Name: Section: Trigonometric Integrals Pythagorean Identity: sin2 x + cos2 x = 1, 1 + tan2 x = sec2 x, 2x 2x Half-angle formula: sin2 x = 1−cos and cos2 x = 1+cos 2 2 Evaluate the following trigonometric integrals. 1. R sin3 xdx 2. R cos3 (20x)dx 3. R cos4 2θdθ 1 1 + cot2 x = csc2 x 4. R sin3 x cos5 xdx 5. R sin3 θ cos−2 θdθ 6. R √ cos3 x sin xdx) 7. R sin− 2 x cos3 xdx 3 2 8. R tan2 xdx 9. R 6 sec4 xdx 10. R cot5 3xdx 11. R csc10 x cot xdx 12. Rπ 4 0 tan3 θ sec2 θdθ 3 Trigonometric substitution Evaluate the following integrals. R 10 √ 100 − x2 dx 1. 5 3 (36 − 9x2 )− 2 dx 2. R 3. R√ 64 − x2 dx 4. R √ dx dx x2 −81 4 5. R1 6. R √2 7. R1 8. R √13 √ 0 √ dx x2 +16 0 √1 3 0 2 √x dx 4−x2 √dx x2 1+x2 x2 + 1dx 5 Name: _________________________________ Section: ____________________ Date: ________________ Section 7.3 Quick Quiz Answer the following multiple choice questions by circling the correct response. 1. Which identity is most useful in evaluating (a) cos 2x = 2 cos2 x – 1 2. Which identity is most useful in evaluating Which identity is most useful in evaluating Which identity is most useful in evaluating The value of ∫ π ∫ sin 2 ∫ sin 3 ∫ sec 4 (c) sin2 x + cos2 x = 1 x dx ? (c) sin2 x + cos2 x = 1 x cos 2 x dx ? (b) cos 2x = 1 − 2 sin2 x (a) cot2 x + 1 = csc2 x 5. x dx ? (b) cos 2x = 1 − 2 sin2 x (a) cos 2x = 2 cos2 x – 1 4. 2 (b) cos 2x = 1 − 2 sin2 x (a) cos 2x = 2 cos2 x – 1 3. ∫ cos (c) sin2 x + cos2 x = 1 x tan 4 x dx ? (b) 1 + tan2 x = sec2 x (c) sin2 x + cos2 x = 1 (b) π/2. (c) 1. (b) 1. (c) π. cos 2 x dx is 0 (a) π. 6. The value of (a) 0. π /4 ∫π − /4 tan x sec 2 x dx is Copyright © 2015 Pearson Education, Inc. Name: _________________________________ Section: ____________________ Date: ________________ Section 7.4 Quick Quiz Answer the following multiple choice questions by circling the correct response. 1. The appropriate change of variables for the integral (a) x = 25 tan θ. 2. 3. 4. 5. 6. dx x2 − 4 is ∫ (c) x = 2 sin θ. dx 9 − x2 is ∫ (c) x = 9 sin θ. dx 8 + x2 is ∫ (c) x = 2 2 tan θ. dx 9 − 4 x2 is (b) x = (2/3) sin θ. The appropriate change of variables for the integral (a) x + 1 = 3 tan θ. ∫ (c) x = 5 tan θ. (b) x = 8 sin θ. The appropriate change of variables for the integral (a) x = 3 sin θ. is (b) x = 3 sin θ. The appropriate change of variables for the integral (a) x = 8 tan θ. x + 25 (b) x = 4 sec θ. The appropriate change of variables for the integral (a) x = 3 sec θ. dx 2 (b) x = 5 sin θ. The appropriate change of variables for the integral (a) x = 2 sec θ. ∫ ∫ (c) x = (3/2) sin θ. dx x + 2 x + 10 2 is (b) x = 10 sin θ. Copyright © 2015 Pearson Education, Inc. (c) x − 1 = 2 tan θ.
© Copyright 2026 Paperzz