a positive number has only one cube root because a negative number cubed results in a negative number. A positive number has two fourth roots because a negative number raised to the fourth power results in a positive number. 22. , terminating decimal PRACTICE AND PROBLEM SOLVING 23. √ 121 11 2 = 11 = √ 24. √ -1000 3 (-10) 3 = -10 = √ 25. - √ 100 10 2 = -10 = - √ 4 26. √ 256 4 44 = 4 = √ 1 · __ 1= 27. __ 5 5 1 = ___ 25 1 · __ 1 · __ 1= 1 · __ 28. __ 2 2 2 2 4 1 = ___ 16 1 ___ 25 __1 5 3 √ 50a. 1 ___ 16 a2 + b2 = c2 5 2 + 12 2 = c 2 25 + 144 = c 2 169 = c 2 13 = c b. c 2 = a 2 + b 2 c 2 = 50 2 + 120 2 c 2 = 2500 + 144,000 c 2 = 169,000 c = √ 169,000 c = 130 ft 51. s = √A = √ 324 = 18 So there are 18 squares on each side of the board. __1 2 ( ) ( ) ( ) √ ( ) √ 1 · - __ 1 · - __ 1 = - __ 1 29. - __ 2 2 2 8 3 1 = - __ 1 - __ 8 2 5 5 25 30. - __ · __ = - ___ 6 6 36 25 5 ___ __ =36 6 52. Possible answer: There is no number that when squared results in a negative number, but when you cube a negative number, the result is a negative number. TEST PREP 3 3 3 53. C; √ 27 < √ 36 < √ 64 , or 3 < √ 36 < 4 3 36 · √ 16 = 6 · 4 = 24 54. F; √ 40 is irrational. 55. D; 40 is not an exact square, so √ 2 2 56. H; 13 = 169 < 175 < 196 = 14 9 Holt McDougal Algebra 1 CHALLENGE AND EXTEND 57. √0.81 0.9 2 = 0.9 = √ 59. READY TO GO ON? PAGE 39 58. √0.25 = √ 0.5 2 = 0.5 -0.001 3 (-0.1) 3 = -0.1 = √ 3 61. √ a + b = √ 9+7 = √ 16 = 4 1–4. Possible answers given 1. the sum of 4 and n; 4 increased by n 2. the difference of m and 9; 9 less than m 60. √2.25 = √ 1.5 2 = 1.5 3. g divided by 2; the quotient of g and 2 4. 4 times z; the product of 4 and z 9-9 62. b √a - a = 7 √ = 7(3) - 9 = 21 - 9 = 12 5. The amount of money earned will be the product of 15 and h, or 15h. 6. The number of minutes left after m minutes will be the difference between total practice time and elapsed time, 90 - m. 4 4 63. √ b + a + ab = √ 7 + 9 + (9)(7) 4 = √ 16 + 63 = 2 + 63 = 65 +1= 64. √ab = √ 64 = 8 7. y ÷ z = (6) ÷ (2) 8. xy = (3)(6) =3 = 18 9. x + y = (3) + (6) 10. x - z = (3) - (2) =9 =1 11. 81 - 15 = 66 12. 27 - 32 = -5 1 1 = 3 __ 14. (-7) - 14 = -21 13. 2 + 1 __ 4 4 15. -45 + 70 = 25 So Brandon’s balance will be $25.00 16. 9(-9) = -81 3 17. 6 ÷ __ 18. 9.6 ÷ 0 = undefined 5 6 __ 5 1 1 - __ 1 = __ __ = × 19. - __ 1 3 4 2 2 6(5) ____ = 1(3) 30 ___ = = 10 3 20. Use the formula d = r · t to find the distance. d=r·t 1 d = 55 · 2 __ 2 55 5 d = ___ · __ 1 2 55(5) _____ d= 1(2) 275 ____ d= 2 d = 137.5 mi So Simon’s house is 138.5 mi from the beach. (9)(7)+1 √ 65a. No; possible answer: there are no integers between 1 and 2. b. Possible answer: between 0 and 1, there is another real number r. Between 0 and r, there is another real number q. Between 0 and q, there is another real number s, and so on. Therefore, there must be infinitely many real numbers between 0 and 1. SPIRAL REVEW 66. -14 + (-16) = -30 68. 25 - (17.6) = 7.4 ( ) ( ) ( ) 3 1 - - __ 67. - __ 4 4 2 = __ 1 = __ 4 2 ( ) 3 2 = __ 1 · - __ 1 ÷ - __ 69. __ 3 2 8 8 1(-3) 3 = _____ = - ___ 16 8(2) 70. (-2.5)(-8) = 2.5(8) = 20 7(3) 7 21 = -____ = - __ 71. - ___ 6 2 2(3) or 3.5 72. -(3 · 3 · 3 · 3) = -81 ( )( )( ) 8 2 - __ 2 - __ 2 = - ____ 73. - __ 5 5 5 125 74. 14 · 14 = 196 2 21. (-3) = (-3)(-3) =9 75. 4 · 4 · 4 = 64 22. -3 2 = -(3 · 3) = -9 ( ) = (-__23 )(-__32 )(-__23 ) 2 23. - __ 3 3 8 = - ___ 27 1 5 = - __ 1 - __ 1 - __ 1 - __ 1 - __ 1 24. - __ 2 2 2 2 2 2 1 = - ___ 32 25. 2 10 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 1024 26. √ 225 = √ 15 2 27. - √ 49 = - √ 72 = 15 = -7 3 3 16 __4 2 28. √ 8 = √ 2·2·2 29. ___ = 5 25 4 __ =2 = 5 ( ) ( )( )( )( )( ) √ 10 √( ) Holt McDougal Algebra 1 30. , repeating decimal 31. , repeating decimal 32. irrational number 33. , terminating decimal, , , 1-6 ORDER OF OPERATIONS, PAGES 40-45 4. 50 - 6 +8 = 44 + 8 = 52 5. 12 ÷ (-4)(3) = -3(3) = -9 7. 16 + (5 - (3 + 2 2)) = 16 + (5 - (3 + 4)) = 16 + (5 - 7) = 16 + (-2) = 14 8. 