spin trapping: esr parameters of spin adducts

Free Radical Biology & Medicine, Vol. 3, pp. 259-303, 1987
Printed in the USA. All rights reserved.
0891-5849/87 $3.00 + .00
O 1987 Pergamon Joul~als Led.
SPIN TRAPPING: ESR PARAMETERS OF SPIN ADDUCTS*
GARRY R. BUEYrNER
GSF Forschungszentrum,lnstitut for Strahlenbiologic.D.8042 Neuhcrberg,FRG
Abstract--Spin trapping has become a valuable tool for the study of free radicals in biology and medicine. The
electron spin resonance hyperfine splitting constants of spin adduces of interest in this area are tabulated. The
entries also contain a brief comment on the source of the radical trapped.
Key words--ESR (electron spin resonance), Free radicals, Spin trapping, DMPO ('5,5-Dimethylpyrr~line-I-oxide),
PBN (a-phenyl-N-tert-butyl nitrone), MNP (2-methyl-2-nitrosopropane)
The experiment. Spin trapping involves the addition
INTRODUCTION
reaction of the free radical of interest to a diamagnetic
compound, spin trap, to produce'a relatively long-lived
free radical product, spin adduce (usually a nitroxide),
which hopefully accumulates to a concentration high
enough to be studied by ESR. Nitroxides are relatively
stable because the unpaired electron is resonance stabilized. In favorable cases the resulting ESR spectrum
allows the identification of the original radical. If no
unique assignment is feasible, it is still possible to learn
something about the nature of the radical, i.e. whether
it is carbon-centered, oxygen-centet'ed, nitrogen.centered, etc. Spin traps do not react readily with resonance-stabilized radicals and thus are of little help in
increasing their ~sibility; however, resonance-stabilized radicals are the easiest to observe directly. Direct
ESR observation generally provides the most information about the radical, unfortunately many radicals
cannot be observed ~.directly by ESR. Thus, spin trap..
ping has become a valuable tool for the study of free
radical processes.
Two kinds of spin traps have been developed, nitrone and nitros~bcompounds. Nitroso compounds, such
as MNP, can provide considerably more information
than nitrones as the radical to be trapped adds directly
to the nitroso nitrogen,
Sl)in trappin8
In biology and medicine free radicals are now of intense interest because they appear to be involved in
many different aspects of metabolism, ranging from
oxygen consumption to xenobiotic metabolism. ESR
(electron spin resonance) is considered the least ambiguous method for the detection of free radicals. Unfortunately, it is not always possible to directly observe
the free radicals of interest as their concentration may.
be below the limit of detection by the present generation of ESR spectrometers (~ I O- s M, a practical limit
is probably - 10 -6 M)" In addition, some radicals, even
if present at a concentration greater than 10 -s M: are
not observable at room or physiological temperature
as their spin relaxation times are very short, making
their linewidth too broad to be observed by ESR. Exantples are O p , "OH, alkoxyl radicals, and sulfurcentered radicals such as the cysteinyl or glutathiyl free
radicals.~pin trapping provides, in principle, a means
to overcome these problems.
Dr. Garry R~ Buettuerearnedhis Ph.D. in 1976workingWithDr.
, RubenE. Coffmtnin the chemistry'depmlmentat the University'of
Iowa. Whilehe was a postdoctoralfellowwith Dr. Larry Oberley
in the RadiationResearchLaboratoryat Iowahe becameinterested.
in ".heuseef spintrappingto studyfreeradicalprocesses;in pmSicular
oxygenradical production.He is currentlya FulbrightScholarand
guest scientistst the GSF wherehe continuesto pursue his interest
in .oxygenradicals. He isw0rking in the pulse radiolysisgroupof
Drs. BursandSatanwherehe is examiningthereactionof superoxide
with variousmetalcomplexes.
*.Theabbreviationsused in this m~icleappear in the appendix~
+ R;
R~N~-O
• "'
*" R - - I ~ - - O ,
t'
thereby increasing the amount Of information in the
hyperfine splitting parameters. Unfortunately, oxygen259
260
O.R. BUETTNER
centered radical adducts of MNP ar~ quite unstable,
thus the nitrones are the spin traps of choice for the
study of oxygen-centered radicals.
With nitrones some information is lost because the
trapped radical adds to a carbon adjacent to the nitrogen.
