optogalvanic spectroscopy in neon

OPTOGALVANIC SPECTROSCOPY IN NEON
T. Caesar, J. Heully
To cite this version:
T. Caesar, J. Heully. OPTOGALVANIC SPECTROSCOPY IN NEON. Journal de Physique
Colloques, 1983, 44 (C7), pp.C7-261-C7-266. <10.1051/jphyscol:1983722>. <jpa-00223279>
HAL Id: jpa-00223279
https://hal.archives-ouvertes.fr/jpa-00223279
Submitted on 1 Jan 1983
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
JOURNAL DE PHYSIQUE
Colloque C7, suppl6ment au nO1l, Tome 44, novembre 1983
page C7-261
OPTOGALVANIC SPECTROSCOPY IN NEON
T. Caesar and J . L . Heully
Department of Physics, Chalmers University of Technology, 5-412 96 Giiteborg,
Sweden
Resume - La s p e c t r o s c o p i e o p t o g a l v a n i q u e de l ' a t o m e de neon a e t 6 f a i t e .
Deux s e r i e s de Rydberg d i s c r P t e s e t deux s e r i e s de Rydberg a u t o i o n f s e e s o n t
@t@
observees. Les r e s u l t a t s obtenus s o n t en t r e s bon a c c o r d avec l e s ?red i c t i o n s t h @ o r i q u e s . L ' i n f l u e n c e du champ e l e c t r i q u e s u r l e s e t a t s a u t o i o n i sgs t r e s e x c i t e s e s t d i s c u t e e .
-
Abstract
O p t o g a l v a n i c s p e c t r o s c o p y has been done i n Neon. Two o p t i c a l
Rydberg s e r i e s and two a u t o i o n i z i n g Rydberg s e r i e s have been observed. The
r e s u l t s a r e i n good agreement w i t h t h e o r e t i c a l c a l c u l a t i o n s . The i n f l u e n c e
o f t h e e l e c t r i c a l f i e l d on h i g h a u t o i o n i z i n g s t a t e s i s discussed.
I n e x c i t i n g one o f t h e 2p e l e c t r o n s f r o m t h e ground s t a t e o f Neon two d i f f e r e n t k i n d
o f s t a t e s can be o b t a i n e d : one w i t h t h e c o r e h a v i n g j c = 3 / 2 and t h e second one w i t h
jc=1/2. These two s t a t e s have d i f f e r e n t i o n i z a t i o n l i m i t s . High s t a t e s w i t h j c = 1 / 2
l i e above t h e 2p3/2 l i m i t and t h u s a r e degenerate w i t h an i o n i z a t i o n continuum which
l e a d s t o a u t o i o n i z a t i o n . Some o f t h e s e a u t o i o n i z i n g s t a t e s have been observed by
C o d l i n g e t a l . /l/ and R a d l e r /2/. The energy d i f f e r e n c e between t h e ground s t a t e
and t h e f i r s t i o n i z a t i o n l i m i t 2pgb2 i s 21.5 eV which i m p l i e s t h e use a v e r y h i g h
energy r a d i a t i o n sources such as t e e l e c t r o n s y n c h r o t r o n . I n u s i n g so s h o r t wavel e n g t h s ( a b o u t 57 nm) i t i s d i f f i c u l t t o o b t a i n a good s p e c t r a l r e s o l u t i o n . I t i s
p o s s i b l e t o e x c i t e s t a t e s (17 eV) by u s i n g a dc discharge. From t h e s e s t a t e s f u r t h e r
e x c i t a t i o n i s o b t a i n e d by t w o l a s e r s . The d e t e c t i o n method a r e u s u a l l y photoabsorpt i o n o r i o n d e t e c t i o n . W i t h t h e o p t o g a l v a n i c method t h e d i s c h a r g e i t s e l f can a l s o be
used as an i o n o r e l e c t r o n d e t e c t o r and no f u r t h e r d e t e c t o r equipment i s needed.
Using t h i s method we h ve been a b l e t o observe f o u r Rydberg s e r i e s : 2p5ns and 2p5nd
The
c o n v e r g i n g t o t h e i o n qP31z and t h e 2p5ns1 and 2p5nd' c o n v e r g i n g upon 2~
r e s u l t s o b t a i n e d a r e compared w i t h R a d l e r and B e r k o w i t z ' s r e s u l t s and w i l A 2 t h e
t h e o r e t i c a l r e s u l t s o f Johnson /3/
.