5 + 2x - 9 = 5 + 2(4) - 9 =5+8-9 = 13 - 9 = 4 CHECK IT OUT! b. 5.4 - 3 2 + 6.2 = 5.4 - 9 + 6.2 = 2.6 9. 30 ÷ 2 - d = 30 ÷ 2 - (14) = 15 - 14 = 1 10. 51 - 91 + g = 51 - 91 + (20) = -40 + 20 = -20 11. 2(3 + n) = 2(3 + (4)) 12. 4(b - 4) 2 = 4((5) - 4) 2 2 = 4(1) = 4 = 2(7) = 14 13. 12 + (20(5 - k)) = 12 + (20(5 - 1)) = 12 + (20(4)) = 12 + (80) = 92 2a. 14 + x 2 ÷ 4 = 14 + (2) 2 ÷ 4 = 14 + 4 ÷ 4 = 14 +1 = 15 b. (x · 2 2) ÷ (2 + 6) = ((6) · 2 2) ÷ (2 + 6) = (6 · 4) ÷ (2 + 6) = 24 ÷ 8 =3 5 + 2(-8) 3a. _________ b. ⎪4 - 7⎥ 2 ÷ (-3) (-2) 3 - 3 = ⎪-3⎥ 2 ÷ (-3) 5 16 = 3 2 ÷ -3 = ______ -8 -3 = 9 ÷ -3 -11 = -3 = ____ -11 =1 4. 6.2(9.4 + 8 c. 3 √ 50 - 1 = 3 √ 49 =3·7 = 21 14. 24 ÷ ⎪4 - 10⎥ = 24 ÷ ⎪-6⎥ = 24 ÷ 6 = 4 15. 4.5 - √ 2(4.5) = 4.5 - √ 9 = 4.5 - 3 = 1.5 16. 5(2) + 16 ÷ ⎪-4⎥ = 10 + 16 ÷ 4 = 10 + 4 = 14 17. 18. ) 22. 20 - 3 + 2 5 20 - (3 + 2) 5 95 27 -5 6+2 24 = - ___ 8 = -3 12 ÷ 3 19. -44 ÷ √ = -44 ÷ √ 4 = -44 ÷ 2 = -22 21. 12(-2 +6) 14 _________ 52 + (-3) PRACTICE AND PROBLEM SOLVING 1. Not always; subtraction should be performed before additon if it comes before addition from left to right or if it is within grouping symbols. (20 - 3) + 2 5 22 2 + 18 ______ = 4 20 = ___ 4 =5 0 - 24 ______ 23. Use the formula 2πr(h + r) 2π(3)(7 + 3) = 6π(10) = 60π ≈ 188.4 ft 2 THINK AND DISCUSS (20 - 3 + 2) 5 2 + 3(6) _______ 20. 5⎪s + (-2)⎥ 5. 223 + 46 + 2(7) + 3(39) = 223 +46 + 14 + 117 = 400 2. 3. 30 - 5 · 3 = 30 - 15 = 15 6. (5 - 8)(3 - 9) = (-3)(-6) = 18 34. , terminating decimal, 1·3 1a. 8 ÷ __ 2 =8×2·3 = 16 · 3 = 48 c. -20 ÷ (-2(4 + 1)) = -20 ÷ (-2(5)) = -20 ÷ -10 =2 2. 5 - 12 ÷ (-2) = 5 + 6 = 11 24. 3 + 4(-5) = 3 - 20 = -17 25. 20 - 4 + 5 - 2 = 16 + 5 - 2 = 21 - 2 = 19 26. 41 + 12 ÷ 2 = 41 + 6 = 47 27. 3(-9) + (-2)(-6) = -27 + 12 = -15 28. 10 2 ÷ (10 - 20) 29. (6 + 2 · 3) ÷ (9 -7) 2 = 100 ÷ (-10) = -10 = (6 + 6) ÷ 2 2 = 12 ÷ 4 = 3 EXERCISES 30. -9 - (-18) + 6 = 9 + 6 = 15 GUIDED PRACTICE 1. Use the order of operations to make sure that everyone gets the same value for an expression. 11 31. 15 ÷ (2 - 5) = 15 ÷ (-3) = -5 Holt McDougal Algebra 1 32. 5(1 - 2) - (3 - 2) = 5(-1) - 1 = -5 - 1 = -6 33. -6(3 - p) = -6(3 - 7) = -6(-4) = 24 2 35. 13 - (3 + (j - 12)) = 13 - (3 + (5 - 12)) = 13 - (3 + (-7)) = 13 - (-4) = 17 36. (-4 - a) 2 = (-4 - (-3)) 2 2 = (-1) = 1 2 2 37. 7 - (21 - h) = 7 - (21 - 25) = 7 - (-4) 2 = 7 - 16 = -9 38. 10 + (8 ÷ (q - 3)) = 10 + (8 ÷ (2 - 3)) = 10 + (8 ÷ -1) = 10 + (-8) = 2 50. 7(2 + d ) 52. √ 5 + (-4) b. Each pair of opposite faces are the same size, so find the surface area of the prism, multiply the areas of the top, front, and sides by 2, and then add the 3 products. 2(w) + 2(h) + 2(wh). The area you get from this expression is equivalent to the sum in part a. 8-8 _____ 2 -1 0 = __ = 0 1 2 45. √3 -5÷8 c. They should be equal because the expression in part b is another way of adding all 6 faces of the prism. 66. 47. (_______) (______)( ) b1 + b2 4 + 10 h= 6 2 2 14 (6) = ___ 2 = 7(6) = 42 cm 2 ( ) 6⎪5 - 7⎥ _______ 14 -2 6⎪-2⎥ = _____ 12 12 ___ = =1 12 49. (-6 + 24) ÷ ⎪-3⎥ = 18 ÷ 3 = 6 67. Possible answer: To make a sandwich, you need to get out the ingredients, put the ingredients on either slice of bread, and then put the two slices together. You would not want to put the second slice of bread on top before putting the ingredients in the middle. TEST PREP 68. C; 2 51. 3 - __ 5 70. 53. 8 - ⎪3 · 5⎥ 54. 2( + w) = 2((8) + (4)) = 2(12) = 24 55a. 50 + 10 ÷ 2 = 50 + 5 = 55 63. 3 · 5 - 6 · 2 = 15 - 12 = 3 2 3 - (-12) 64. __ ⎪ ⎥ 3 2 ⎪15⎥ = __ 3 2 (15) = 10 = __ 3 65a. 3 · 4 + 3 · 5 + 4 · 5 + 3 · 4 + 3 · 5 + 4 · 5 2 = 12 + 15 + 20 + 12 + 15 + 20 = 94 in 41. 7x(3 + 2x) = 7(-1)(3 + 2(-1)) = -7(3 + (-2)) = -7(1) = -7 43. 57. 2[9 + (-x)] 62. 8 + (-3 · 5) = 8 + (-15) = -7 40. -2(11b - 3) = -2(11(5) - 3) = -2(55 -3) = -2(52) = -104 = √ 25 - 16 = √ 9=3 f. 50 + 10 · 2 = 50 + 20 = 70 61. Parentheses are not needed because the order of operations tells you to do multiplication before addition. 