Rj--C~---N--R2 + R~
~ R)--C--N~R2
'
However, the most popular spin traps, DMPO, PBN,
and POBN have a 43-hydrogen that can provide considerable information about the radical trapped.
Hyperfine splitting. The information about the radical
trapped is contained in the hyperfine splitting of the
spin adducts. The multiplicity and magnitude of the
splittings provide this information. Excellent didactic
presentations on nitroxide hyperfine splittings have been
given by Janzen et al. ~ and Thornalley. 2 Thus, these
references should be consulted by those wanting an
introduction to the fundamental aspects of spin trapping and the ESR spectroscopy of nitroxides.
Kotake et al. 3 have demonstrated that ENDOR has
the poter, tial to provide information that can assist in
the interpretation of spin trapping experiments. For
example, Evans et al.4 have used spin trapping to study
the free radical aspects of unsaturated fatty acid autoxidation. Using ESR and ENDOR as well as selective
deuteration of linoleic acid, the site of radical 'formation and coupling constants of all nearby hydrogens
were extracted. Thus, ENDOR may prove to be q~ite.
useful in determining primary radical structure in spin
trapping experiments.
Mossoba et al? have used out-of-phase ESR, i.e.
90 ° out-of-phase detection, to study the long-range proton hyperfine coupling constants of DMPO. This approach allowed the determination of the hyperfine coupling constants of all the protons (as well as the
deuterium, when present) for the "COOH, "~H3, "CDj,
•OH and "OD spin adducts. The superhyperfine coupling constants of the distant protons are small, less
than one-half gauss; thus, oxygen must be excluded to
produce the narrow linewidths.required for successful
analysis. They demomtrated that deuterated DMPO
(although not yet synthesiz6d and studied) in out-of-
phase ESR experiments could be a useful tool for the
identification of unknown radicals.
Isotopic label)ing using t3C, 3SN or tTO has been of
great value in the identification of spin adducts. These
labelled spin adducts present a different multiplicity in
the ESR spectrum from that usually observed with 32C,
J'N or 360. Labelled spin adducts are clearly indicated
in this tabulation.
ESR spectra from spin trapping experiments often
require simulation to extract the hyperfine coupling
constants. This is especially true if the spectrum consists of more than one component. A flexible and efficient computer program that is designed for use with
microprocessors is presented by Oehler and Janzen?
This program easily handles the routine spectra obtained in spin trapping experiments.
Solvent effects. The solvent can have a major effect on
the hyperfine splitting observed for a spin adduct. In
fact, changes in solvent can produce a larger effect on
the'observed hyperfine splitting than changes in the
spin adduct structure. (Thus, researchers need to clearly
state the exact nature of the solvent used during the
collection of ESR spectra in s~in trapping experiments.) In general, increases in solvent polarity produce an increase in the nitrogen-hyperfine splitting as
the spin density on the nitrogen increases. Thus, the
[3-hydrogen splitting will usually (but not always) de"crease. At present, there is no theoretical approach to
accurately predict how AN and A, will change with the
nature of the solvent. However, empirical approaches
are being investigated. Janzen et al. 7 have demonstrated that for a particular spin adduct in different
solvents, Ax and AN can be linearly correlated with
excellent correlation coefficients. (When available, these
linear relationships are included in the tables.) In addition, the hyperfine splittings can often be linearly
correlated with physical-chemical parameters of the
solvent. Thus, in principle, both AN and A, can be
predicted for a spin adduct in any solvent from just a
few measurements. ~lowever, this area of research is
in its infancy. The best means of spin adduct identification still lies in a comparison to previously identified adducts or through well-defined chemistry in the
same solvent.
Tables of spin adduct ESR parameters
*See Refs. 85JA01 and 82JA01.
2SeeRef. 86THOI:
~SeeRefs. 77KO01,82KO04,84JA04,and 86JAOi(and references
therein). :
'seeRetL.'UEV0t ,he 85EVOL
'See Ref, g4MO04.
'
The following tables summarize the hyperfine splitting constants of spin adducts. In addition, isotropic
*See R©£ 82OE01.
7See Refs. ?SJA01 and 821A01.
Spin adduct parameters
h-values are given when measured, as well as a brief
comment on the source of the radical. The units chosen
for this tabulation of ESR hyperfine coupling constants
are gauss; G. The SI unit for magnetic flux density i:;
tesla, T. To convert from gauss to tesla use
T =
I x IO-'G
or for millitesla
mT = 0.1 G
Thus, the conversion from one unit to another is quite
simple.
