Factoring Trinomials Joseph Lee Metropolitan Community College Joseph Lee Factoring Trinomials Example 1. Multiply. (3x − 7)(2x + 5) Joseph Lee Factoring Trinomials Example 1. Multiply. (3x − 7)(2x + 5) Solution. (3x − 7)(2x + 5) = Joseph Lee Factoring Trinomials Example 1. Multiply. (3x − 7)(2x + 5) Solution. (3x − 7)(2x + 5) = 6x 2 + 15x − 14x − 35 = Joseph Lee Factoring Trinomials Example 1. Multiply. (3x − 7)(2x + 5) Solution. (3x − 7)(2x + 5) = 6x 2 + 15x − 14x − 35 = 6x 2 + x − 35 Joseph Lee Factoring Trinomials Example 2. Factor. 6x 2 + x − 35 Joseph Lee Factoring Trinomials Example 2. Factor. 6x 2 + x − 35 Solution. 6x 2 + x − 35 = (3x − 7)(2x + 5) Joseph Lee Factoring Trinomials Example 3. Factor. 2x 2 + 3x − 5 Joseph Lee Factoring Trinomials Example 3. Factor. 2x 2 + 3x − 5 Solution. 2x 2 + 3x − 5 = Joseph Lee Factoring Trinomials Example 3. Factor. 2x 2 + 3x − 5 Solution. 2x 2 + 3x − 5 = (2x Joseph Lee )(x Factoring Trinomials ) Example 3. Factor. 2x 2 + 3x − 5 Solution. 2x 2 + 3x − 5 = (2x )(x ) We need factors of 5, and the only factors of 5 are 1 and 5. Observe, our two choices: (2x (2x 1)(x 5)(x 5) = 2x 2 1) = 2x 2 Joseph Lee 10x x 2x 5x Factoring Trinomials 5 5 Example 3. Factor. 2x 2 + 3x − 5 Solution. 2x 2 + 3x − 5 = (2x )(x ) We need factors of 5, and the only factors of 5 are 1 and 5. Observe, our two choices: (2x (2x 1)(x 5)(x 5) = 2x 2 1) = 2x 2 10x x 2x 5x 5 5 The only way to come up with 2x 2 + 3x − 5 would be (2x 5)(x 1) = 2x 2 − 2x + 5x Joseph Lee Factoring Trinomials 5. Example 3. Factor. 2x 2 + 3x − 5 Solution. 2x 2 + 3x − 5 = (2x )(x ) We need factors of 5, and the only factors of 5 are 1 and 5. Observe, our two choices: (2x (2x 1)(x 5)(x 5) = 2x 2 1) = 2x 2 10x x 2x 5x 5 5 The only way to come up with 2x 2 + 3x − 5 would be (2x 5)(x 1) = 2x 2 − 2x + 5x Finally, (2x + 5)(x − 1) = 2x 2 + 3x − 5. Joseph Lee Factoring Trinomials 5. Example 4. Factor. 3x 2 + 11x − 20 Joseph Lee Factoring Trinomials Example 4. Factor. 3x 2 + 11x − 20 Solution. 3x 2 + 11x − 20 = Joseph Lee Factoring Trinomials Example 4. Factor. 3x 2 + 11x − 20 Solution. 3x 2 + 11x − 20 = (3x Joseph Lee )(x Factoring Trinomials ) Example 4. Factor. 3x 2 + 11x − 20 Solution. 3x 2 + 11x − 20 = (3x )(x We need factors of 20: 20 = 1 · 20 2 · 10 4·5 Joseph Lee Factoring Trinomials ) Example 4. Factor. 3x 2 + 11x − 20 Solution. 3x 2 + 11x − 20 = (3x )(x ) 60x x 3x 20x 30x 2x 6x 10x 15x 4x 12x 5x 20 20 20 20 20 20 We need factors of 20: 20 = 1 · 20 2 · 10 4·5 We have the following choices: (3x (3x (3x (3x (3x (3x 1)(x 20) = 3x 2 20)(x 1) = 3x 2 2)(x 10) = 3x 2 10)(x 2) = 3x 2 4)(x 5) = 3x 2 5)(x 4) = 3x 2 Joseph Lee Factoring Trinomials Example 5. Factor. 3x 2 + 11x − 20 Solution. 3x 2 + 11x − 20 = (3x )(x ) We need factors of 20: 20 = 1 · 20 2 · 10 4·5 We have the following choices: (3x 1)(x 20) = (3x 20)(x 1) = (3x 2)(x 10) = (3x 10)(x 2) = (3x − 4)(x + 5) = (3x 5)(x 4) = Joseph Lee 3x 2 60x 3x 2 3x 3x 2 30x 3x 2 6x 3x 2 + 15x 3x 2 12x x 20x 2x 10x − 4x 5x Factoring Trinomials 20 20 20 20 − 20 20 Example 6. Factor. 5x 2 − 13x + 6 Joseph Lee Factoring Trinomials Example 6. Factor. 5x 2 − 13x + 6 Solution. 5x 2 − 13x + 6 = Joseph Lee Factoring Trinomials Example 6. Factor. 5x 2 − 13x + 6 Solution. 5x 2 − 13x + 6 = (5x Joseph Lee )(x Factoring Trinomials ) Example 6. Factor. 5x 2 − 13x + 6 Solution. 5x 2 − 13x + 6 = (5x )(x We need factors of 6: 6= 1·6 2·3 Joseph Lee Factoring Trinomials ) Example 6. Factor. 