39. (4r - 2) + 7 = (4(3) - 2) + 7 = (12 - 2) + 7 = 10 + 7 = 17 √ 52 - 42 e. 50 - 10 · 2 = 50 - 20 = 30 √7 2 (-2 - 8) 59. _____ 58. __ 3 3 · 10 60a. Use the hint provided in the text book, find the total score of the different events, then divide by the number of events. 9.725 + 9.700 + 9.587 + 9.137 + 9.837 + 9.837 ________________________________________ 6 57.823 = ______ 6 b. 9.637 34. 5 + (r + 2) = 5 + (4 + 2) = 5 + 62 = 5 + 36 = 41 48. d. 50 ÷ 10 · 2 = 5 · 2 = 10 56. 8 - 4n 2 42. -4⎪2.5 - 6⎥ = -4⎪-3.5⎥ = -14 3 + ⎪8 - 10⎥ 44. ___________ 2 3 + ⎪-2⎥ ________ = 2 5 = __ 2 -18 - 36 _________ 46. -9 -54 = ____ = 6 -9 c. 50 · 10 ÷ 2 = 500 ÷ 2 = 250 69. H; √___________ 54 - (-2)(5) = 20 - 4 2 54 - (-10) __________ √ 20 - 16 64 ___ = 4 = √ 16 =4 √ b. 50 · 10 - 2 = 500 - 2 = 498 12 Holt McDougal Algebra 1 CHALLENGE AND EXTEND 71. 3+9·2 ________ 2 2-3 3 + 18 = ______ 2-9 21 = -3 = ___ -7 73. √__________ 8 + 10 2 13 + (-10) √ √ 8 + 100 _______ 3 108 = ____ 3 = √ 36 = 6 = b. 72. ((-6 · 4) ÷ -6 · 4) 2 = (-24 ÷ -6 · 4) 2 = (4 · 4) 2 Comm. Prop. Combine like terms THINK AND DISCUSS 2 = 16 = 256 1. The sentence describes the Associative Property of Addition. 2. 74. Possible answer: 2 · 4 + 5 -8 Associative 2 + (3 + 4) = (2 + 3) + 4 Commutative 2 + 5 = 5 +2 Distributive 75. 2(9 - 6) - 5 2 76. (⊗ + 5) + 1 = 81 + 1 = 82 -12x - 5x + 3a + x -12 - 5x + x + 3a -16x + 3a 2(6 + 7) = 2(6) + 2(7) 77. (⊗ + 1) 2 - 5 2 = ((⊗ + 1) - 3) - 2 = 22 - 2 = 20 EXERCISES GUIDED PRACTICE SPIRAL REVIEW 78. obtuse 79. acute 80. right 81. 51 + 49 = 100 ( ) 1 = -6 __ 1 82. -5 + -1 __ 3 3 1. Associative 83. -3 - 8 = -11 84. 2.9 - 5.3 = -2.4 85. √ 64 82 = 8 = √ 87. 36 2 6 =6 = 4. 86. √324 = √ 18 2 = 18 88. - √ 121 = - √ 11 2 = -11 6. 8. 1-7 SIMPLIFYING EXPRESSIONS, PAGES 46-51 CHECK IT OUT! 1 + 4 + 1 __ 2 1a. 15 __ 3 3 1 + 1 __ 2+4 = 15 __ 3 3 = 17 + 4 = 21 1·7·8 c. __ 2 1·8·7 = __ 2 = 4 · 7 = 28 b. 12(98) = 12(100 - 2) = 12(100) - 12(2) = 1200 - 24 = 1176 3a. 16p + 84p = 100p 10. b. 410 + 58 + 90 + 2 = 410 + 90 + 58 + 2 = 500 + 60 = 560 12. 2a. 9(52) = 9(50 + 2) = 9(50) + 9(2) = 450 + 18 = 418 c. 7(34) = 7(30 + 4) = 7(30) + 7(4) = 210 + 28 = 238 b. -20t - 8.5t = -28.5t 14. 16. 18. 17x 2 + x 20. c. 3m 2 + m 3 4a. 6(x - 4) + 9 6(x) - 6(4) + 9 6x - 24 + 9 6x - 15 1 + 4 + 1 __ 1 3. 16 + 2 __ 2 2 1 1 __ = 16 + 4 + 2 + 1 __ 2 2 = 20 + 4 = 24 1 · 8 · 21 5. __ 27 + 98 + 73 3 = 73 + 27 + 98 1 · 21 · 8 = __ = 100 + 98 = 198 3 = 7 · 8 = 56 2 · 38 · 50 7. 50 · 118 · 20 = 2 · 50 · 38 = 50 · 20 · 118 = 100 · 38 = 3800 = 1000 · 118 = 118,000 9. 16(19) 14(1002) = 16(20 - 1) = 14(1000 + 2) = 16(20) - 16(1) = 14(1000) + 14(2) = 320 - 16 = 304 = 14,000 + 28 = 14028 11. 8(57) 9(38) = 8(60 - 3) = 9(40 - 2) = 8(60) - 8(3) = 9(40) - 9(2) = 480 - 24 = 456 = 360 - 18 = 342 13. 7(109) 12(112) = 7(100 + 9) = 12(100 + 12) = 7(100) + 7(9) = 12(100) + 12(12) = 700 + 63 = 763 = 1200 + 144 = 1344 6x + 10x = 16x 15. 35x - 15x = 20x -3a + 9a = 6a 17. -8r - r = -8r - 1r = -9r 2. -12 + 67 + 12 + 23 = (-12 + 12) + (67 + 23) = 0 + 90 = 90 Distribute the 6 Multiply Combine like terms 21. 13 19. 3.2x + 4.7x = 7.9x 5(x + 3) - 7x 5(x) + 5(3) - 7x 5x - 7x + 15 -2x + 15 Distribute the 5 Multiply Add like terms 9(a - 3) - 4 9(a) - 9(3) - 4 9a - 27 - 4 9a - 31 Distribute the 9 Multiply Add like terms Holt McDougal Algebra 1 22. 23. 24. 25. 43. 2 2 5x - 2(x - 3x ) 2 2 5x - 2(x) - 2(-3x ) 2 2 5x - 2x + 6x 2 11x - 2x Distribute the -2 Multiply Add like terms 2 6x - x - 3x + 2x 2 6x - x + 2x - 3x 2 7x - 3x Comm. Prop. Add like terms 12x + 8x + t - 7x 12x + 8x - 7x + t 13x + t Comm. Prop. Add like terms 4a - 2(a - 1) 4a - 2(a) -2(-1) 4a - 2a + 2 2a + 2 Distribute the -2 Multiply Add like terms 27. 5 · 14 · 20 = 5 · 20 · 14 = 100 · 14 = 1400 28. 6 · 3 · 5 =6·5·3 = 30 · 3 = 90 29. 4.5 + 7.1 + 8.5 + 3.9 = 4.5 + 8.5 + 7.1 + 3.9 = 13 + 11 = 24 30. 9(62) = 9(60 + 2) = 9(60) + 9(2) = 540 + 18 = 558 31. 8(29) = 8(30 - 1) = 8(30) - 8(1) = 240 - 8 = 232 32. 