The assignment for the trapped radicals presented
in these tables is as interpreted by the authors of the
original papers. If the radical is given in quotes, e.g.
*"OH", the authors have interpreted the experiments
to mean that this radical has not been formed, but rather
the chemistry of the experiment has resulted in the
formation of a spin adduct as if the radical were formed.
As research continues in the area of free radical biology
and medicine, a reinterpretation of some published data
261
may be appropriate. This appears especially to be true
with regard to oxygen-centered radicals.
Although these tables contain a large number of
entries, they by no means are intended to provide a
complete summary of the spin trapping literature. Only
a small portion of the early work is included here as
the Landolt-B6rnstein series (see Ref. 79FO01) contains tabulations of spin adduct spectral parameters (up
to 1978) as an integral part of their summary of the
nitroxide radical data. The literature now contains'over
IO0 compounds that are of potential use as spin traps;
thus, researchers should not confine themselves to only
those spin traps included in this summary if other spin
traps would provide an experimental advantage. A
computer data base of spin adduct spectroscopic parameters is being assembled (DuBose and Janzen, in
preparation). This will certainly complement this tabulation and provide a means for continuous updating
as spin trapping research evolves.
There are now many excellent reviews on various
:aspects of spin trapping. These are listed in the references and are noted with an asterisk that preceeds
the reference code.
Happy Spin Trapping!
Table I. DMPO Spin Adduct Parameters
.
Adduct
Solvent
.
j
q
ANIG
A,IG
H"
Benzene
Toluene
14.43
14.43
18.89(2)
18.90(2)
H'ande- + H'
e-+H"
H"
e-+H'
e ° + H* (r~ducdon)
W
AcN
W(7)
W
W(PT)
163
16.10
16.6
16.58
16.0
22.6(2)
22.75(2)
22.6(2)
22.50(2)
2 i.5(2)
e-+H"
W(12)
W(TR7.0)
W
W
W(10)/EtOH 3:2
W
Toluene
W(FT.4)
16.0
16.6
16.6
16.6
16.5
16.6
14.33
16.7
22.0, 21.8
22.5(2)
22.5(2)
22.5(2)
22.5(2)
22.5(2)
18.99(2)
22.5(2)
W(PT.0)
W(F7.0)
W
W(P6.5)
W(7)
W(F7.8)
W(F7.8) and LirC
W(F7.0)
W(PT.5)
W and Cells
D20
DzO(7)
16.7
16.7
16.6
16.4
16.50
16.6
15.5
16.7
16.6
16.5
16.7
16.6
22.4(2)
22.4(2)
22.4(2)
22.7(2)
22.50(2)
22.5(2)
23.4(2)
22.4(2)
22.5(2)
22.6(2)
22.6
22.6
H*
e-+H+
H"
H"
H"
H"
H"
e- +
*
H'(reduction)
Other A's/G, [g-value],
Source
Reference(s)
photolysis of lri-n-butyl tin hydride
73JA01
photolysis of alkyl cobalt(Ill) com78MAOI
plexes
radiolysis of water
76SA01
80SCOI
Ti(lll)-citrate + H202
4-aminobenzoic acid + UV light
81CH01
[2.0054], sulfite + light, fl,2 = 36 s
81KIOI
sodium borohydride reduction then
GILO01
oxidation
gamma irradiation of water
82HEOl
[2.0054] DOPA or catechol + UV
82KAOI
ultrasound in water
85RlOI, 82MAOI
ultrasound in water
85RI01, 83MAOI
chlorohemin + light
g3MA02
ultrasound with clinical equipment
83MA05
cobaltoxime photolysis
82MA06
reduction of DMPO by isoniazid +
83S!01
HRP
e-+H +
e-+H +
H"
e-+H*
e-+H+
H"
H"
H"
e- + H+orH"
H"
•
D"
D"
chlompromazine + UV light
photolyfis of tam'azine
ultrasound
CPZ + 270 nm light
UV irradiation of Tip
ultrasound.
