November 2013 MLC Solutions 1. Key: B A x:1n = n E x A x = Ax1:n + n E x A x + n 0.3 = A1x:n + (0.35)(0.4) A1x:n = 0.16 A x :n = A 1x :n + n E x = 0.16 + 0.35 = 0.51 a x:n 2. 1 − A x:n 1 − 0.51 = 10.29 d (0.05 /1.05) = ax:n − 1 + n E x = 10.29 − 0.65 = 9.64 ax:n = = Key: C a xy = a x + a y − a xy = 10.06 + 11.95 − 12.59 = 9.42 a xy = 1 − A xy δ 1 − A xy A xy = 0.34 0.07 A xy = A 1xy + A xy1 9.42 = 0.34 = A1xy + 0.09 A1xy = 0.25 3. Key: E 2.2 q[51]+ 0.5 = l[51]+ 0.5 − l53.7 l[51]+ 0.5 l[51]+ 0.5 = 0.5l[51] + 0.5l[51]+1 = 0.5(97, 000) + 0.5(93, 000) = 95, 000 l53.7 = 0.3l53 + 0.7l54 = 0.3(89, 000) + 0.7(83, 000) = 84,800 95, 000 − 84,800 = 0.1074 95, 000 10, 0002.2 q[51]+ 0.5 = 1, 074 2.2 q[51]+ 0.5 = Page 1 of 13 4. Key: B 0.05 Prob( H → D in 2 months) = (0.75 0.2 0.05) 0.20 = 0.1275 1 You could do more extensive matrix multiplication and also obtain the probability that it is H after 2 or it is S after 2, but those aren’t needed. Let D be the number of deaths within 2 years out of 10 lives Then D~binomial with n = 10, p = 0.1275 10 P ( D = 4) = (0.1275) 4 (1 − 0.1275)6 = 0.0245 4 5. Key: A e 40 = 1 = 50 So receive K for 50 years guaranteed and for life thereafter. μ 10, 000 = K a50 + 50| a40 50 a 50 = e −δ t = 0 50| a40 = K= 50 1 − e −50δ δ = 1 − e−50(0.01) = 39.35 0.01 E40 a40+50 = e − (δ + μ )50 1 1 = e−1.5 = 7.44 μ +δ 0.03 10, 000 = 213.7 39.35 + 7.44 Page 2 of 13 6. Key: C Simplest solution is retrospective: q [55] = (0.7)(0.00896) = 0.006272 V= 1 (24.453)(1.06) − (1000)(0.006272) = 19.77 1 − 0.006272 Prospectively, q [55]+1 = (0.8)(0.00975) = 0.0078; q [55]+ 2 = (0.9)(0.01062) = 0.009558 A[55]+1 = (1000)(0.0078)v + (1000)(1 − 0.0078)(0.009558)v 2 ( + (1 − 0.0078)(1 − 0.009558)(342.65)v 2 = 315.49 ) a[55]+1 = 1 − A[55]+1 / d = (1 − 0.31549) / (0.06 /1.06) = 12.093 V = 315.49 − (12.093)(24.453) = 19.78 1 7. Key: A Let P = 0.00258 be the monthly benefit premium per 1 of insurance. i 1 A55:10 + A55:101 − 12 Pa(12) 10V = 100, 000 55:10 δ = 100, 000 [1.02971(0.09102) + 0.48686 − (12 × 0.00258)(7.21928) ] ≈ 35, 700 Where 1 = A55 − 10 E 55 A65 = 0.30514 − (0.48686)(0.43980) = 0.09102 A55:10 A55:101 = 10 E 55 = 0.48686 a55:10 = a55 − 10 E 55 a65 = 12.2758 − (0.48686)(9.8969) = 7.45740 a(12) = α (12)a55:10 − β (12) 1 − 10 E 55 55:10 = 1.00028(7.45740) − 0.46812(1 − 0.48686) = 7.21928 Page 3 of 13 8. Key: C Use superscript g for gross premiums and gross premium reserves. Use superscript n (representing “net”) for benefit premiums and benefit reserves. Use superscript e for expense premiums and expense reserves. P g = 1, 605.72 (given) e P = 0.58P g + 450 + ( 0.02 P g + 