D. Mücher | European Gammapool Workshop – Paris, 30.05.2008 Shell structure and shape changes in neutron-rich krypton isotopes D. Mücher, University of Cologne for the MINIBALL and REX_ISOLDE Collaboration Motivation: Shape changes in exotic krypton isotopes, N=56 @ Z=40 Coulomb Excitation of 88Kr and 92Kr with MINIBALL @ ISOLDE conclusion on N=56 "subshell closure" consequence on deformation and octupole softness for neutron-rich Krypton isotope Quadrupole Moments from Coulomb Excitation data ? , GOSIA Conclusion and Outlook D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Where we are .... Z=40 N=56 N=50 Z=38 D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 N=56 subshell closure ? 2200 Z=40 Z=36 Z=38 Z=44 1800 1600 Sr Mo Zr (1) B(E2)↑ (e2b2) Z=42 2000 Kr Sr Ru E(2+1) (keV) 1400 1200 1000 800 600 Number of Neutrons 400 strong influence of N=56 shell closure for Zr 200 and Sr nuclei, but no evidence in Mo, Ru, Cd,... 0 50 why peaks E(2+1) for 52 54 56 58 60 62 64 Number of Neutrons (1): H. Mach et al./Nucl. Phys. A523 (1991) 197-227 (2): K.-L. Kratz et al./Atomic Nuclei 330, (1988) ideas (1,2): 92Kr? locally occuring deformed gap , quasi-spherical but soft against octupole deformation D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Deformation β2 from Relativistic Mean-Field β2 Kr (Z=36) δ<r2> (fm2) FRDM 0.4 0.2 Kr 2.0 Sr 0 -0.2 1.0 0.0 ETF-SI NL-SH expt. 70 80 90 80 90 100 -0.4 80 70 90 100 A G.A. Lalazissis et al. Nucl. Phys. A586 (1995) 201-218 RMF (NL-SH) 80 90 A 100 D. Mücher D. Mücher| European | University Gammapool of Cologne Workshop | Chamrousse – Paris, 30.05.2008 2008 Changes in mean-square charge radii, octupole deformation Description of isotope shifts: good description in RMF theory (1) Liquid drop model: 78-100Sr δ<r2> (fm2) 1.5 <β22>1/2=0.4 0.3 0.2 1.0 increase of radii contains additional contributions: „shell effect“ 0.12 0 0.5 Strutinsky-type potential-energy calculations (2) : "92Kr is soft but stable with respect to octupole deformation" sharp increase of charge radii at N=60: 0.0 phase-transition-like behaviour 40 (1): 50 60 Number of Neutrons G.A. Lalazissis et al. Nucl. Phys. A586 (1995) 201-218 (2): W. Nazarewicz et al. Nucl. Phys. A429 (1984) 269-295 | University of Workshop Cologne –| Paris, Dezember 2007 D. MücherD. Mücher | European Gammapool 30.05.2008 Octupole deformation in Kr-Isotopes (1) δ<r2> (fm2) 1.5 calculated values of radii show the 1.0 same effects like in Sr isotopes 0.5 B(E2) values: Grodzins Relation 92Kr 0 88Kr -0.5 35 no sharp increase of radii at N=60 was found 40 45 50 55 60 Number of Neutrons (1): M. Keim et al./Nucl. Phys. A586 (1995) 219-239 D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Experiment on (88,92)Kr @ REX-ISOLDE 88 Kr ⊗ θ ϕ Ep (MeV) Beam energy: 2.19 MeV/u (broken 9 gap resonator) Beam intensity: 5 *106 particles/sec targets: 4 mg/cm² 109Ag, 2 mg/cm² 109Ag, 2mg/cm² 12C 4 days beam time for 88Kr and 2 days for 92Kr MINIBALL spectrometer: 8 triple clusters+particle detector 12C annular strip number D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Particle-Gamma Time difference prompt Peak D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Particle Gamma Time difference, gate on 2+1 D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Determination of B(E2) values First order perturbation theory : Alder & Winther : "Electromagnetic Excitation - Theory of Coulomb Excitation with Heavy Ions" North-Holland, 1975, Amsterdam ● Experimental method: ● used Coulomb Excitation codes: ● CLX ... calculates differential cross section, incl. energy loss GOSIA (Rochester, Warsaw) ● ... performs χ²-fitting of matrix elements to the experimental data ● ... handels projectile and target excitation simultaneously (GOSIA 2) ● ... let the user to specify the experimental setup (8 cluster+part. det.) ● ... calculates angular distributions ● ... counts for the deorientation effect ● ... ● ● D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Counts 4 mg/cm2 88Kr and 92Kr on 109Ag 109Ag Target 2 mg/cm2 109Ag 2000 2000 1500 1500 1000 1000 500 88Kr 2+1 -> 0+1 92Kr 2+1 -> 0+1 0 0 Energy resolution after Doppler Correction: ~ 8 keV for 88Kr on 12C when normalizing to target excitation: A(92Kr,2+->0+)≈2·A(88Kr,2+->0+) !! Exact calculation (integration over full CD range): 88Kr: B(E2;2+1->0+1)=7.7(8) W.u. 92Kr: B(E2;2+ ->0+ )=16.9(5) W.u. 1 1 500 (smaller error from 12C data...) Counts Spectra of D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Consequences for nuclear structure in neutron-rich krypton isotopes (1) δ<r2> (fm2) 1.5 92Kr (Exp) B(E2) values do not follow Grodzins relation! 