11(25) = (10 + 1)(25) = 10(25) + 1(25) = 250 + 25 = 275 33. 6(53) = 6(50 + 3) = 6(50) + 6(3) = 300 + 18 = 318 34. 3x + 9x = 12x 35. 14x 2 - 5x 2 = 9x 2 36. -7x + 8x = x 2 37. 3x - 4 38. 39. 40. 41. 42. 4(y + 6) + 9 4(y) + 4(6) + 9 4y + 24 +9 4y + 33 Distribute the 4 Multiply Add like terms -7(x + 2) + 4x -7(x) - 7(2) + 4x -7x - 14 + 4x -3x - 14 Distribute the -7 Multiply Add like terms 3x + 2 - 2x - 1 3x - 2x + 2 - 1 x+1 Comm. Prop. Add like terms 5x - 3x + 3x 2 + 9x 2 5x - 3x + 9x + 3x 2 11x + 3x Comm. Prop. Add like terms 8x + 2x - 3y - 9x 8x + 2x - 9x - 3y x - 3y Comm. Prop. Add like terms Comm. Prop. Add like terms 44. To find the total cost of the school supplies, first round the cost of each item to the nearest dollar. Binder: $4.89 → $5.00 Notebook: $1.99 → $2.00 Pen: $2.11 → $2.00 1(5.00) + 3(2.00) + 1(2.00) = 5.00 + 6.00 + 2.00 = $13.00 So, Tavon spent about $13.00. 45a. Amy: 18:51 + 45:17 + 34:13 = 97:81 = 98:21; Julie: 17:13 + 40:27 + 23:32 = 80:72 = 81:12; Mardi: 19:09 + 38:58 + 25:32 = 82:99 = 83:39 Sabine: 13:09 + 31:37 + 19:01 = 63:47 PRACTICE AND PROBLEM SOLVING 26. 53 + 28 + 17 + 12 = 53 + 17 + 28 + 12 = 70 + 40 = 110 7y - 3 + 6y - 7 7y + 6y - 3 - 7 13y - 10 b. Sabine, Julie, Mardi, Amy 46. Comm. Prop. 47. Comm. Prop. 48. Assoc. Prop. 49. Distrib. Prop. 50. Assoc. Prop. 51. Distrib. Prop. 52. 2(2w) + 2(w) = 4w + 2w = 6w 53. (8 - p) + 4p + (3p + 1) = 8 - p + 4p + 3p + 1 = -p + 4p + 3p + 8 + 1 = 6p + 9 54. (4(2s + 3) = 4(2s) + 4(3) = 8s + 12 55. 10 - (7 - 3) = 10 - 4 = 6 (10 - 7) -3 = 3 - 3 = 0 No; when the numbers are associated differently, the answers are different. 56. Possible answer: newspaper delivery; the newspaper is delivered to all the houses on one block. A newspaper is delivered to each house on the block. n(a + b + c + d) = na + nb + nc + nd n = newspaper a, b, c, d = houses on the block 57a. The length of the rectangle and the circumference of the circles are equal. b. A = w, = 2πr = (2πr)w = 2π(4)(12) = 96π ≈ 301.44 2 c. A circle = r π = 4 2π = 16π So, the total surface area of the figure is 2(16π) + 96π = 128π ≈ 401.92. 14 Holt McDougal Algebra 1 75. 2 - (6 - 8 ÷ (3 + 1)) = 2 - (6 - 8 ÷ 4) = 2 - (6 - 2) = 2 - 4 = -2 TEST PREP 58. D; Tiffany has x CDs, Ariel has 19 + x, and Victor has 3(19 + x). x + (19 + x) + 3(19 + x) = x + 19 + x + 57 + 3x = 19 + 57 + x + x + 3x = 76 + 5x 59. J; P = 2( + w) ( 1-8 INTRODUCTION TO FUNCTIONS, PAGES 54-59 ) = 2 (2(k + 5)) + 3 + k CHECK IT OUT! = 2((2k + 10) + 3 + k) = 2(3k + 13) = 6k + 26 1a. T(-2, 6) 8 4 b. -8 60. C; 33 · (25 + 18) = 33 · 25 + 33 · 18 4 c. 62. -3((x - 2) + 5(x - 2)) = -3(6(x - 2)) = -3(6x - 12) = -18x + 36 d. Quadrant II; negative x value and positive y value. 3. Artist’s fee is $10 plus $20 for each person. y = 10 + 20x; 10 + 20(1) = 30; 10 + 20(2) = 50; 10 + 20(3) = 70; 10 + 20(4) = 90. 4a. Input x Output y Ordered Pair (x, y) -4 __1 (-4) - 4 = -6 (-4, -6) 2 __1 (-2) - 4 = -5 2 __1 (0) - 4 = -4 2 __1 (2) - 4 = -3 2 __1 (4) - 4 = -2 2 -2 c. Distributive Property d. Rule for Subtraction 66a. Distributive Property 0 b. Multiplication 2 SPIRAL REVIEW 68. A parallelogram = bh A parallelogram = (7)(13) = 91 mm 2 6 4 8 y (-2, -5) (0, -4) (2, -3) (4, -2) line 2 69. 2 = 2 · 2 · 2 · 2 · 2 · 2 70. 18 = 18 · 18 = 64 = 324 () R(2, -3) c. Quadrant III; negative x and y values. 65a. Commutative Property 1 71. - __ 2 8 b. Quadrant I; positive x and y values. 1 10 - g + -6 + 3g 64. __ ) ( )) (( 2 1 10 - 6 - g + 3g = __ ) ( 2 1 = __ (4 + 2g) 2 =2+g 67. A square = s 2 A square = 6 2 = 36 ft 2 x 4 2a. none; not on the graph 63. (2b + 5) - (8b + 6) + 3(b - 2) = 2b + 5 - 8b - 6 + 3b - 6 = 2b - 8b + 3b + 5 - 6 - 6 = -3b - 7 b. Associative Property S(0, 2) -8 CHALLENGE AND EXTEND 61. 4(3(x + 9) + 2) = 4(3x + 27 + 2) = 4(3x + 29) = 12x + 116 0 -4 y 3 ( )( )( ) 1 __ 1 1 __ = - __ 2 2 2 1 = - __ 8 73. 3 + 4 - 10 ÷ 2 + 1 =7-5+1=3 4 x ( ) ( )( ) 1 72. - __ 2 74. 