50 ) a45 a45 0.58(1, 605.72) + 450 + [0.02(1, 605.72) + 50]14.1121 = 180.00 14.1121 Alternatively, 100, 000 A45 Pn = = 1425.73 P e = P g − P n = 180 a45 = V e = ( 0.02 P g + 50 ) a50 − P e a50 = [0.02(1, 605.72) + 50](13.2668) − 180(13.2668) = −1, 298.63 5 Alternatively, n = 100, 000 A50 − P n a50 5V = 100, 000(0.24905) − 1, 425.73(13.2668) = 5,990.13 V g = 100, 000 A50 + ( 50 + 0.02 P g − P g ) a50 5 = 100, 000(0.24905) + [50 + 0.02(1, 605.72) − 1, 605.72](13.2668) = 4, 691.63 V e = 5V g − 5V n = −1298.51 5 9. Key: D a50:10 = a50 − 10 E 50 a60 = 13.2668 − 0.51081(11.1454) = 7.5736 1 A50:20 = A50 − 20 E 50 A70 = 0.24905 − 0.23047(0.51495) = 0.13037 a50:20 = a50 − 20 E 50 a70 = 13.2668 − 0.23047(8.5693) = 11.2918 APV of Premiums = APV Death Benefit + APV Commission and Taxes + APV Maintenance 1 Ga50:10 = 100, 000 A50:20 + 0.12Ga50:10 + 0.3G + 25a50:20 + 50 7.5736G = 13, 037 + 1.2088G + 332.30 6.3648G = 13,369 G = 2,100 Page 4 of 13 10. Key: E Let A denote Alive, which is equivalent to not Dead. It is also equivalent to Healthy or Disabled. Let H denote Healthy. The conditional probability is: P( H and A) P( H ) P( H A) = = , P ( A) P( H ) + P (Disabled) Where 10 10 − ( μ 01 + μ 02 ) ds − (0.05) ds 00 0 0 P ( H ) = 10 p = e =e = e − 0.5 = 0.607 And u 10 01 02 − μ12 ds 10 − ( μ + μ ) ds 01 01 u 0 P (Disabled) = 10 p = e μ e du 0 10 = e −0.05u (0.02)e 0.05u −0.5 du 0 10 = (0.02)e −0.5 du 0 = (0.02)e −0.5 = 0.121 Then P( H A) = 11. P( H ) 0.607 = = 0.83 P( H ) + P(Disabled) 0.607 + 0.121 Key: A We need to adjust the cash flows at time 4 and time 5. a80:5 = 4.3868 + 870 1 1 × − = 4.3589 4 1, 000 1.05 1.044 1 = 0.1655 + A80:5 50 1 1 60 1 1 × − + × − = 0.1594 4 4 5 1000 1.05 1.04 1000 1.06 1.04 5 Benefit Premium = 100, 000 × 0.1594 = 3657 4.3589 Page 5 of 13 12. Key: B The probability that the endowment payment will be made for a given contract is: 15 ( 15 p x = exp − 0.02t dt ( 0 = exp −0.01t 2 15 0 ) ) = exp ( −0.01(15) 2 ) = 0.1054 Because the premium is set by the equivalence principle, we have E [ 0 L ] = 0. Further, Var ( 0 L ) = 500 (10, 000v 15 ) = 1,942,329, 000 2 ( 15 p x )(1 − 15 p x ) Then, using the normal approximation, the approximate probability that the aggregate losses exceed 50,000 is 50, 000 − 0 P ( 0 L > 50, 000 ) = P Z > = P ( Z > 1.13) = 0.13 1,942,329, 000 13. Key: B Time Age q xILT 0 1 2 70 71 72 0.03318 0.03626 0.03962 Improvement factor 100.00% 95.00% 90.25% qx 0.03318 0.03445 0.03576 v = 1/1.06 = 0.943396 EPV = 1, 000[0.03318v + 0.96682(0.03445)v 2 + 0.96682(0.96555)(0.03576)v 3 ] = 88.97 Page 6 of 13 14. Key: D Under the Equivalence Principle ( ) ( 1 Pa62:10 = 50, 000 a62 − a62:10 + P ( IA) 62:10 ) 10 1 1 1 where ( IA) 62:10 = 11A62:10 − A62: = 11(0.091) − 0.4891 = 0.5119 k So 15. P= ( k =1 50, 000 a62 − a62:10 1 a62:10 − ( IA)62:10 ) = 50, 000(12.2758 − 7.4574) = 34, 687 7.4574 − 0.5119 Key: D ax :3 = Actuarial PV of the benefit 152.85 = = 2.727 Level Annual Premium 56.05 ax:3 = 1 + 0.975 0.975 ( p x +1 ) + = 2.727 1.06 (1.06) 2 p x +1 = 0.93 Actuarial PV of the benefit = 0.025 0.975(1 − 0.93) 0.975(0.93) ( q x + 2 ) + + 152.85 = 1, 000 (1.06) 2 (1.06)3 1.06 q x + 2 = 0.09 px + 2 = 0.91 16. Key: C For calculating P A50 = vq 50 + vp 50 A51 = v (0.0048) + v (1 − 0.0048)(0.39788) = 0.38536 a50 = (1 − A50 ) / d = 15.981 P = A50 / a50 = 0.02411 For this particular life, A′50 = vq′50 + vp′50 A51 = v (0.048) + (1 − 0.048)(0.39788) = 0.41037 a′50 = (1 − A′50 ) / d = 15.330 Expected PV of loss = A′50 − Pa′50 = 0.41037 − 0.02411(15.330) = 0.0408 Page 7 of 13 17. Key: B L = 10, 000v K 45 +1 − PaK = 10, 000v 11 − Pa11 45 +1 4450 = 10, 000(0.58468) − 8.7217P P = (5,846.8 − 4, 450) / 8.7217 = 160.15 A55 = 1 − da55 = 1 − (0.05 / 1.05)(13.4205) = 0.36093 V = 10, 000 A55 − Pa55 = (10, 000)(0.36093) − (160.15)(13.4205) = 1, 460 10 18. Key: E 1,020 in the solution is the 1,000 death benefit plus the 20 death benefit claim expense. A x = 1 − da x = 1 − d (12.0) = 0.320755 Ga x = 1, 020 A x + 0.65G + 0.10Ga x + 8 + 2a x G= 1, 020 A x + 8 + 2ax ax − 0.65 − 0.10ax = 1, 020(0.320755) + 8 + 2(12.0) = 35.38622 12.0 − 0.65 − 0.10(12.0) Let Z = v K x +1 denote the present value random variable for a whole life insurance of 1 on (x). Let Y = aK +1 denote the present value random variable for a life annuity-due of 1 on (x). x L = 1, 020Z + 0.65G + 0.10GY + 8 + 2Y − GY = 1, 020 Z + (2 − 0.9G )Y + 0.65G + 8 1 − v K x +1 = 1, 020v + (2 − 0.9G ) + 0.65G + 8 d 0.9G − 2 K x +1 2 − 0.9G = 1, 020 + + + 0.65G + 8 v d d K x +1 0.9G − 2 Var ( L) = 2 Ax − ( Ax ) 2 1, 020 + d 2 0.9(35.38622) − 2 = (0.14 − 0.320755 ) 1, 020 + d = 0.037116(2,394,161) 2 = 88,861 Page 8 of 13 2 19. Key: D If T45 = 10.5 , then K 45 = 10 and K 45 + 1 = 11. 0 L = 10, 000v K 45 +1 − G (1 − 0.10)aK 45 +1 + G (0.80 − 0.10) = 10, 000v 11 − 0.9Ga11 + 0.7G 3, 767 = 10, 000(0.52679) − 0.9G (8.3601) + 0.7G G = (5, 267.9 − 3767) / (6.8241) = 219.94 E ( 0 L) = 10, 000 A45 − (1 − 0.1)Ga45 + (0.8 − 0.1)G = (10, 000)(0.20120) − (0.9)(219.94)(14.1121) + (0.7)(219.94) E ( 0 L) = −627.48 20. Key: E Defined Benefit: 0.015 × Final Average Earnings × Years of Service ( ) = 0.015 × 50, 000 × (1.05 19 + 1.05 18 + 1.05 17 ) / 3 × 20 = 36,128 per year APV at 65 of Defined Benefit = 36,128a65 = 36,1268(10.0) = 361, 280. Defined Contribution accumulated value at65: X % × 50, 000 × 1.05 20 + X % × (50, 000 × 1.05) × 1.05 19 + + X % × ( 50, 000 × 1.05 19 ) × 1.05 = X % × 50, 000 ×1.05 20 × 20 = X %(2, 653, 298) Therefore, 361, 280 = X %(2, 653, 298) X % = 0.136 X = 13.6 Page 9 of 13 21. Key: A t t t p x00 = exp − ( μ x01+ s + μ x02+ s ) ds = exp − ( 0.20 + 0.10s + 0.05 + 0.05s ) ds 0 0 t = exp − ( 0.25s + 0.075s 2 ) = exp ( −0.25t + 0.075t 2 ) 0 3 p x00 = exp ( −0.25 × 3 + 0.075 × 9 ) = exp(−1.425) = 0.2405 −δ t dt EPV = g (t )dt , where g (t ) = 10, 000 × ( t p x00 μ x02+ t + t p x01μ 12 x+t ) e n 0 g (3) = 10, 000 × 0.2405 × ( 0.05 + 0.05 × 3) + 0.4174 × ( 0.15 + 0.01× 3 2 ) × e −3×0.02 = 1, 400 22. Key: B AV11 = 1500 10, 000(0.003) = 29.88 1.004 AV12 = (1, 500 + 100(1 − 0.15) − 10 − 29.88)(1.004) = 1, 551.3 COI 12 = SV12 = 1551.3 − 400 = 1151.3 Then 1,151.3 = X a10 + 10 E 61 a71 = X (7.8017 + 0.44231(8.2988)) = 11.4723 X ( ) X = 100.35 Page 10 of 13 23. Key: E AV 0 = 0 150, 000(0.00122) AV1 = 3, 000(1 − 0.7) − 75 − (1.04) = 675 1.04 150, 000(0.00127) AV 2 = 675 + 3, 000(1 − 0.1) − R − (1.04) 1.04 = [ (3375 − R ) − 183.17 ] (1.04) = 3319.50 − R(1.04) 150, 000(0.00133) AV 3 = 6, 028.95 = 3,319.50 − R(1.04) + 3, 000(1 − 0.1) − R − (1.04) 1.04 [ 6, 019.50 − 2.04 R − 191.83] (1.04) 6060.78 − 2.12 R = 6028.95 R = 15 Page 11 of 13 24. Key: B Let S denote the number of survivors. This is a binomial random variable with n = 4000 and success probability 2,358, 246 = 0.24655 9,565, 017 E ( S ) = 4, 000(0.24655) = 986.2 The variance is Var ( S ) = (0.24655)(1 − 0.24655)(4, 000) = 743.05 StdDev ( S ) = 743.05 = 27.259 The 90% percentile of the standard normal is 1.282 Let S* denote the normal distribution with mean 986.2 and standard deviation 27.259. Since S is discrete and integer-valued, for any integer s, Pr( S ≥ s ) = Pr( S > s − 0.5) ≈ Pr( S * > 0.5) S * −986.2 s − 0.5 − 986.2 = > 27.259 27.259 For 90%, s − 0.5 − 986.2 < −1.282 27.259 s < 951.754 So s = 951 is the largest integer that works s = 950 is the largest from the list Page 12 of 13 25. Key: E Using UDD l 63.4 = (0.6)66,666 + (0.4)(55,555) = 62, 221.6 l 65.9 = (0.1)(44, 444) + (0.9)(33,333) = 34, 444.1 q = 3.4 2.5 60 l 63.4 − l 65.9 l 60 = 62, 221.6 − 34, 444.1 = 0.277778 99,999 (a) Using constant force l 63.4 l 64 = l 63 l 63 0.4 = l 630.6 l 640.4 = ( 66, 666 0.6 )( 55,555 0.4 ) = 61,977.2 l 65.9 = l 650.1 l 660.9 = ( 44, 444 0.1 )( 33,333 0.9 ) = 34,305.9 3.4 2.5 61,977.2 − 34,305.9 99.999 = 0.276716 q 60 = (b) 100,000(a − b) = 100,000(0.277778 − 0.276716) = 106 Page 13 of 13
© Copyright 2026 Paperzz