Experimental arrangement
The e x p e r i m e n t a l set-up i s shown i n f i g . 1. The h o l l o w cathode lamp was a commercial
l i t h i u m t u b e w i t h a neon p r e s s u r e o f about 5 T o r r . The f i e l d between t h e e l e c t r o d e s
was a p p r o x i m a t e l y 300 V/cm (inhomogeneous) g i v i n g r i s e t o a plasma c u r r e n t o f 5 mA.
The l a s e r l i g h t , produced b y two excimer pumped dye l a s e r s , was d i r e c t e d c o l l i n e a r
i n t o t h e d i s c h a r g e between t h e e l e c t r o d e s p e r p e n d i c u l a r t o t h e anode-cathode a x i s ,
t o a v o i d p h o t o e l e c t r o n s f r o m t h e cathode. The d u r a t i o n o f t h e l a s e r p u l s e s was 10 ns
and t h e l i n e w i d t h was 40 GHz. The f i r s t l a s e r was used t o p o p u l a t e f o u r 2p53p
i n t e r m e d i a t e l e v e l s ( 2 ~ 2 , 2p3, 2p4, 2p5 i n Paschen n o t a t i o n ) . ~ h e second l a s e r
e x c i t e s atoms f r o m t h e i n t e r m e d i a t e s t a t e s t o t h e Rydberg s t a t e s and t h e i o n i z a t i o n
continuum.
Experimental r e s u l t s
The p r i n c i p a l f a c t o r w h i c h governs t h e energy v a l u e s o f t h e e x c i t e d s t a t e s i n neon
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983722
JOURNAL DE PHYSIQUE
hollow cathode
F i g . 1. Experimental set-up.
i s t h e s p i n - o r b i t i n t e r a c t i o n i n t h e a l m o s t c l o s e d 2p s h e l l o f t h e core. T h i s means
t h a t a good quantum number t o d e s c r i b e t h se s t a t e s i s t h e J - v a l u e o f t h e c o r e
j c = 3 / 2 o r j c = 1 / 2 (denoted w i t h a p r i m e 2p n l ' ) b u t n o t t h e J - v a l u e o f t h e o u t e r e l e c t r o n . Thus jl c o u p l i n g i s t h e b e s t way t o d e s c r i b e neon. I n g o i n g t o l o w e r nv a l u e s o f t h e o u t e r - e l e c t r o n a t r a n s i t i o n t o LS c o u p l i n g i s observed. F o r t h e
~ ~ 5 s3t a t~e s ' (2p
2p2, 2pq and 2p5 i n Paschen n o t a t i o n ) t h e r e i s some m i x i n g w i t h
t h e 2p53p s t a t e s 1;c=3/2).
5
The second l a s e r induces a d i p o l e t r a n s i t i o n f r o m
t o higher excited states:
I t s h o u l d be n o t e d t h a t a d i p o l e t r a n s i t i o n c a n n o t cause c o r e - s w i t c h i n g .
a ) ns-nd s e r i e s
As mentioned above t h e ~
~ s t a t~e s a r3e n o t ~ p u r e ' I j s t a t e s . Thus i t i s p o s s i b l e t o
observe t r a n s i t i o n s f r o m t h o s e s t a t e s t o t h e ns and nd Rydberg s e r i e s . The f o l l o w i n g
t r a n s i t i o n s have been r e c o r d e d
The energy l e v e l s and t h e quantum d e f e c t s a r e l i s t e d i n t a b l e 1.
I n o r d e r t o determine t h e a b s o l u t e energy l e v e l s and quantum d e f e c t s we used t h e
f o l l o w i n g energy l e v e l - v a l u e s g i v e n by Kaufman and Minnhagen /4/
2p2 3p1 [1/2]
151038.4524 cm-'
2p5 3 p 1[3/2]
150772.1 118 cm-'
i o n i z a t i o n l i m i t t o 2p:12
173929.75 cm-'
We have been a b l e t o r e s o l v e t h e ns s t a t e s f r o m t h e ( n - l ) d u p t o n=21. The quantum
d e f e c t 6 o b t a i n e d f r o m o u r energy l e v e l s a r e much more r e g u l a r t h a n t h o s e o b t a i n e d
this
work
14
173248
1.313
Bashkin
'
173253
1.266
nd
13
this
work
173279
'
Bashkin
0.014
173277
w i t h l e v e l s g i v e n i n Bashkin t a b l e / 5 / . A l t h o u g h o u r u n c e r t a i n t i e s on 6 a r e l a r g e ,
t h e ns and nd s t a t e s seem t o be p e r t u r b e d b y t h e n s ' and t h e nd: 161. Because t h e s e
two Rydberg s e r i e s were n o t t h e main i n t e r e s t o f t h i s work, no p a r t i c u l a r e f f o r t was
done i n o r d e r t o e x t r a c t t h e energy l e v e l s . Improvement c o u l d be o b t a i n e d by u s i n g
o t h e r i n t e r m e d i a t e s t a t e s ( j =3/2), more monochromatic l i g h t sources and b y t a k i n g
c a r e o f p r e s s u r e and f i e l d e f f e c t s .