LPC or serum autoxidation
minocycline + UV light
cysteinyl dopa + UV
radiolytic generation
Ao = 3.3, radiolysis of D20
Ao = 3.4, 4-aminobenzoic acid +
light
84DEOI
84MEOl
84RE09
85MO01
86HO01
g6MA01
86MA01
86PI01
86PI02
86SAOl
76SA01
81CHOI
262
O.R. BUETrNER
Table i (Continued). DMPO Spin Adduct Parameters
A~IG
Solvent
Adducl
A~,IG
Other A'slG, [g-value],
Source
Reference(s)
e" + D +
D~O(12)
16.0
21.8?
Ao = 3,3, gamma irradiation of
82HEOI
e- + D'
D,O(7)
16.6
22.5
82KA01
D'
D'
D'
e" + D +
Toluene
D~O
D,O
D~O(7)
14,33
16,6
16.6
16,50
18.99
22.5
22.5
22,50
Ao = 3.4, [2,0054] photolysis of
DOPA
Ao = 2.83, cobaltoxime photolysis
Au = 3.4, ultrasound in D~O
AD = 3.4, ultrasound in DaO
AD = 3.4, UV irradiation of Trp
"CH~
'CH~
'CH~
"CH)
Benzene
W
W(P?.4)
W(P7.8)
14.3i
16.33
16.4
16,50
20.52
23.24
23.4
•23.75
'CH~
W
16. I
23.0
'CH~ or C,H,C'H~
'CH~
'CH~
W(PT.5)
WIDMSO 19:1
•W(PT.41
16.3
16.1
16.4
23.5
23.0
23.4
'CH~
'CH~
'CD~
Hanks
W(HEPES7.4)
W
I 5.3 I
16.3
16. I
22.00.
23.4
23.0
'CH~OH
'CHIOH
'CH~OH
'CH,OH
'CH~CH~
'CH~CH~
Benzene
W
W(6)
W
Benzene
W(CIO.0)
14.66
16.
15.95
15.87
14.20
16.2
20.67
22.7
22.69
22.57
20.49
23.6
'CH~CH~
Benzene
14.0
20.5
'CHiCHi
W(P7.51
16.3
23.5
'CH2CHj
Benzene
14.2
20.5
"CH2CH~OH
W
15.98
22.83
CHjC'HOH
CH3C'HOH
Benzene
W(PT.41
15.03
15.8
22.53
22.8
CH3C'HOH
CH3C'HO!!
CH3C'HOH
CHjC'HOH
CHjC'HOH
W(PT.51
W
W(P'7.4)
W
W
15.8
15.8
15.8
15.8
15.8
22.9
22.8
22.8
22.9
22.8
CH3C'HOII
CH~C'HOH
CH3C'HOH
CH3C'HOH
W(PT.4)/EtOH 9: I
W(TR7.4)/EtOH 8:1
W(P7.4)
W(B9.0)
15.8
15.7
16.0
15.8
22.9
22.4
23.0
22.8
CH~'HOH
CH,C'HOH
CH,C'HOH
C'H,C'HOH
CHL:'HOH
C'HsC'HOH .~
"CH~C'HOH"
W
EIOII/W I :I
W(PT.0)
W(HEI'ES 7.4)
W(PT.8)
W(PT.0)
W
15.8
15.0
15.8
"
q
82MA06
85Ri01, 82MA01
85RI01, 83MA01
86HO01
C!1~H81+ light
73JAOi
[2.0052J,acetate + SO:
81KI01
H20, + UV + DMSO
82F[0i
addamyein semiqulnone +
84KA01
t-BuOOH or Ph(CH~),COOH
A, = 0.473(3), 0.237(6), 0.140(21,
84MOO4
0.7.38, 0.302; H~O~ + DMSO +
UV, 90" out.of-phase detection
pmcarbazine+ HRP
845102
diaziquone+ DMSO + light
85MOO2
PQR and Trypanosomacruzi and
86AUOi
NADH
stimulatedneu~mphils with DMSO 86BR02,86BROl
tert-BuOH+ mitochondria
86KEOI
A, = 0.237(6), 0.140(2), 0.238,
84M(X)4
O.302, A. = 0.072(3); DMSO +
H202 + UV, 90° out-of-pha~
73JAOI
MeOH + BP*
radiolysis of water with MeOH
765A01
H202+ light and MeOH
80MA02
{2.0053] S O : + MeOH
81KIOI
(C2H~)Hg + light
73JAOI
Cu catalyzed oxidation of ethylhy81AUOI
drazine
Cu catalyzed oxidation of ethylhy81AU01
drazine
ethyl hydrazine + oxyhemoglobin
82AU03
or Cu(ll)
ethylhydrazine + oxyhemoglobin or
82AU03
Cu(il)
[2.0057] SO,, + EtOH, fla = 4.8
81KIOI
min
EtOH + BP*
73JAOI
mlcrosomes + NADPH + 0.9%
77LA01
EIOH
' [2.0067] HP + light + EtOH
80BU01
H20: + UV light + EIOH
81Re01
80FI01
HzO: + EtOH + light
..