5x 2 − 13x + 6 Solution. 5x 2 − 13x + 6 = (5x )(x ) We need factors of 6: 6= 1·6 2·3 We have the following choices: (5x (5x (5x (5x 1)(x 6)(x 2)(x 3)(x 6) = 1) = 3) = 2) = Joseph Lee 5x 2 5x 2 5x 2 5x 2 30x x 6 5x 6x 6 15x 2x 6 10x 3x 6 Factoring Trinomials Example 6. Factor. 5x 2 − 13x + 6 Solution. 5x 2 − 13x + 6 = (5x )(x ) We need factors of 6: 6= 1·6 2·3 We have the following choices: (5x (5x (5x (5x 1)(x 6)(x 2)(x 3)(x 6) = 1) = 3) = 2) = 5x 2 5x 2 5x 2 5x 2 30x x 6 5x 6x 6 15x 2x 6 10x 3x 6 Our choice is: (5x − 3)(x − 2) = 5x 2 − 10x − 3x + 6 Joseph Lee Factoring Trinomials Example 7. Factor. 4x 2 + 12x − 7 Joseph Lee Factoring Trinomials Example 7. Factor. 4x 2 + 12x − 7 Solution. Note we have two possibilities to begin with: 4x 2 + 12x − 7 = Joseph Lee Factoring Trinomials Example 7. Factor. 4x 2 + 12x − 7 Solution. Note we have two possibilities to begin with: 4x 2 + 12x − 7 = (4x = (2x Joseph Lee )(x )(2x Factoring Trinomials ) ) Example 7. Factor. 4x 2 + 12x − 7 Solution. Note we have two possibilities to begin with: 4x 2 + 12x − 7 = (4x = (2x )(x )(2x The only factors of 7, however, are 1 and 7. Joseph Lee Factoring Trinomials ) ) Example 7. Factor. 4x 2 + 12x − 7 Solution. Note we have two possibilities to begin with: 4x 2 + 12x − 7 = (4x = (2x )(x )(2x ) ) The only factors of 7, however, are 1 and 7. Thus, we have the following choices: (4x 1)(x (4x 7)(x (2x 1)(2x 7) = 4x 2 1) = 4x 2 7) = 4x 2 Joseph Lee 28x x 7 4x 7x 7 14x 2x 7 Factoring Trinomials Example 7. Factor. 4x 2 + 12x − 7 Solution. Note we have two possibilities to begin with: 4x 2 + 12x − 7 = (4x = (2x )(x )(2x ) ) The only factors of 7, however, are 1 and 7. Thus, we have the following choices: (4x 1)(x (4x 7)(x (2x 1)(2x 7) = 4x 2 1) = 4x 2 7) = 4x 2 28x x 7 4x 7x 7 14x 2x 7 Our choice is: (2x − 1)(2x + 7) = 4x 2 + 14x − 2x − 7 Joseph Lee Factoring Trinomials Example 8. Factor. 6x 2 − 27x + 12 Joseph Lee Factoring Trinomials Example 8. Factor. 6x 2 − 27x + 12 Solution. We should first observe that we may factor out a common factor. 6x 2 − 27x + 12 = Joseph Lee Factoring Trinomials Example 8. Factor. 6x 2 − 27x + 12 Solution. We should first observe that we may factor out a common factor. 6x 2 − 27x + 12 = 3(2x 2 − 9x + 4) = Joseph Lee Factoring Trinomials Example 8. Factor. 6x 2 − 27x + 12 Solution. We should first observe that we may factor out a common factor. 6x 2 − 27x + 12 = 3(2x 2 − 9x + 4) = 3(2x )(x ) Joseph Lee Factoring Trinomials Example 8. Factor. 6x 2 − 27x + 12 Solution. We should first observe that we may factor out a common factor. 6x 2 − 27x + 12 = 3(2x 2 − 9x + 4) = 3(2x )(x ) We need factors of 4: 4= 1·4 2·2 Joseph Lee Factoring Trinomials Example 8. Factor. 6x 2 − 27x + 12 Solution. We should first observe that we may factor out a common factor. 6x 2 − 27x + 12 = 3(2x 2 − 9x + 4) = 3(2x )(x ) We need factors of 4: 4= 1·4 2·2 We have the following choices: 3(2x 3(2x 3(2x 1)(x 4)(x 2)(x 4) = 3(2x 2 1) = 3(2x 2 2) = 3(2x 2 Joseph Lee 8x 2x 4x x 4) 4x 4) 2x 4) Factoring Trinomials Example 8. Factor. 6x 2 − 27x + 12 Solution. We should first observe that we may factor out a common factor. 