2 -8 1 - __ 1 = - __ 2 2 1 __ = 4 4 0 -4 8 -8 82 - 62 _______ 82 + 62 64 - 36 = _______ 64 + 36 28 7 = ____ = ___ 100 25 15 Holt McDougal Algebra 1 b. Input x Output y Ordered Pair (x, y) -3 3(-3) 2 + 3 = 30 (-3, 30) 2 -1 3(-1) + 3 = 6 (-1, 6) 0 2 3(0) + 3 = 3 (0, 3) 2 3(1) + 3 = 6 1 2 3(3) + 3 = 30 3 y 2.–5. J K L x (1, 6) M 6. Quadrant II; negative x value and positive y value. (3, 30) 7. none; Origin U shape 8. Quadrant IV; positive x value and negative y value. 24 9. none; on the x-axis 16 10. none; on the y-axis 8 11. Quadrant I; positive x and y values. x Input x Output y Ordered Pair (x, y) 0 ⎪0 - 2⎥ = 2 (0, 2) 1 ⎪1 - 2⎥ = 1 (1, 1) 2 ⎪2 - 2⎥ = 0 (2, 0) 1x 12. y = __ 4 1 (76) = 19 = __ 4 __ = 1 (100) = 25 4 1 (120) = 30 = __ 4 __ = 1 (168) = 42 4 (76, 19), (100, 25), (120, 30), (168, 42) 3 ⎪3 - 2⎥ = 1 (3, 1) 13. 4 ⎪4 - 2⎥ = 2 (4, 2) -4 c. y 4 -2 0 2 4 y Input x Output y Ordered Pair (x, y) -2 (-2) + 2 (-2, 0) -1 (-1) + 2 (-1, 1) 0 (0) + 2 (0, 2) 1 (1) + 2 (1, 3) 2 (2) + 2 (2, 4) V shape 2 x 0 -2 4 2 6 -4 line y x THINK AND DISCUSS 1. Start at the origin, and move three units left. Then move up 6 units. x is neg. y is pos. x is neg. y is neg. Quadrant lll Input x Output y Ordered Pair (x, y) x is pos. y is pos. -2 -(-2) (-2, 2) -1 -(-1) (-1, 1) x is pos. y is neg. 0 -(0) (0, 0) 1 -(1) (1, -1) 2 -(2) (2, -2) 14. Quadrant l The Coordinate Plane 2. Check students’ work. The x-coordinate must be 0; possible answer: (0, 4). 3. Quadrant ll Quadrant lV EXERCISES GUIDED PRACTICE line y x 1. The first coordinate tells which way to move, left or right. The second coordinate tells which way to move, up or down. If you switch the direction of each coordinate, you will not get the same point. 16 Holt McDougal Algebra 1 15. Input x 28. Ordered Pair (x, y) Input x Output y Ordered Pair (x, y) -2 Output y -2⎪(-2)⎥ = -4 (-2, 2) -2 6 - 2(-2) = 10 (-2, 10) -1 -2⎪(-1)⎥ = -2 (-1, 1) -1 6 - 2(-1) = 8 (-1, 8) 0 -2⎪(0)⎥ = 0 (0, 0) 0 6 - 2(0) = 6 (0, 6) 1 -2⎪(1)⎥ = -2 (1, -1) 1 6 - 2(1) = 4 (1, 4) 2 -2⎪(2)⎥ = -4 (2, -2) 2 6 - 2(2) = 2 (2, 2) V shape y line y x x 16. Input x Output y __1 (-2) 2 2 __1 (-1) 2 2 __1 (0) 2 2 __1 (1) 2 2 __1 (2) 2 2 -2 -1 0 1 2 29. Input x Output y Ordered Pair (x, y) -2 -((-2) 2) = -4 (-2, -4) (-2, 2) -( -1 (-1, _12 ) -((0) 2) = 0 0 -( 1 (0, 0) -( 2 (1, _12 ) (2, 2) ) = -1 (-1) 2 ) = -1 ) = -4 (-1, -1) (0, 0) (1) 2 (1, -1) (2) 2 (2, -4) U shape y x U shape y Ordered Pair (x, y) x 30. 17.–20. Input x Output y Ordered Pair (x, y) -2 3⎪(-2)⎥ = 6 (-2, 6) -1 3⎪(-1)⎥ = 3 (-1, 3) 0 3⎪(0)⎥ = 0 (0, 0) 1 3⎪(1)⎥ = 3 (1, 3) 2 3⎪(2)⎥ = 6 (2, 6) y D x E G F 21. none; on the y-axis V shape y 22. Quadrant IV; positive x value and negative y value. x 23. none; on the x-axis 24. Quadrant IV; positive x value and negative y value. 25. Quadrant II; negative x value and positive y value. 26. Quadrant I; positive x and y values. 1 of his sales. 27. Jeremy’s wage is $500 plus __ 10 y = 500 + 0.10x 500 + 0.10(500) = 550; 500 + 0.10(3000) = 800; 500 + 0.10(5000) = 1000; 500 + 0.10(7500) = 1250; (500, 550), (3000, 800), (5000, 1000), (7500, 1250) 17 Holt McDougal Algebra 1 31. Input x Output y Ordered Pair (x, y) -2 (-2) 2 + 3 = 7 (-2, 7) -2 Output y y = 3 + ⎪-2⎥ = 5 -1 (-1) + 3 = 4 (-1, 4) -1 y = 3 + ⎪-1⎥ = 4 (-1, 4) 0 2 (0) + 3 = 3 (0, 3) 0 y = 3 + ⎪0⎥ = 3 (0, 3) 2 (1, 4) 1 y = 3 + ⎪1⎥ = 4 (1, 4) 2 (2, 7) 2 y = 3 + ⎪2⎥ = 5 (2, 5) 2 (1) + 3 = 4 1 (2) + 3 = 7 2 Input x U shape y 38. x 4 33. y (-1, 1) 2 -4 0 -2 2 Output y Ordered Pair (x, y) -2 __1 (-4) + (-3) = -5 (-4, -5) (4, 4) -1 0 y (-6, 7) 4 (-6, 5) 1 (4, 7) 2 (4, 5) x (6, 2) 2 6 (3, -1) (5, -1) -8 -4 0 -4 4 8 (-2, -4) (0, -3) (2, -2) (4, -1) line y -8 x Rectangle 36. Salary is equal to $32,000 plus $2700 per year of experience. Let x be the number of years of experience. y = 32,000 + 2700x 40. 