Show that the length of the curve y=log sec x between the points x=0

Show that the length of the curve y=log sec x between the points x=0 and x=Ο€/3 is log (2+√3).
Solution:
The Length of the curve y=log sec x between the points x=0 and x=Ο€/3 given a formula
πœ‹/3
𝑠=∫
√1 + (𝑦′)2
0
𝑦 β€² = (log(sec(π‘₯)))β€² =
1
(sec(π‘₯))β€² = tan(π‘₯)
sec(π‘₯)
√1 + π‘‘π‘Žπ‘›2 π‘₯ =
πœ‹/3
𝑠=∫
0
1
cos⁑(π‘₯)
𝑑π‘₯
π‘₯ πœ‹ πœ‹/3
πœ‹ πœ‹
πœ‹
= π‘™π‘œπ‘” |tan⁑( + )|
= π‘™π‘œπ‘” |tan⁑( + )| βˆ’ π‘™π‘œπ‘” |tan ( )|
cos⁑(π‘₯)
2 4 0
6 4
4
πœ‹
πœ‹
√3
tan (6 ) + tan⁑(4 )
+1
πœ‹ πœ‹
3
tan ( + ) =
=
= 2 + √3
πœ‹
πœ‹
6 4
1 βˆ’ tan (6 ) βˆ— tan⁑(4 ) 1 βˆ’ √3
3
So
πœ‹/3
𝑠=∫
0
𝑑π‘₯
πœ‹ πœ‹
πœ‹
== = π‘™π‘œπ‘” |tan⁑( + )| βˆ’ π‘™π‘œπ‘” |tan ( )| = log⁑(2 + √3)
cos⁑(π‘₯)
6 4
4