6x 2 − 27x + 12 = 3(2x 2 − 9x + 4) = 3(2x )(x ) We need factors of 4: 4= 1·4 2·2 We have the following choices: 3(2x 3(2x 3(2x 1)(x 4)(x 2)(x 4) = 3(2x 2 1) = 3(2x 2 2) = 3(2x 2 8x 2x 4x x 4) 4x 4) 2x 4) Our choice is: 3(2x − 1)(x − 4) = 3(2x 2 − 8x − x + 4) Joseph Lee Factoring Trinomials Example 9. Factor. (x + 7)2 − 6(x + 7) − 16 Joseph Lee Factoring Trinomials Example 9. Factor. (x + 7)2 − 6(x + 7) − 16 Solution. Let u = x + 7. (x + 7)2 − 6(x + 7) − 16 = Joseph Lee Factoring Trinomials Example 9. Factor. (x + 7)2 − 6(x + 7) − 16 Solution. Let u = x + 7. (x + 7)2 − 6(x + 7) − 16 = u 2 − 6u − 16 = Joseph Lee Factoring Trinomials Example 9. Factor. (x + 7)2 − 6(x + 7) − 16 Solution. Let u = x + 7. (x + 7)2 − 6(x + 7) − 16 = u 2 − 6u − 16 = (u − 8)(u + 2) = Joseph Lee Factoring Trinomials Example 9. Factor. (x + 7)2 − 6(x + 7) − 16 Solution. Let u = x + 7. (x + 7)2 − 6(x + 7) − 16 = u 2 − 6u − 16 = (u − 8)(u + 2) = [(x + 7) − 8][(x + 7) + 2] = Joseph Lee Factoring Trinomials Example 9. Factor. (x + 7)2 − 6(x + 7) − 16 Solution. Let u = x + 7. (x + 7)2 − 6(x + 7) − 16 = u 2 − 6u − 16 = (u − 8)(u + 2) = [(x + 7) − 8][(x + 7) + 2] = (x − 1)(x + 9) Joseph Lee Factoring Trinomials Example 10. Factor. 4x 6 − 4x 3 − 15 Joseph Lee Factoring Trinomials Example 10. Factor. 4x 6 − 4x 3 − 15 Solution. Let u = x 3 . 4x 6 − 4x 3 − 15 = Joseph Lee Factoring Trinomials Example 10. Factor. 4x 6 − 4x 3 − 15 Solution. Let u = x 3 . 4x 6 − 4x 3 − 15 = 4u 2 − 4u − 15 = Joseph Lee Factoring Trinomials Example 10. Factor. 4x 6 − 4x 3 − 15 Solution. Let u = x 3 . 4x 6 − 4x 3 − 15 = 4u 2 − 4u − 15 = (2u )(2u = Joseph Lee Factoring Trinomials ) Example 10. Factor. 4x 6 − 4x 3 − 15 Solution. Let u = x 3 . 4x 6 − 4x 3 − 15 = 4u 2 − 4u − 15 = (2u )(2u = (2u + 3)(2u − 5) = Joseph Lee Factoring Trinomials ) Example 10. Factor. 4x 6 − 4x 3 − 15 Solution. Let u = x 3 . 4x 6 − 4x 3 − 15 = 4u 2 − 4u − 15 = (2u )(2u ) = (2u + 3)(2u − 5) = (2x 3 + 3)(2x 3 − 5) Joseph Lee Factoring Trinomials Example 11. Factor. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 Joseph Lee Factoring Trinomials Example 11. Factor. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 Solution. Let u = 2n2 + 1. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 = Joseph Lee Factoring Trinomials Example 11. Factor. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 Solution. Let u = 2n2 + 1. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 = 4u 2 − 7u + 3 = Joseph Lee Factoring Trinomials Example 11. Factor. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 Solution. Let u = 2n2 + 1. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 = 4u 2 − 7u + 3 = (4u )(u = Joseph Lee Factoring Trinomials ) Example 11. Factor. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 Solution. Let u = 2n2 + 1. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 = 4u 2 − 7u + 3 = (4u )(u = (4u − 3)(u − 1) = Joseph Lee Factoring Trinomials ) Example 11. Factor. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 Solution. Let u = 2n2 + 1. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 = 4u 2 − 7u + 3 = (4u )(u ) = (4u − 3)(u − 1) = [4(2n2 + 1) − 3][(2n2 + 1) − 1] = Joseph Lee Factoring Trinomials Example 11. Factor. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 Solution. Let u = 2n2 + 1. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 = 4u 2 − 7u + 3 = (4u )(u ) = (4u − 3)(u − 1) = [4(2n2 + 1) − 3][(2n2 + 1) − 1] = (8n2 + 4 − 3)(2n2 ) = Joseph Lee Factoring Trinomials Example 11. Factor. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 Solution. Let u = 2n2 + 1. 4(2n2 + 1)2 − 7(2n2 + 1) + 3 = 4u 2 − 7u + 3 = (4u )(u ) = (4u − 3)(u − 1) = [4(2n2 + 1) − 3][(2n2 + 1) − 1] = (8n2 + 4 − 3)(2n2 ) = (8n2 + 1)(2n2 ) Joseph Lee Factoring Trinomials
© Copyright 2026 Paperzz