32,000 + 2700(0) = 32,000 32,000 + 2700(2) = 37,400 32,000 + 2700(5) = 45,500 32,000 + 2700(7) = 50,900 (0, 32,000), (2, 37,400), (5, 45,500), (7, 50,900) Input x Output y Ordered Pair (x, y) -5 (-5) 2 + 1 = 26 (-5, 26) 2 (-3) + 1 = 10 -3 2 (-1) + 1 = 2 -1 37a. f = yards; c = total cost; total cost is equal to $2.90 per yard c = 2.90f 2 (1) + 1 = 2 1 c = 2.90f c = 2.90(1) = $2.90 c = 2.90(2) = $5.80 c = 2.90(3) = $8.70 c = 2.90(4) = $11.60 c = 2.90(5) = $14.50 (-1, 2) (1, 2) (3, 10) 2 (5, 26) (5) + 1 = 26 5 (-3, 10) 2 (3) + 1 = 10 3 b. f is input, and c is output. f 1 2 3 4 5 2 __1 (-2) + (-3) = -4 2 __1 (0) + (-3) = -3 2 __1 (2) + (-3) = -2 2 __1 (4) + (-3) = -1 2 8 Triangle Pentagon c. Input x -8 (4, -4) x 0 4 4 (2, -2) (-7, -3) -4 35. (2, 2) 39. -8 -4 2 y 4 y x Square 6 8 (-6, 3) (4, 1) x (-1, -4) 34. 32. (-2, 5) V shape y x Ordered Pair (x, y) U shape y x d. 2.90f < c 2.90f < 21.00 f < 7.24 The whole yard less than 7.24 yards is 7 yards. 18 Holt McDougal Algebra 1 b. The coordinates of the second point are the opposite of the coordinates of the first point. To graph (4, 2), move right and then up. To graph (-4, -2), move left and then down. 41a. Number of bottles is equal to 50 plus one and a half bottles for every preregistered contestant. Let y represent the number of bottles, and x represent the number of preregistered contestants. y = 50 + 1.5x 48. A; the first number was used as the y-coordinate and the second number was used as the x-coordinate. b. y = 50 + 1.5x 50 + 1.5(100) = 200 50 + 1.5(150) = 275 50 + 1.5(200) = 350 50 + 1.5(250) = 425 50 + 1.5(300) = 500 (100, 200), (150, 275), (200, 350), (250, 425), (300, 500) 49. The line for y = x + 2 is 2 units higher than the line for y = x at every value of x. 4 y=x+2 TEST PREP 50. C; both ordered pairs satisfy this equation x 0 2 51. G; substituting 1, 2, 3, 4 into x for y = 2x - 4 will result in the values in the y column of this table. 4 -2 8 7 and -3 < __ 52. D; D(4, -3), 4 > __ 2 3 53. H; (2 + 3, 5 - 2) = (5, 3) -4 43. (1, 4), (2, 3), (3, 2); line 54. W(x + 4, y - 8) = W(5 + 4, 2 - 8) = W(9, -6) y 4 2 2 55. X(5 - x, y ) = X(5 - (-1), 3 ) = X(6, 9) 2 x 0 2 4 56. Y(x + y, y - x) = Y(6 + 3, 3 - 6) = Y(9, -3) -2 -4 2 2 57. Z(xy, x y) = Z((-1)(4), (-1) (4)) = Z(-4, 4) 44. (2, 1), (4, 2), (6, 3); line 4 y CHALLENGE AND EXTEND 54.–57. 2 Z(-4, 4) x 0 -2 2 6 4 -8 -4 X(6, 9) 4 0 -4 4 8 Y(9, -3) W(9, -6) 58. The points make a vertical line at x = 3. y 59. The points make a horizontal line at y = 6. 4 60. Plot the points on a coordinate plane, then connect the points. = 8; w = 4. P = 2( + w) = 2(8 + 4) = 2(12) = 24 units. x 0 y 4 -8 45. (3, 1), (6, 2), (9, 3); line -4 8 x -2 8 x 4 -4 2 -2 2 y 4 -4 y=x -2 42. (1, 2), (2, 3), (3, 4); line -2 2 -4 42–45. Possible coordinates given -4 y 4 8 -4 -8 61. The coordinate of the fourth vertex are (-4, 5). The area of the rectangle is 42 square units. 46. The points make a line that passes from Quadrant II, goes through the origin and into Quadrant IV. 47a. Both ordered pairs have positive coordinates, but to graph (4, 2), you move right 4 units and then up 2 units. To graph (2, 4), you move right 2 units and then up 4 units. 62. quadrilateral 63. cylinder 64. pyramid 65. pentagon 66. rational, terminating decimal, integer, whole, natural 67. irrational 68. rational, repeating decimal 19 Holt McDougal Algebra 1 23.–25. 69. rational, terminating, integer 2 1 · 18 · 25 70. __ 71. x + 3x 5 1 · 25 · 18 = __ 5 = 5 · 18 = 90 72. 2a - b + a + 4b = (2a + a) + (-b + 4b) = 3a + 3b y 4 C(1, 4) 2 x -4 -2 0 -2 4 2 A(0, -3) B(-2, -3) 26. Quadrant II; negative x value and positive y value. 27. None; on the y-axis. READY TO GO ON? PAGE 61 28. Quadrant I; positive x and y values. 1. -6 + 12 ÷ (-3) = -6 - 4 = -10 2. 30 - 9 + 4 = 21 + 4 = 25 3. (6 - 8) · (7 - 5) = -2 · 2 = -4 4. 8 · (8 - (4 - 2)) = 8 · (8 - 2) = 8 · 6 = 48 23 5 5. ___ - 3 · __ 4 4 23 15 = ___ - ___ 4 4 8 = __ = 2 4 16 ________ 7. 9 - (-7) 29. Quadrant III; negative x and y values. 30. Quadrant IV; positive x value and negative y value. 31. None; on the x-axis. 32. 