CP Geometry 4.7 – CPCTC Name: ____________________ Date: _______ Block: ________ CPCTC stands for ______________________________________________________________________. **SSS, SAS, ASA, AAS, and HL use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent** Example 1: (a) A and B are on the edges of a ravine. What is AB? (b) A landscape architect sets up the triangles shown in the figure to find the distance JK across a pond. What is JK? Example 2: (a) Given: YW bisects XZ, XY Prove: XYW ZYW YZ. (b) Given: PR bisects QPS and QRS. Prove: PQ PS Example 3: Given: NO || MP, N STATEMENTS 1. N P; NO || MP 2. NOM P Prove: MN || OP REASONS PMO 3. MO MO 4. ∆MNO ∆OPM 5. NMO POM 6. MN || OP Example 4: Given: J is the midpoint of KM and NL. Prove: KL || MN STATEMENTS REASONS 1. J is the midpoint of KM and NL. 2. KJ MJ, NJ 3. KJL MJN 4. ∆KJL ∆MJN 5. LKJ LJ NMJ 6. KL || MN Example 5: Given: D(–5, –5), E(–3, –1), F(–2, –3), G(–2, 1), H(0, 5), and I(1, 3) Prove: DEF GHI
© Copyright 2026 Paperzz