b ) n s ' and n d ' , a u t o i o n i z i n g s t a t e s .
The aim o f t h i s work was i n f a c t t o see i f t h e o p t o g a l v a n i c method i s u s e f u l i n o r d e r
t o i n v e s t i g a t e a u t o i o n i z i n g s t a t e s . The r e s u l t s o b t a i n e d show t h a t t h i s method i s
q u i t e s u c c e s s f u l f o r t h i s purpose. Three i n t e r m e d i a t e l e v e l s have been e x c i t e d i n
o r d e r t o r e a c h t h e n s ' and n d ' s t a t e s , 2p2, 2p4 and 2p5. F i g . 2 shows a p o r t i o n o f
t h g spectrum f o r t h e t r a n s i t i o n s 2p2+ns',nd' which l i e above t h e i o n i z a t i o n l i m i t
2p3 2. The energy l e v e l s a r e l i s t e d i n t a b l e 2. Our measured energy l e v e l s a r e
cornbared w i t h t h o s e o f R a d l e r and B e r k o w i t z . They a r e a l s o compared w i t h c a l c u l a t e d
energy l e v e l s o b t a i n e d by u s i n g t h e quantum d e f e c t g i v e n by Johnson and Le Dourneuf
/3/. The agreement between o u r r e s u l t s and t h e t h e o r e t i c a l r e s u l t s o f Johnson a r e
s t r i k i n g . The l a r g e d i s c r e p a n c i e s between R a d l e r and B e r k o w i t z ' s r e s u l t s and o u r i s
due t o t h e i r poor r e s o l u t i o n nE=13 cm around 5 7 nm.
F i g . 2. P a r t o f t h e spectrum f o r t h e t r a n s i t i o n 3 p ' ~ 1 / 2 ] , + n s ' ,nd'.
JOURNAL DE PHYSIQUE
this
work
J o h n s o n Radler
nd'
Johnson
Radler
-
TABLE 2
8 REF (4)
For n<22 n o t y p i c a l F a n o - p r o f i k i s o b t a i n e d . T h i s f a c t i s p r e d i c t e d b y Johnson and
Le Dourneuf /3/. They a l s o c a l c u l a t e d t h e l i n e w i d t h o f t h e resonances:
n, 3 r ( n d ' ) = 0.001 au
n? r ( n s ' ) = 0.0033 au
F o r example r ( 1 2 d ' )=3.8 GHz. T h i s i s i n disagreement w i t h e x p e r i m e n t a l r e s u l t s o f
R a d l e r and B e r k o w i t z / 2 / : r ( 1 2 d 1)=245 GHz. Our photonbandwidth was 40 GHz and t h e
r e c o r d e d li n e w i d t h s have t h e same values. O f t h a t we can conclude t h a t r ( 1 2 d 1 ) i s
c e r t a i n l y l e s s t h a n 40 GHz which c o n f i r m e d t h e c a l c u l a t i o n o f Johnson and Le Dourneuf.
R e c e n t l y Ganz e t a1 /7/, u s i n g a n o t h e r method, have measured t h i s resonancewidth t o
be 2 GHz c o n f i r m i n g d e f i n i t e l y Johnson and Le D o u r n e u f ' s r e s u l t s .
As p o i n t e d o u t by Fano /8/ t h e numerical parameter q, which c h a r a c t e r i z e s t h e
assymetry o f t h e l i n e s h a p e s h o u l d remain n e a r l y c o n s t a n t t h r o u g h o u t t h e upper p a r t
I
cm-'
174569
174502
F i g . 3. P a r t o f t h e spectrum f o r t h e t r a n s i t i o n 3p' [3/2]
-+
n s ' ,nd'
.
o f t h e a u t o i o n i z e d Rydberg s e r i e s . As s a i d b e f o r e a l l l i n e s w i t h n<22 a r e v e r y
symmetric and i t i s s u r p r i s i n g t o o b t a i n f o r h i g h e r n such assymmetric l i n e s as
shown i n f i g . 3.
