Chapter 8 Review Rational Functions Name _____________________________ Hr_____ Perform the indicated operation(s). Simplify the result. 1.) Simplify: = 2.) Divide: = 3.) Multiply: = Perform the indicated operation(s) and simplify. 4.) Add: = 5.) Subtract: = 6.) Add: . Describe your steps. Simplify the complex fractions. 7.) 8.) Answer the following questions based on what you know about graphing rational functions. 9.) How do you write vertical asymptotes? ___________ 10.) How do you write horizontal asymptotes? ____________ 11.) Where in the equation do you look to find the vertical asymptote? __________________ 12.) How do you find the horizontal asymptote from the equation of a simple rational function? 13.) How do you find the horizontal asymptote from the equation of a general rational function? 14.) How do you find the intercepts from the equation of any function? 15.) Given π¦ = 16.) Given π¦ = π₯ π₯ 2 β25 2 π₯β1 , find the vertical asymptote(s) __________ and horizontal asymptote __________. + 3, find the vertical asymptote(s) __________ and horizontal asymptote __________. 17.) What is the horizontal asymptote of y = 18.) What is the horizontal asymptote of y = 19.) What is the horizontal asymptote of y = ? ? ? A.) y = 0 B.) None C.) y = 1 A.) y = 0 B.) None C.) y = ¾ A.) y = 0 B.) None C.) y = 4 Graph each function using a table of values. 20.) y = Transformations: Vertical asymptote(s):_____________ Horizontal asymptote: ___________ Domain:______________ Range: _______________ Intercepts: ___________ 21.) y = Vertical asymptote(s):_____________ Horizontal: ___________ Domain:______________ Range: _______________ Intercepts: ___________ 22.) y = Vertical:_____________ Horizontal: ___________ Domain:______________ Range: _______________ Intercepts: ___________ 23.) y = Vertical:_____________ Horizontal: ___________ Domain:______________ Range: _______________ Intercepts: ___________ Fill in the blanks to state the steps to solve rational equations. 1) __________________ completely first. 2) Find the ______________ _______________ _______________________. 3) ____________________ everything by the LCD. 4) Solve the resulting equation. 5) ____________________ your solution(s). State any domain restrictions, then solve the equation. Make sure to check each solution. 24.) 25.) 26.) 27.) 28.) 29.) Concept Review: 30.) Simplify 3 2+π . 31.) Simplify ββ5(ββ9 + β2). 32.) Given π(π₯) = 3π₯ β 2 and π(π₯) = π₯ 2 + 4, find (π β π)(π₯) and (π β π)(π₯). Are these functions inverses?
© Copyright 2026 Paperzz