i2.0067] Fenton system
82BUOI
Pkanerochctte chryamporiumcell
82FO01
extract + EIOH
autoxidation of cysteine with EtOH
825A01
Fe(ll) + cysteine
82SE01
[2.0054] EtOH + Fe(II)
82TEOI
H202 + UV or with Methanobacterg3BA02
i m formicicum.
c ,c'non
c'n,C'nOn
i-H o ,y,U,3,1 (C')
-
•
..
..
22.8
21.7
22.8
not given
16.0
23.0
15.8
23.0
15.8
22.8
W(P6.5)
15.9
23.I
W(PT.4)
16.0
23.2
15.8
22.8
o
W(PT.4)
uluau~nd in water with EtOH
85RI01, 83MA01
83REOI
benoxal~ofen + u V light
methylene blue + ascot,bate + light
84BUOI
ubiscmiquinone radical t~tctions
84NO01
H202, EtOH + dug semiquinone
MKA01
Photohin !1 + ascod~tte + light
85BU02
blue dye No. I + fight with EIOH,
85CA01
not CHjC'HOH
CPZ + F.tOH + u y light
85MO01
86RE02
antlnpramle + ~ ,
Fe(lll)
and light
84Tt!04
[2.0055] glycenddehyde autoxidmion
263
Spin adduct parameters
Table I (Continued),DMPO
Spin Adduct Parameters
Other A'slG, [g-value],
Adduct
Solvent
AN/G
A./G
Source
Reference(s)
Carbon radical
W(P7.4)
Hydmxyalkyl
'CH(CHjh
(CHjhC'OH or
'CH2CH(CH3)OH
(CH~),C'OH
(CHa2C'OH
fCHj)~C'OH
W(P6-9)
W(P7,4)
16.1
W(6)
15.98
23,95
H2Oz + UV and 2.PrOH
80MA02
15.92
15.2
16.0
23,66
22.8
24.I
(CHjhC'OH
W
W(TRT.4)IEtOH 8:1
W(P7.8)
W(Pl 1.0)
R'?
W(P7,4)
15,8
15,7
81KI01
82SE01 "
82TE01
84FA01
83SI01
(CH~hCOHCII{
W(7)
16.0
23.9
23.2
23.2
[2.0054], (CH~hCHOH + SOd
Fe(II) + cysteine
[2.0053] iso.PrOH + Fc(ll)
Fe(III)TPPS + 2-PrOH + light
isoniazid + HRP
82HEOI
'C(OH),CH(OH)CHIOH
W(P8,5)
15,8
22.8
gamma irradiationof water, t,,~=
57 rain
[2,0055] DL-glyceraldehydeautoxi-
.-Butyl
'CH,S(O)CH,
Citrateradical
l-Hydroxybutyl
2-Hydroxypropyl
(CH02C'CN
see Rcf, 84TH04
not given
,
24,4
Benzene
w(Pg,3)
14,24
15.8
20.41
22,8
W(P6,5)
Benzene
15.3
14.89
14.58
14.6
18.6
22.72
23.91
15,75
15.6
15.47
21.6
22.5
Benzene
Xylene
20.4
~-Alanine
CO;~
CO:
W and Cells
W and Cells
W(7,41
W(P?.5) "
W
W
W
W
W(5.5)
W
16.0
15.6
15.75
15.3
15.6
15.6
15.8
20.00
22.5
23.0
22.6
21.5
23.6
18.7
19.1
CO: v
CO2~
CO:
~W
W(PT.0)
W(7)
15.97
15.6
15.38
18.97
18,8
18,2
CO:
CO:
CO:
W(PT.0)
W
W(F7.0)
15.6
15.6
15,6
18,7
18.7
18.7
CO:
CO:
CO2;
W(PI 1.0)
W(P7.0)
W
15.6
15.6
15.6
18.7
18.7
18.7
CO:
CO2~
CO:
W(HEPES7.4)
W(MS7.0)
W(P7.0)
not given
15.8
18.6
"CO:"
W
15.6
18.7
CO:
W(P6.5)
COl;"
W/DMSO 19: I
15.8
15.6
18.8
18.7
,CO:.