The Fano c o n c l u s i o n about r e g u l a r i t y o f t h e l i n e s h a p e was o b t a i n e d under t h e assumpt i o n t h a t no c o l l i s i o n a l broadening o r o t h e r e x t e r n a l p e r t u r b a t i o n s were p r e s e n t .
But i n f a c t i n h o l l o w cathode lamp i t i s known t h a t t h e c o l l i s i o n a l broadening cannot
b e n e g l i g e d . Furthermore t h e e l e c t r i c f i e l d between t h e e l e c t r o d e s (300 V/cm) must be
a s t r o n g p e r t u r b a t o r . I n t h e case o f an e l e c t r o n i n a Coulomb f i e l d a c r i t i c a l energy
( 2 ~ 0 / 2 ) ; ~ ~ i(au). Above t h i s energy t h e atom i o n i z e s . I n o u r
can be d e f i n e d Ec=E
i o n i z a t i o n l i m i t . S t a t e s l y i n g j u s t below
cm-! below t h e P?
case EC l i e s a b o u t
Ec have two p o s s i b i l i t i e s f o r i o n i z a t i o n { ' f i r s t v i a t h e a u t o i o n i z i n g . . p r o c e r s t o 2 ~ 9 / 2
continuum and second v i a t u n n e l l i n g t o 2 ~ ~ continuum.
/ 2
I t has been observed /9/ t h a t
f o r bound s t a t e s t h e second process can g i v e f i s e t o t y p i c a l F a n o - p r o f i l e .
Id!
I n o u r case t h e d e f o r m a t i o n o f t h e l i n e s h a p e occurs ( f i g . 3 ) i n t h e r e g i o n around Ec.
I t s h o u l d a l s o be n o t e d t h a t i n t h e same r e g i o n t h e c o n t i n u o u s background i n c r e a s e s
rapidly.
Some o t h e r f a c t o r s such as t h e bandwidth and t h e e f f e c t o f t h e l a s e r s c o u l d p l a y an
important role.
Conclusion
I t has been shown i n t h i s work t h a t t h e o p t o g a l v a n i c method can be v e r y p o w e r f u l i n
o r d e r t o do spectroscopy o f Rydberg s t a t e s and h i g h a u t o i o n i z i n g s t a t e s . The main
advangates a r e :
- a v e r y s i m p l e e x p e r i m e n t a l set-up i s needed
- f o r atoms w i t h v e r y h i g h i o n i z a t i o n l i m i t t h e d i s c h a r g e i s an e f f i c i e n t way t o
produce e x c i t e d s t a t e s
- i n t h e same t i m e t h e d i s c h a r g e i s a v e r y good d e t e c t o r f o r e l e c t r o n o r i o n s .
F o r h i g h a u t o i o n i z i n g s t a t e s f i e l d p e r t u r b a t i o n s have been observed.
C7-266
JOURNAL D€ PHYSIQUE
Acknowledgement
We thank Dr A. S i e g e l f o r communication of h i s work b e f o r e p u b l i c a t i o n , and Dr L.
Pendri l 1 f o r i n t e r e s t i n g d i s c u s s i o n s .
References
1.
2.
3.
4.
5.
6.
7.
8.
9.
C o d l i n g K., Madden R.P. and Ederer D.L., Phys. Rev. 155 (1967) 26
R a d l e r K. and B e r k o w i t z J., J. Chem. Phys. 70 ( 1 9 7 9 ) T 6
Johnson W.R. and Le Dourneuf M-, J. Phys. B n (1980) L13
Kaufman V. and Minnhagen L., J. Opt. Soc. Am. 62 (1972) 92.
Bashkin S. and S t o n e r J.O., Atomic energy l e v e r & g r o t i a n diagrams 1 , addenda
N o r t h - H o l l a n d Pub1 i s h i n g Company, 1978.
S t a r a c e A.F., J. Phys. B: At. Mol. Phys. 6 (1973) 76
Gans J., S i e g e l A., B u s s e r t W., H a r t h K., Ruf M.-W. and Hotop H., A b s t r a c e subm i t t e d t o XI11 ICPEAC, B e r l i n (1983)
Fano U., Phys. Rev.
(1961) 1866
F e n e u i l l e S., Liberman S., P i n a r d J. and T a l e b A., Phys. Rev. L e t t . 42 (1979) 1404
124