Nucleus Nucleus 2015 – Catania Nuclear Structure of the Heaviest Elements revealed by High-Precision Mass Measurements Michael Block GSI Darmstadt Helmholtz-Institut Mainz Institut für Kernchemie der Johannes Gutenberg Universität Mainz Future Directions in SHE Research at GSI 120 Z Talk by Ch. Düllmann 16:30 Talk by F.P. Heßberger 11417:15 Poster by A. Di Nitto tonight 108 SF a 184 100 152 162 172 Courtesy Ch.E. Düllmann N b+ EC b- Nuclear Shells: Magic Numbers in SHE? M. Bender et al., Phys. Lett. B 515 (2001) 42 Importance of Masses for Z > 100 Two neutron separation energy / MeV 16 Cf Fm No Rf Ds Sg Hs 14 12 Mt Md Lr Es 10 140 144 148 152 156 160 164 Bh Db 168 Neutron number N high-precision mass measurements provide • accurate absolute binding energies to map nuclear shell effects • anchor points to pin down decay chains ➡ Studies the nuclear structure evolution ➡ Benchmark theoretical nuclear models 172 Nuclear Structure Indicators from Masses two-neutron separation energy Two neutron separation energy / MeV 16 Cf S2n(N,Z) = M(N,Z) – M(N-2,Z) +2 mn Fm No Rf Ds Hs Sg 14 12 Mt Md Lr Es 10 140 144 148 152 156 160 164 Bh Db 168 172 Neutron number N indication for shell closure at N = 152 & N = 162 Data from Atomic Mass Evaluation 2012: M. Wang et al., CPC(HEP & NP), 2012, 36(12): 1603–2014 Nuclear Structure Indicators from Masses two-neutron separation energy S2n(N,Z) = M(N,Z) – M(N-2,Z) +2 mn Two neutron separation energy / MeV Z=98 Z=99 Z=100 Z=101 Z=102 Z=103 Z=104 15 14 13 12 11 10 140 144 148 152 156 160 164 Neutron number N Two neutron separation number S2n / keV 16000 16 Z=106 Z=107 Z=108 Z=109 Z=110 Z=111 15000 14000 13000 12000 11000 10000 154 156 158 160 162 164 Neutron number N indication for shell closure at N = 152 & N = 162 Data from Atomic Mass Evaluation 2012: M. Wang et al., CPC(HEP & NP), 2012, 36(12): 1603–2014 166 168 170 172 Tools for Direct Mass Measurements Time-of-flight spectrometry momentum analysis p=mv L single turn: SPEG/GANIL, S800/NSCL multi turn: ESR/GSI, CSR/Lanzhou, RIBF ring electrostatic MR-ToF (Giessen, ISOLDE, RIKEN, ...) start stop Frequency measurements storage rings ESR/GSI, CSR/Lanzhou, RIBF rings Penning traps LEBIT/NSCL, ISOLTRAP/ISOLDE JYFLTRAP/JYFL, CPT/ANL SHIPTRAP/GSI, TITAN/TRIUMF, TRIGATRAP/ Mainz, MLLTRAP, … B wc = q/m B Principle of Penning Traps PENNING trap q/m • Strong homogeneous magnetic field • Weak electric 3D quadrupole field Cyclotron frequency: axial motion axial motion nz 1 q fc B 2 m cyclotron motion n+ n- magnetron motion L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58 (1986) 233 G. Gabrielse, Int. J. Mass Spectr. 279, (2009 ) 107 trajectory Synthesis and Separation by SHIP kinematic separation in flight by velocity filter Typical yield for primary beam 6 x 1012 / s 1 atom/s @ Z 102 (s 1 mb) 1 atom/week @ Z= 112 (s 1 pb) SHIPTRAP Setup ≈ 50 MeV ≈ 1 eV ≈ 1 keV SHIPTRAP Performance 60 147 A = 147 + Ho 40 147 + Dy 30 147 20 Er 147 Mass resolving power of m/dm ≈ 100,000 in purification trap: + Tb + separation of isobars 10 0 732350 732400 732450 732500 Excitation frequency / Hz 310 keV 91 Mass resolving power of m/dm ≈ 1,000,000 in measurement trap: 90 Mean time of flight / ms No. of counts / bin 50 89 88 ground state 1/2+ 87 86 isomeric state 11/2- 85 -2 0 2 143 separation