CO~~
W(P'/.0)
W(P'7.4)
15.6
15.7
18.7
18.8
HydroxypymvMdehyde(C')
W(P7.4)
14.9
19.6
Polyethyleneglycol-C'
Ethlene glycol-C'
'C(CH]hCH(NH~+)CO2"
"CH:CI|(NHj + )COOL-Threonine-C'
Glycine-C"
L.Arginine HCI-C'
Sorbitol nMical
lndole-3-('CH2)
"'CH2C~NOz
W(P7.2)
W(Ac4.6)
W(TR7.4)
'CH]CtI44NO2
W(TR7.4)
not given
15.9
16.O
15.8
16.0
22.5
22.4
22.4
21.4
glyccmldehydeautoxldation with
oxyhncmoglobin
glycernldehyde
auloxidation
iproniazid+ HRP or PGS
darien
(C,H,),Pb + light
hepaticnuclei + NADPH and
DMSO
CFL + citrate + UV light
C,H,OH + BP*
84TH06
84WO01
85KA02, 835101
84TH02
73JAOI
80PAOI
CjHIOH + BP*
a, a'-azobisisobutyronildle + heat.
85MO01
73JA01
73JAOI
70W101
383 K
radioIyticgeneration
radiolyticgeneration
photolysisof penacillaminedisulfide
cysteinyldopa + UV
835A01
835A01
87DAOI
86PI02
gamma irradiation
gamma irradiation
83ETOI
83ETOI
gamma irradiation
gamma irradiation
chlorophyl + light with formate
[2.0058] ZnO dispersion + light
and formate
83ETOI
83ET01
78HA01
79HA0[
[2.0054] oxalate + SOd
reduced mitomycin C
gamma irradiation of water, t~,2 =
81K101
81LO01
82HEOI
46 rain
furocoumarin derivative + light
ultrasound in water with formate
chlorpromazine + formate and UV
light
Fe(III)-TPPS + formate + light
photolysisof tamazine with formate
A. = 0.236(6),0.130(2),0.243,
0.275; H202 + formate + UV,
90° out-of-phasedetection
83DE01
85R!01, 83MAOI
84DE01
84FAOI
84MEOI
84MOO4
ubisemiquinone radical reactions
pea chloroplasts + paraquat + l i g h t
Photofdn ii + ascorbate + formate
+ light
blue dye No. I + light + formate,
not C O :
CPZ + formate + UV light
dimziquone + light
chlofleu'acycline + UV
anthrapymzole + NADH, formate
and light
84NOOI
.85BO01
85BU02
[2.0056] autoxidztion of hydmxypy-
86TH07
mvMdehyde
ozone + cMYeieacid and sorbitol
indole-3-acetic acid + H1[P + H~O~
o-nierobenzyi + micnnomal IXetein
A. = 0.7, p-nilm~'nzyl + microsemi protein
83{31102
86MGO4
86MGO2
86M002
gSCAOI
85MOOI
85MOO2
86P[01
S6REOI
O, R. BUEI"rNER
264
Table I
(Continu~(l!,
D_Mp0 Spin Addu_ct Parameters . . . . . .
