CPCTC Date: ______ Block: ______ CPCTC stands for

CP Geometry
4.7 – CPCTC
Name: ____________________
Date: _______ Block: ________
CPCTC stands for
______________________________________________________________________.
**SSS, SAS, ASA, AAS, and HL use corresponding parts to prove triangles congruent. CPCTC uses
congruent triangles to prove corresponding parts congruent**
Example 1:
(a) A and B are on the edges of a ravine. What is AB?
(b) A landscape architect sets up the triangles shown in the figure to find the distance JK
across a pond. What is JK?
Example 2:
(a) Given: YW bisects XZ, XY
Prove: XYW
ZYW
YZ.
(b) Given: PR bisects QPS and QRS.
Prove: PQ PS
Example 3: Given: NO || MP, N
STATEMENTS
1. N
P; NO || MP
2. NOM
P
Prove: MN || OP
REASONS
PMO
3. MO MO
4. ∆MNO
∆OPM
5. NMO
POM
6. MN || OP
Example 4: Given: J is the midpoint of KM and NL.
Prove: KL || MN
STATEMENTS
REASONS
1. J is the midpoint of KM and NL.
2. KJ
MJ, NJ
3. KJL
MJN
4. ∆KJL
∆MJN
5. LKJ
LJ
NMJ
6. KL || MN
Example 5: Given: D(–5, –5), E(–3, –1), F(–2, –3), G(–2, 1), H(0, 5), and I(1, 3)
Prove: DEF
GHI