Chromatic Aberrations Lens Design OPTI 517 Prof. Jose Sasian Second-order chromatic aberrations W H , W000 W200 H 2 W111 H cos W020 2 • Change of image location with λ (axial or longitudinal chromatic aberration) • Change of magnification with λ (transverse or lateral chromatic aberration Prof. Jose Sasian Chromatic Aberrations • Variation of lens aberrations as a function of wavelength • Chromatic change of focus: W020 • Chromatic change of magnification W111 • Fourth-order:W040 and other • Spherochromatism Prof. Jose Sasian Chromatic Aberrations W020 Prof. Jose Sasian 2 W111 H cos Topics • • • • • • • • • • Chromatic coefficients Optical glass and selection Index interpolation Achromats: crown and flint: different solutions Achromats: dialyte; single glass Mangin lens Third-order behavior Spherochromatism Secondary spectrum Tertiary spectrum • • • • • • • • Prof. Jose Sasian Apochromats Super-apochromats Buried surface Monochromatic design: one task at a time Lateral color correction as an odd aberration Color correction in the presence of axial color Field lens to control lateral color: field lenses in general Conrady’s D-d sum Chromatic aberration coefficients For a system of j surfaces W111 Aj j n / n y j i 1 j 1 Aj j n / n y j 2 i 1 Prof. Jose Sasian W111 yy i i 1 j j W020 For a system of thin lenses W020 1 j 2 y 2 i 1 i With stop shift W020 0 y W111 2 W020 y Prof. Jose Sasian Review of paraxial quantities y r u’ s’ Prof. Jose Sasian n / n n 1 n Chromatic coefficients y 2 1 1 1 1 W020 n ' n 2 s ' r s r W020 W020 Prof. Jose Sasian y2 1 1 1 1 n'n' n n 2 s r s' r y2 2 1 1 n 1 1 y n n ' A n s r 2 s' r Stop shifting Prof. Jose Sasian Prof. Jose Sasian Stop shifting New chief ray New stop New chief ray height at old pupil Old stop plane at CC yE y E shift Marginal ray height at old pupil Prof. Jose Sasian yE shift yE yE H yE A H H A yE Chromatic coefficients y n W020 A 2 n yE A H H A yE A A 2 H H H A A shift shift shift 2 n W111 A y n Prof. Jose Sasian Can show equality using the Lagrange invariant Prof. Jose Sasian The ratio Prof. Jose Sasian yE y A yE y A The ratio A/ A Old chief ray Marginal ray New chief ray Parameters are at the surface Ж A1 y Ay1 Ж A2 y Ay2 A y2 y1 y A2 A1 y2 y1 A2 A1 y A Prof. Jose Sasian stop When the stop is shifted at the cc A1 0 y2 y1 ycc A y ycc A The ratio Marginal ray y2 q y1q stop q yq p Old and new chief rays y2 y1 ycc y ycc q y2 p y1 p yp p q Does not depend on plane where it is calculated given similar triangles Prof. Jose Sasian p For a system of thin lenses W020 1 2 y 2 i 1 i j W111 yy i i 1 j Prof. Jose Sasian V is the glass V-number Φ is the optical power y is the marginal ray height y-bar is the chief ray height Glass • Schott, Hoya, Ohara glass catalogues (A wealth of information; must peruse glass catalogue) • Crowns and flints are divided at V=50 • Normal glasses: • Soda-lime, silica, lead (older glasses) • Crowns, light flints, flints, dense flints • Barium glasses (~1938) • Lanthanum or rare-earth glasses • Titanium • Fluorites and phosphate • Environmental and health issues in the production of glass. Lead replaced with Titanium and Zirconium. Prof. Jose Sasian Other materials • • • • For the UV For the IR Plastics Advances come usually with new materials that extend or have new properties. • The design is limited by the material Prof. Jose Sasian Prof. Jose Sasian Glass properties n nF-nC nd-1 1 λ nd -1 Refractivity nF-nC Mean