1.0 Exp. B(E2) value gives new δ<r2> from liquid drop model and octupole degree of 0.5 92Kr 0 88Kr (Grodzins) freedom has not to be included E(2+1) in (Exp) 92Kr still a mystery, but deformation seems to set in smoothly, so -0.5 N=56 is not active evolution of deformation towards N=60? 35 40 45 50 55 Number of Neutrons 60 -> (94,96)Kr @Isolde ... D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 N=56 subshell closure... Slide from Ari Jokinen D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Where we are .... Z=40 N=56 N=50 Z=38 D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Quadrupole moment of 88Kr cross section (a.u.) <2|M(E2)|2>=- 0.4 eb <2|M(E2)|2>=+0.4 eb lab. scattering angle [deg] a negative value for <2|M(E2)|2> fits better to the cross section due to defect strips only quater of the full statistics was used so far for 92Kr: no separation of Target-and Projectile excitation -> Det. of Q not possible --> for future experiments: heavier and thinner targets ! D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Relative determination of matrix elements in GOSIA deorientation Error calculation is done separately for target and proj. ! 88Kr GOSIA-2 Normalisation Constant 109Ag dependencies of matrix elements: Minimization and error calculation with Gosia actuell problems: normalization constant can not be fixed and has no error! Problems when Aproj > Atarget for the future: Gosia can make it possible to determine e.g. quadrupole moments without knowing the lifetimes, but we need an upgrade of GOSIA D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 Summary and outlook The nuclear structure of the A=100 region shows a complex interplay between microscopic and macroscopic features: N=50,56 shell gaps vs phase transition to deformed nuclei for N>58 In the past: Differences in mean square radii in Kr isotopes were explained by octupole softness We determined B(E2;2+1->0+1) values for 88Kr and 92Kr for 92Kr deformation starts to set in and no octupole softness has to be assumed There is still the question why E(2+1) peaks for 92Kr !! The determination of the (sign of) the quadrupole moment might be possible with RIB@Isolde without knowing lifetimes of the projectile, but we need an upgrade of GOSIA for this For the future: evolution of deformation towards 96Kr D. MücherD. Mücher | European | University Gammapool of Workshop Cologne –| Paris, April 30.05.2008 2008 D. Mücher IKP Cologne, Germany J.Iwanicki (Spokesperson) Heavy Ion Laboratory, Warsaw University P.Van Duppen, M.Huyse, P.Mayet, I. Stefanescu, J. Van de Walle IKS, Leuven, Belgium A. Blazhev, J.Jolie, N.Warr IKP Cologne, Germany N.Amzal, C.Andreoiu, A.Andreyev, P.Butler, R-D.Herzberg, G.Jones, G.Rainovski, Oliver Lodge Laboratory, Liverpool, UK U.Bergmann,J.Cederkäll, S.Franchoo, T.Nilsson, T.Sieber, F.Wenander, B.Wolf, CERN, Geneva, Switzerland W.Korten, E.Bouchez, Y.Le Coz, Ch.Theisen, CEA, Saclay, France F.Becker, J.Gerl, S.Mandal GSI Darmstadt, Germany T.Czosnyka † , J.Kownacki, P.Napiorkowski, M.Zielinska HIL Warsaw, Poland J.Eberth, A.Scherillo, D.Weiß haar, C. Fransen IKP Cologne, Germany F.Ames, D.Habs, O.Kester, LMU Munich, Germany R. Krücken, T. Kröll, T. Faestermann, R. Gernhaeuser, TU Munich, Germany D.Schwalm, H.Scheit, MPI Heidelberg, Germany T.Davinson, Z.Liu, P.Woods, University of Edinburgh, UK D.Jenkins, University of York, UK Thanks for your attention!
© Copyright 2026 Paperzz