of isomers 2+ Dy 4 (Excitation freq. - 1505390.8) / Hz 6 Direct mass measurements with SHIPTRAP 206Pb(48Ca,2n)252No 207Pb(48Ca,2n)253No 208Pb(48Ca,2n)254No 209Bi(48Ca,2n)255Lr 209Bi(48Ca,1n)256Lr 208Pb(48Ca,1n)255No M. Block et al., Nature 463, 785 (2010), M. Dworschak et al., Phys. Rev. C 81, 064312 (2010) E. Minaya Ramirez et al., Science 337, 1183 (2012) SHIPTRAP Results vs. Atomic Mass Evaluation Pinning Down a-Decay Chains 270Ds Z = 110 mass can be fixed with α about 40 keV uncertainty now Z = 108 α Z = 104 Z = 102 0.1ms α 264Hs 0.3ms Z = 106 α α 3.6ms α 256Rf 2.3s α 258Rf 13ms Anchor points 262Sg 6.9ms 6.2ms 252No 266Hs 2.3ms 260Sg 254No 55s 270Ds Masses of even-even N -Z = 48 and N -Z = 50 Nuclei 140 270 Ds 130 264 266 Hs Hs mc2 / MeV 120 260 Sg 258 256 100 Rf Rf 252 254 No 90 80 262 Sg 110 No 250 248 Fm Fm (mc2(exp)- mc2(theo)) / MeV 70 2 Möller et. al. Kuora et al. Myers et al. [KoT05] [MöN95] [MyS96] Smolanczuk et al. [SmS95a] 1 0 -1 -2 98 100 102 104 106 108 110 98 100 Atomic Number 102 104 106 108 110 Atomic Number/StrukturSWK/Abbildungen/Massen, F.P. Heßberger, 3.9.2013 courtesy F. P. Hessberger SHIPTRAP: Probing the Strength of Shell Effects d2n(N,Z) = 2B(N,Z) – B(N-2,Z) – B(N+2,Z) No Experimental Muntian (mic-mac) Z=114 N=184 Möller FRDM Z=114 N=184 TW-99 Z=120 N=172 337 (2012) 1207 SkM* Z=126 N=184 Probing the Strength of Shell Effects Evolution of N = 152 shell closure 1800 1600 d2n_max / keV 1400 1200 1000 800 600 400 200 0 96 98 100 102 Z Data taken from Atomic Mass Evaluation (AME) 2012: M. Wang et al. 104 106 Probing the Strength of Shell Effects N = 152 isotones Data taken from Atomic Mass Evaluation (AME) 2012: M. Wang et al. Upgrades and Combinations • Novel experiments • trap-assisted decay spectroscopy • laser spectroscopy (gas cell, gas jet, trap) • gas phase chemistry • Increase efficiency and sensitivity • novel measurement schemes (PI-ICR) • single-ion mass measurements (FT-ICR) (→ TRIGA-TRAP, TRAPSENSOR) • cryogenic gas cell Cryogenic Gas Cell Cryo Cell Gas Cell 400mm DC-Cage DC-Cage RF-Funnel 40K 300K RFFunnel 60mbar He 20mbar He 450mm 320mm Advantages compared to 1st generation gas cell: • Larger stopping volume and Coaxial injection of reaction products • Higher cleanliness due to cryogenic operation • Larger gas density at a lower absolute pressure C. Droese et al. NIM B 338, 126 (2014) Cryogenic Gas Cell Cryo Cell Gas Cell 400mm DC-Cage DC-Cage RF-Funnel 40K 300K RFFunnel 60mbar He 20mbar He 450mm 320mm Advantages compared to 1st generation gas cell: • Larger stopping volume and Coaxial injection of reaction products • Higher cleanliness due to cryogenic operation • Larger gas density at a lower absolute pressure C. Droese et al. NIM B 338, 126 (2014) Recent Breakthrough Destructive time-of-flight detection Spatially resolved detection Delay-line detector S. Eliseev et al., Appl. Phys. B114, 107 (2014) Phase-Imaging Ion-Cyclotron-Resonance Method Delay-Line Detector ions Determination of the spatial distribution Independent Measurements image of magnetron motion (G ≈ 20) of Eigenfrequencies n+ and n- Radial excitation Radial excitation followed by a phase accumulation time 2n 2nt R n 2t tR S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013) R 8 mm 1 mm Φ R PI-ICR vs. ToF-ICR in experiment PI-ICR ToF-ICR 