6. ⎪3 - 9⎥ ÷ 2 + 5 =6÷2+5 =3+5=8 Input x Output y Ordered Pair (x, y) -2 2 (-2) + 1 = 5 (-2, 5) (-1) + 1 = 2 -1 (0, 1) 2 (1, 2) 2 (2, 5) (1) + 1 = 2 1 8. 5(6 + 4) (2) + 1 = 5 2 U shape y 1 (3 + 5) · 4 = __ 2 1 (8) · 4 = __ 2 = 4 · 4 = 16 square centimeters 6 4 x -4 11. 5 · 18 · 20 = 5 · 20 · 18 = 100 · 18 = 1800 33. 12. 1/4 · 19 · 8 = 1/4 · 8 · 19 = 2 · 19 = 38 13. 7(67) = 7(70 - 3) = 7(70) - 7(3) = 490 - 21 = 469 14. 9(29) = 9(30 - 1) = 9(30) - 9(1) = 270 - 9 = 261 15. 17(18) = 17(20 - 2) = 17(20) - 17(2) = 340 - 34 = 306 16. 8(106) = 8(100 + 6) = 8(100) + 8(6) = 800 + 48 = 848 2 2 (-1, 2) 2 (0) + 1 = 1 0 1 (b + b )h 9. A trapezoid = __ 2 2 1 10. 75 + 32 + 25 = 75 + 25 + 32 = 100 + 32 2 -2 0 2 4 Input x Output y Ordered Pair (x, y) -2 (-2) - 1 = -3 (-2, 5) -1 (-1) - 1 = -2 (-1, 2) 0 (0) - 1 = -1 (0, 1) 1 (1) - 1 = 0 (1, 2) 2 (2) - 1 = 1 (2, 5) 4 line y 2 x 2 17. 4k + 15k = 19k 18. x + 22x = 23x 19. -2g + 5g = 3g 20. 3(x + 2) - 3x = 3x + 6 - 3x = 6 -4 -2 0 2 4 -4 2 2 21. x - 6x + 3x + 4x 2 2 = (-6x + 4x ) + (x + 3x) = -2x 2 + 4x 22. -2(3x + 2y + 4x - 5y) = -2(3x) - 2(2y) - 2(4x) - 2(-5y) = -6x - 4y - 8x + 10y = (-6x - 8x) + (-4y + 10y) = -14x + 6y 20 Holt McDougal Algebra 1 34. STUDY GUIDE: REVIEW, PAGES 62-65 Input x Output y Ordered Pair (x, y) -2 -⎪(-2)⎥ = -2 (-2, -2) -1 -⎪(-1)⎥ = -1 (-1, -1) 0 -⎪(0)⎥ = 0 (0, 0) 1 -⎪(1)⎥ = -1 (1, -1) 5. 1.99g 6. t + 3 2 -⎪(2)⎥ = -2 (2, -2) 7. qp = (1)(5) = 5 8. p ÷ q = (5) ÷ (1) = 5 4 VOCABULARY 10. 150 ÷ m 150 ÷ (5) = 30 150 ÷ (6) = 25 150 ÷ (10) = 15 4 -4 35. 1-2 ADDING AND SUBTRACTING REAL NUMBERS Input x Output y Ordered Pair (x, y) -2 3(-2) + 3 = -3 (-2, -3) -1 3(-1) + 3 = 0 (-1, 0) 0 3(0) + 3 = 3 (0, 3) 1 3(1) + 3 = 6 (1, 6) 2 3(2) + 3 = 9 (2, 9) 8 11. -2 + (-12) = -14 ( ) 3 1 + -4 __ 13. 9 __ 4 4 5 3 __ __ =8 -4 4 4 2 1 __ __ =4 =4 4 2 15. -8 -16 = -24 3 1 - __ 14. __ 2 2 2 __ = - = -1 2 16. 6.7 - (-7.6) = 6.7 + 7.6 = 14.3 1-3 MULTIPLYING AND DIVIDING REAL NUMBERS x 4 12. -6 + 1.4 = -4.6 17. 2278 - 47 = 2231 ft line y 4 -8 -4 0 -4 4. origin 9. q + p = (1) + (5) = 6 x 0 -4 2. whole numbers 3. coefficient 1–1 VARIABLES AND EXPRESSIONS V shape y 1. constant 8 -8 36. Let y represent the volume of water in gallons and x represent time in minutes. y = 30,000 - 100x Substitute 30 for x. y = 30,000 - 100(30) = 30,000 - 3000 = 27,000 (30, 27,000) Substitute 60 for x. y = 30,000 - 100(60) = 30,000 - 6000 = 24,000 (60, 24,000) 18. -5(-18) = 90 19. 0 · 10 = 0 20. -4(3.8) = -15.2 21. -56 ÷ 7 = -8 22. 0 ÷ 0.75 = 0 23. 9 ÷ 0 = undefined 4 24. 4 ÷ __ 9 9 4 × __ = __ 1 4 4(9) ____ = 1(4) 36 ___ =9 = 4 3 1 ÷ __ 25. - __ 4 2 4 1 × __ = - __ 3 2 1(4) = - ____ 2(3) 2 4 __ = - = - __ 6 3 26. __6 ÷ __2 7 = Substitute 90 for x. y = 30,000 - 100(90) = 30,000 - 9000 = 21,000 (90, 21,000) 5 __6 × __5 7 2 6(5) = ____ 7(2) 30 = ___ = 15/7 Substitute 120 for x. y = 30,000 - 100(120) = 30,000 - 12,000 = 18,000 (120, 18,000) 14 365 days 10,000 steps 27. ___________ × ________ 1 year 1 day 10,000(365) = __________ 1(1) = 3,650,000 21 Holt McDougal Algebra 1 60. 8(x - 8)3 = 8((9) - 8)3 1-4 POWERS AND EXPONENTS 28. 4 · 4 · 4 = 64 3 = 8(1) = 8(1) = 8 29. (-3)(-3)(-3) = -27 30. (-3)(-3)(-3)(-3) = 81 31. -(5 · 5) = -25 ( )( )( ) 34. 16 = 2 · 2 · 2 · 2 = 2 4 - __ 4 = 16/25 33. - __ 5 5 2 = ((-4) + 4) ÷ 2 = (16 + 4) ÷ 2 = 20 ÷ 2 = 10 4 35. -1000 = (-10)(-10)(-10) = (-10) 36. 64 = (-8)(-8) = (-8) 37. 12 = 12 61. ((3 - x)2 + 4) ÷ 2 = ((3 - (7))2 + 4) ÷ 2 ( )( ) 8 2 __ 2 __ 2 = ___ 32. __ 3 3 3 27 3 62. 8 + 7(-2) 2 1 40. √ 64 = 3 √ 43 = 4 3 1-7 SIMPLIFYING EXPRESSIONS 41. - √ 49 = - √ 7 2 = -7 1 66. 18 + 26 - 8 + 4 67. 60 · 27 · __ 6 = (18 - 8) + (26 + 4) 1 · 27 = 60 · __ = 10 + 30 = 40 6 = 10 · 27 = 270 68. 13(103) 69. 18(99) = 13(100 + 3) = 18(100 - 1) = 13(100) + 13(3) = 18(100) - 18(1) = 1300 + 39 = 1339 = 1800 - 18 = 1782 42. - √ 144 = - √ 12 2 = -12 43. 25 ___ √ 36 = = 44. √ 52 __ 62 __5 2 = __5 6 6 √( ) 1 ___ √ 27 3 = √ 3 13 __ 33 3 __1 3 = __1 = 3 3 √( ) 72. 