Equations Constants/Values Charging by induction Charging by

Chater 23: Electric Fields
Michelle Chen
Conductor: material in which electrons move freely
Insulator: material in which electrons do not move freely
Induction: process of charging in which a charged object is brought near a neutrally charged objects,
causing the electrons in the neutral object to move
Equations
!!!βƒ—
𝐹!
π‘ž
!!!βƒ—
𝐹! = π‘žπΈ!βƒ—
π‘ž! π‘ž!
𝐹 = π‘˜! ! π‘ŸΜ‚
π‘Ÿ
π‘ž
𝐸!βƒ— = π‘˜ ! π‘ŸΜ‚
π‘Ÿ
π‘‘π‘ž
𝐸!βƒ— = π‘˜! ! ! π‘ŸΜ‚
π‘Ÿ
𝐸!βƒ— =
Constants/Values
1
= 8.99×10! 𝑁 βˆ™ π‘š! /𝐢 !
4πœ‹πœ€!
π‘ž!"#$#% = +1.602𝑒 βˆ’ 19 𝐢
π‘ž!"!#$%&' = βˆ’1.602𝑒 βˆ’ 19 𝐢
π‘˜=
Field lines
β€’
β€’
β€’
Always away from positive and
towards negative
Number of lines drawn correspond
to the magnitude of the charge
Use 8 lines per magnitude of
charge
Field Diagram Example
Charging by induction
Charging by conduction
Problem 1
An electron accelerates at rest at 780 N/C. Later, the electron reaches a speed of 5.30
Mm/s. (a) What is the electron’s acceleration? (b) How long does it take the electron to
reach this speed? (c) How far does the electron move?
Solutions:
(a):
𝐹 = π‘šπ‘Ž
π‘žπΈ = π‘šπ‘Ž
βˆ’1.602×10!!" 780 = 9.11×10!!" π‘Ž
π‘Ž = 1.37×10!" π‘š/𝑠 !
(b):
𝑣! = 𝑣! + π‘Žπ‘‘
5.30×10! = 0 + 1.37×10!" 𝑑
𝑑 = 3.87×10!! 𝑠
(c):
𝑣! ! = 𝑣! ! + 2π‘Žβˆ†π‘₯
(5.30×10! )! = 0 + 2 1.37×10!" π‘₯
π‘₯ = .103 π‘š
Problem 2
Two 1-ΞΌC charges lie at (1,0) [A] and at (0,1) [B]. A third negative charge, -Q, lies
along the y-axis at (0,10) [C]. (a) Calculate the magnitude of the force that charge A
exerts on charge B. (b) Calculate the components of this force in the x- and y-directions
and express the force as a vector. (c) Given that the y-component of the net force
(due to charges B and C) on charge A is zero, calculate the unknown charge –Q.
Solutions:
(a):
C
𝐹 = π‘˜!
𝐹=
B
π‘ž! π‘ž!
π‘Ÿ!
(8.99×10! )
Ο•
The angle is 45˚ because it’s a
45-45-90 triangle
𝐹 = 3.18×10!! 𝑁 𝚀 βˆ’ (3.18×10!! 𝑁)πš₯
𝐹 = π‘˜!
π‘ž! π‘ž!
π‘Ÿ!
1.0×10!! 𝑄
𝐹 = 8.99×10!!
1.0! + 10.0!
!
= 89.0 𝑄 𝑁/𝐢
𝐹! = 𝑠𝑖𝑛ϕ 89𝑄 =
88.6𝑄 = 3.18×10!!
𝑄 = 3.59×10!! 𝐢
! !√1.0! + 1.0! !
𝐹 = 4.5×10!! N A
(b):
𝐹! = 4.5×10!! cos 45 = 3.18×10!! 𝑁
𝐹! = βˆ’ 4.5×10!! sin 45 = βˆ’3.18×10!! 𝑁
(c):
(1.0×10!! )!
!"
!"! !!!
89𝑄 = 88.6𝑄
Problem 3
An insulating rod (L=20.0 cm) of uniform charge is being into a semicircle. The total charge
of the rod is 15.5 ΞΌC. What is the magnitude and direction of the rod at the center of
the circle?
Solutions:
𝐸=
!βˆ™!"
π‘‘πΈπ‘π‘œπ‘ πœƒ =
π‘˜
𝐸= !
π‘Ÿ
π‘˜
𝐸= !
π‘Ÿ
π‘˜πœ†
𝐸=
π‘Ÿ
!!
π‘‘π‘ž = πœ†π‘‘πΏ
πœ† 𝑑𝐿 π‘π‘œπ‘ πœƒ
πœ†π‘‘πΏ = πœ†π‘Ÿ βˆ™ π‘‘πœƒ
π‘˜πœ†
πœ†π‘Ÿ βˆ™ π‘‘πœƒ π‘π‘œπ‘ πœƒ = ! π‘Ÿ βˆ™ π‘‘πœƒ π‘π‘œπ‘ πœƒ
π‘Ÿ
!!
!
!
π‘π‘œπ‘ πœƒ π‘‘πœƒ
!
3πœ‹
π‘˜πœ†
π‘ π‘–π‘›πœƒ πœ‹ 2 =
π‘Ÿ
2
𝐸 = βˆ’2.19×10!! 𝑁/𝐢
𝐸=
We use cos because
vertical components of
force would cancel
π‘π‘œπ‘ πœƒ
1.55×10!!
)
3πœ‹
πœ‹
. 20
sin
βˆ’ sin ( )
6.37
2
2
(8.99×10! )(