10-hour measurements d[M(124Xe) - M(124Te)] ~ 300 eV d[M(132Xe) - M(131Xe)] ~ 70 eV !!! Gain in Precision ~ 4.5 !!! S. Eliseev et al., Phys. Rev. Lett. 114, 107 (2014) 48Ca Mass Measurements nc(48Ca+) nc(C4+) TITAN LEBIT AME 2012 SHIPTRAP d(mass excess) ≈ 17 eV = 1.000 990 101 75(36stat) (15sys) PRELIMINARY Superheavy Elements Subcollaboration of NUSTAR @ FAIR Proposal to integrate new "Superheavy Element" subcollaboration in NUSTAR @ FAIR submitted to Board of Representatives (Summer '14) Focus: synthesis, nuclear structure, atomic physics, nuclear chemistry experiments in region Z ≥ 100 Existing facilties: SHIP, TASCA, SHIPTRAP, Chemistry beamline Developments for high-intensity cw-Linac ongoing (HIM, GSI, U Frankfurt) Complementary to existing NUSTAR activities at Super-FRS Organizational Structure: Spokesperson: Deputy: Technical Director: R.-D. Herzberg (Univ. Liverpool) M. Block (GSI/HIM/JGU) A. Yakushev (GSI) Currently includes 9 German and 17 international institutes Endorsed by NUSTAR Collaboration Committee: submission to FAIR management: Sept. 25, 2014 summer 2015 SHE research 2020+ New cw linac EBeam up to 7.3 MeV/u Length: 13.5 m 1 H 3 Li 11 Na 19 K 37 Rb 55 Cs 87 Fr 119 4 Be 12 Mg 20 21 Ca Sc 38 39 Sr Y 56 57+* 58 Ba La Ce 88 89+" 90 Ra Ac Th 120 59 Pr 91 Pa 60 Nd 92 U 61 Pm 93 Np 62 Sm 94 Pu 63 Eu 95 Am 64 Gd 96 Cm 65 Tb 97 Bk 66 Dy 98 Cf 67 Ho 99 Es 68 Er 100 Fm 69 Tm 101 Md 70 Yb 102 No 71 Lu 103 Lr 22 Ti 40 Zr 72 Hf 104 Rf 23 V 41 Nb 73 Ta 105 Db 24 Cr 42 Mo 74 W 106 Sg 25 Mn 43 Tc 75 Re 107 Bh 26 Fe 44 Ru 76 Os 108 Hs 27 Co 45 Rh 77 Ir 109 Mt 28 Ni 46 Pd 78 Pt 110 Ds 29 Cu 47 Ag 79 Au 111 Rg 30 Zn 48 Cd 80 Hg 112 Cn 5 B 13 Al 31 Ga 49 In 81 Tl 113 --- 6 C 14 Si 32 Ge 50 Sn 82 Pb 114 Fl 7 N 15 P 33 As 51 Sb 83 Bi 115 --- 8 O 16 S 34 Se 52 Te 84 Po 116 Lv 9 F 17 Cl 35 Br 53 I 85 At 117 --- 2 He 10 Ne 18 Ar 36 Kr 54 Xe 86 Rn 118 --- --- --- • Atomic structure beyond No (Z=102) • Experiments with single SHE-ions (e.g. chemistry + mass spec) • Chemical studies towards Eka-Rn • New SHE molecules, their stability, formation kinetics • New period in the periodic table 184 Mapping the island of stability: • New elements with Z>118 • Neutron-rich isotopes in transfer reactions • Weak EC decay channels towards center of island • Direct mapping of shell evolution towards N=184 27 First components – October 2014 Courtesy of V. Gettmann / W. Barth SHIPTRAP Collaborators D. Ackermann, K. Blaum, S. Chenmarev, C. Droese, Ch. Duellmann, M. Eibach, S. Eliseev, P. Filanin, F. Giacoppo, M. Goncharov, E. Haettner, F. Herfurth, F. P. Heßberger, O. Kaleja, M. Laatiaoui, G. Marx, D. Nesterenko, Yu. Novikov, W. R. Plaß, S. Raeder, D. Rodríguez, D. Rudolph, C. Scheidenberger, S. Schmidt, L. Schweikhard, P. Thirolf, G. Vorobjev, C. Weber, … 2010 Summary and Conclusions • State-of-the-art mass spectrometry provides masses of exotic nuclides with high accuracy – anchor points • High-precision mass measurements allow probing shell effects and tracking the evolution of nuclear structure in the heaviest elements • Technical and methodical improvements will extend the reach towards more exotic nuclides with higher Z • SHE research remains cornerstone of science program at GSI/FAIR • New cw-linac will preserve competitiveness in the future
© Copyright 2026 Paperzz