6(x + 4) - 2x = 6(x) + 6(4) - 2x = 6x + 24 - 2x = 6x - 2x + 24 = 4x + 24 46. rational number, terminating decimal, integer, whole number 47. rational number, terminating decimal, integer 73. -2(x 2 - 1) + 4x 2 = -2(x 2) - 2(-1) + 4x 2 = -2x 2 + 2 + 4x 2 = -2x 2 + 4x 2 + 2 = 2x 2 + 2 48. rational number, terminating decimal, 49. irrational number 50. rational number, repeating decimal A 51. s = √ = √ 13 ≈ 3.6 So the length of one side of the table is about 3.6 ft. 2 74. -2y + 3y - 3y + y = (-2y - 3y + y) + 3y 2 = -4y + 3y 2 75. 7y + 3y - a - 2y = (7y + 3y - 2y) - a = 8y - a 1-6 ORDER OF OPERATIONS 54. (8 + (2 - 6) )÷4 2 = (8 + (-4) ) ÷ 4 2 = (8 + 16) ÷ 4 = 24 ÷ 4 = 6 71. 2y 2 + 5y 2 = 7y 2 70. 20x - 16x = 4x 45. rational number, terminating decimal, integer, whole number, natural number 52. 5 · 4 + 3 = 20 + 3 = 23 8+3 65. Use the formula given, substitute 3 for t, and 8 for v. 16t 2 + vt = 16(3)2 + (3)(8) = 16(9) + 24 = 144 + 24 = 168 So the distance traveled in 3 s is 168 ft. 1-5 ROOTS AND REAL NUMBERS √ 62 = 6 12 _____ 20 - x 64. 4 √ 3 38. V cube = s = 9 3 = 9 · 9 · 9 = 729 in 3 = 39. √36 63. 53. 17 + 3(-3) = 17 - 9 = 8 4 2 - 11 55. _______ 10 16 - 11 _______ = 10 5 1 ___ = = __ 10 2 57. √4 · 5 + 5 - 5 = √ 20 + 5 - 5 =5-5=0 76. 4.99 + 2(1.48) + 0.89 = 4.99 + 2.96 + 0.89 ≈5+3+1 = $9.00 1-8 INTRODUCTION TO FUNCTIONS 56. ⎪12 - 3 · 7⎥ · (-2) = ⎪12 - 21⎥ · (-2) = ⎪-9⎥ · (-2) = 9 · (-2) = -18 58. 48 - x + 29 = 48 - (15) + 29 = 33 + 29 = 62 77.–80. B y C A x D 59. x + 4 · 6 - 10 = (-4) + 4 · 6 - 10 = (-4) + 24 - 10 = 10 81. Quadrant I; positive x and y values 22 Holt McDougal Algebra 1 14. (-3)(-6) = 18 1 1 ÷ __ 15. - __ 4 2 4 1 __ = - × __ 1 2 1(4) = - ____ 2(1) 4 = -2 = - __ 2 82. Quadrant IV; positive x value and negative y value 83. Quadrant I; positive x and y values 84. Quadrant II; negative x value and positive y value 85. Quadrant III; negative x and y values 86. Quadrant IV; positive x value and negative y value 87. Price after tax is equal to price of the item plus 1/20 of the price. 1 (P ) P after tax = P before tax + ___ 20 before tax 1 (2) = 2 + 0.1 = $2.1; = (2) + ___ 20 1 (15) = 15 + 0.75 = $15.75; = (15) + ___ 20 1 (30) = 30 + 1.50 = $31.50; = (30) + ___ 20 1 (40) = 40 + 2.00 = $42.00; = (40) + ___ 20 16. 12 ÷ (-3) = -4 17. (0) ÷ -4 = 0 18. 5 · 5 · 5 · 5 = 625 64 4 - __ 4 - __ 4 = - ____ 19. - __ 5 5 5 125 20. 2 · 2 · 2 · 2 · 2 = 32 21. -(6 · 6) = -36 ( )( )( ) 22. rational, terminating decimal, integer, whole number, natural number 23. irrational 24. rational, terminating decimal, integer The ordered pairs are: ($2, $2.10), ($15, $15.75), ($30, $31.50), ($40, $42) 88. Input x Output y Ordered Pair (x, y) -4 __1 (-4) 2 = 4 (-4, 4) 4 __1 (-1) 2 = __1 4 4 __1 (0) 2 = 0 4 __1 (1) 2 = __1 4 4 __1 (4) 2 = 4 4 -1 0 1 4 ( 1 -1, __ 4 25. rational, terminating decimal 26. ) (0, -3) ( ) (4, 4) 29. No; the first phrase represents the expression 2(n + 5), and the second phrase represents the expression 2n + 5. 3 1 + 7 + 2 __ 30. 5 __ 31. -2(x + 5) + 4x 4 4 = -2(x) - 2(5) + 4x 3 1 + 2 __ = 5 __ +7 = -2x - 10 + 4x 4 4 = -2x + 4x - 10 = 8 + 7 = 15 = 2x - 10 32. 3x + 2x 2 - x = 3x - x + 2x 2 = 2x + 2x 2 x CHAPTER TEST, PAGE 66 33.–36. 1. c - a = (6) - (2) = 4 2. ab = (2)(3) = 6 3. c ÷ a = (6) ÷ (2) = 3 (6) c 4. __ = ___ = 2 b (2) 2 -8 = ___ = -2 4 28. 22 + (-2(19 - x)) = 22 + (-2(19 - 7)) = 22 + (-2(12)) = 22 + (-24) = -2 1 1, __ 4 x2 27. 8(x - 1) 2 = 8(11 - 1) 2 = 8(10) 2 = 8(100) = 800 U shape y -2 - 6 -2 - 6 _______ _______ = y Y X (3) 5. b - a = (3) - (2) = 1 Z x W 6. five less than n; the difference of n and 5 7. 8n; 8(5) = 40 mi 8. -5 + 8 = 3 9. -3 - 4 = -7 10. 4 + (-7) = -3 11. 7 - (-2) = 9 12. ⎪(-80) - 12⎥ = ⎪-92⎥ = 92°F 13. ⎪(-47) - (-23)⎥ = ⎪-24⎥ = 24°F 23 Holt McDougal Algebra 1 37. Input x Output y Ordered Pair (x, y) -2 2(-2) - 1 = -5 (-2, -5) -1 2(-1) - 1 = -3 (-1, -3) 0 2(0) - 1 = -1 (0, -1) 1 2(1) - 1 = 1 (1, 1) 2 2(2) - 1 = 3 (2, 3) line y x 24 Holt McDougal Algebra 1
© Copyright 2026 Paperzz