dispersion nd -nC Partial dispersion 486.1 587.6 656.3 589.8 F (H) d (He) C (H) D (Na) v=(nd-1)/(nF-nC) v-value, reciprocal dispersive power, Abbe number P=(nd-nC)/(nF-nC) Partial dispersion ratio Prof. Jose Sasian Glass properties • • • • • • • • Homogeneity Transmission Stria Bubbles Ease of fabrication; soft glasses Coefficient of thermal expansion Opto-thermal coefficient Birefringence Prof. Jose Sasian Index of refraction variation Prof. Jose Sasian Rate of slope change in the blue makes it more difficult to correct for color Index interpolation Sellmeier 2 2 b d n2 a ... 2 2 c e Schott n 2 1 A A1 2 A2 2 A4 4 A6 6 A8 8 ... Hartmann Conrady Kettler-Drude Must verify index of refraction Prof. Jose Sasian The optical wedge α θ 1 1 n ' 2 1 ' 1 n 2 ' 2 1 ' 2 δ n 1 The deviation is independent of the angle of incidence for small θ (First order approximation) Prof. Jose Sasian Wedge nd 1 nF 1 nC 1 nF nC nd 1 nC 1 nd nC nd 1 v nF nC nd nC P nF nC v P v Prof. Jose Sasian δ Deviation ∆ Dispersion ε Secondary dispersion Achromatic wedge pair 1 2 2 1 2 0 v1 v2 v2 1 v1 1 2 1 v2 1 v1 v2 1 v1 v2 2 v1 v1 v2 1 v1 1 v v n 1 2 d1 1 1 v2 v1 v2 nd 2 1 2 1 P1 P2 v1 v2 Prof. Jose Sasian Deviation without dispersion Achromatic wedge •There is deviation •There is no dispersion •Red and blue rays are parallel •Independent of theta to first order Prof. Jose Sasian Schematic drawing α Achromatic doublet (Treated as two wedges) Z Z’ Y2 Y ; Z' Z sag 2r r 1 1 Y ' ' Z1 Z 2 Y 1 1 r r n d 1 2 1 2 0 v1 v2 Y 1 Y 2 0 v1 v2 Prof. Jose Sasian Achromatic doublet Y 1 Y 2 0 v1 v2 1 2 1 v1 v1 v2 2 v2 v1 v2 Prof. Jose Sasian Independent of conjugate Requires finite difference v1 v2 Can lead to strong optical powers Relative sag (for 100 mm focal length) Zonal spherical aberration Critical airspace Prof. Jose Sasian Achromatic doublet •Must have opposite power (Glass) •Strong positive and weaker negative lens •Cemented doublet •Crown in front •Flint in front •Corrected for spherical aberration •Degrees of freedom •Large achromats and cementing •Conrady D-d sum •Zonal spherical aberration Prof. Jose Sasian Conrady’s D-d sum • In the presence of sphero-chromatism the best state of correction is achieved when: D d n 0 D d Is the difference of optical path between the marginal F and C rays. Prof. Jose Sasian Conrady’s D-d sum D d Optical _ path _ difference Dn f dn f Dn dn c c D d n Minimizes the rms OPD difference by joining the opd curves at the edge of The aperture. Valid for fourth order sphero-chromatism. Prof. Jose Sasian Cemented doublet solutions • Correction for chromatic change of focus • Correction for spherical aberration • Degrees of freedom: relative powers for a set of glasses; shapes • Crown in front: two solutions • Flint in front: two solutions • Note multiple solutions Prof. Jose Sasian Crown in front and flint in front doublet solutions (BK7 and F2) Prof. Jose Sasian Contact options for doublets Full contact (cemented) Air spaced Edge contacted Center contacted Prof. Jose Sasian Limitations Secondary spectrum, spherochromatism and zonal spherical aberration set limits F=100 mm, f/4, 0.5 wave scale Prof. Jose Sasian Achromatic doublet 20 inch diameter F/12 BK7 F4 Prof. Jose Sasian In this lecture • • • • • • • Chromatic coefficients Basic glass properties Achromatic wedge-pair and lens doublets Examples D-d method Achromatic doublet Diversity of solutions Prof. Jose Sasian
© Copyright 2026 Paperzz