Other
Adduct
Solvent
Uracil radical (I)
Uracil radical (2)
A,/G
A,/G
W(12)
W(12)
16.0
15.35
24.5
21,0
Phenyl
Phenyl
• Benzene
W(BI0.2)
13.76
15.9
19.22
24.8
Pbenyl
Benzene
13.8
19.2
W(P7.0)
15.8
24.4
Phenyl
W
15.97
24,34P'
Phenyl
Phenyl
Phcnyl
W(P7,5)
Benzene
W(P'i4}
16.0
13.9
15.8
24,7
19.4
24.4
Phcnyl
W(P7.4)
15.8
24.4
Phenyl
Phcnyl
W(PT.4)
W(P7.4)
15,9
15,9
. 24.8
24.8
2-Chlomphcnyl
W(P7.5)
15.7
23.4
2-Chlorophenyl
Benzene
13.7
18.8
4-Chlorophenyi
W(P7.5)
15.8
24.2
4-Chlorophenyl
Benzene
13.8
19.5
2-Methylphcnyl
W(P7.4)
15.9
23.8
2-Methylphenyl
Benzene
13.9
Phenyl
/
19.I
t"
3-Methylphenyl
W(PT.5)
15.8
24.3
3-Methylphenyl
Benzene
14.1
19.5
Benzene
•W(P7.5)
Benzene
W(TAR3.0)
W(TAR3.0)
D~O(9)
D,O(7)
14.16
16.0
14.1
16.0
16.0
16.1
15.7
20.66
22.0
20.4
22.7
22.3
24.95
23.73
D,O(7)
15.8
16.38
14.39
14.20
16.0
15.95
15.9
24.06
23.5
20.63
20.49
22.4
23.54
14.8
Benzene
CH:CIz
15.9
13.99
13.79
14.20
i~;.12
15.23
14.30
12.5
24.3
15.57
19.56
20,49
17,92
18.56
17.37
IO.0
Benzene
CH2CIz
Fzeon-I I
Freon- I I
14.O3
14.O
13.9
14.3
Benzyl
Benzyl
Benzyl
a-l.lydmxybenzyl
CJ45C'(OH)(CHD,
4-NH~-CeH,"
4-HzNO2SC,,H4'
4-HOOCC6H,"
4-CHBC~,'
alpha-Cyanobenzyl
I-Phenylethyl
Styrene ('C-7)
Benzoic acid ring C"
Phenyl-4-sulfonate
P', pmmazyl
Benzoyl
PMnoxymethyi
l-Ethoxyethyl
Tetrahydmfunmyl
Aminofomwl
Dimethylaminoformyl
Acetoxyl
Acetyl.....
Acetyl : ,...
W(8.5)
Benzene
Benzene
.
W(F7.6)
W
W(BI0.2)
W(P6.5)
Benzene
Benzene
,~ Benzene
Benzene
Benzene
,
17.87
17.7
20.4
20.9
A's/G, [g-value],
Source
gamma Irredi,tion of 5.bromuuracil
gamma irradiation of 5-bromourucil,
I.= = 17 rain
phcnyl~zotriphenylmethane
[2.(X)45] phenylbydrazine autoxidation
*
[2.0045] phenylhydrazinc autoxidation
[2.0045] phenylhydrnzine + crythocytes
[2.0053], benzoic acid + SO,,,
t,,z = 2l min
phenylhydrazinc and oxyhcmoglobill
phenylhydrazine and oxyhemoglo~in
[2.0045] phenylhydruzine + erythrocytes
[2.(X}45] phenylhydruzip¢ + eryth.
rocytes
phcnylhydrazinc + HRP or PGS
[2.0045] AcPhHZ + oxyhemoglobin
or red cells
2-chlorophenylhydrazineand oxyhemoglobin
2-chlorophcnylhydrazineand oxyhemoglobin
4.chloropbenylhydrazine and oxyhemoglobin
4-chlorophcnylhydrazin, c and oxyhemoglobin
2-methylphenylhydrazinc and oxy- ;
hemoglobin
2.methylphenylhydrazin¢ and oxyhemoglobin
3-mcthylphenylhydrazine and oxy.
hemoglobin
3-methylphenylhydrazine and oxyhemoglobin
(CeHsCH~)2Hg + light
benzylbydrazine and oxyhemoglobin
benzylhydrazine and oxybemoglobin
A(13-C) = 8.3, DMHB + ligninasc
DMHB + ligninase
4-iodoaniline + UV light
4-iodobenzenesulfonamide + UV
light
4-iodobenzoic acid + UV light
chloramine-T + UV light
Ct145CH2CN + BP*
CeH,CH2CHj + BP*
styrene + HRP + GSH + H2Oz
• [2.0053] phthalie acid + $O, 7
[2.0045] phenylhydrazine-4-sulfonate
autoxidation
CPZ + UV light
C6HsCHO + BP*
CeHsOCH3 + BP*
(CzHs)~O + BP*
THF + BP"
H2NCHO + BP*
DMF + BP*
A, = 0.9, ozone + dimcthylacetylene, - 70°C
CI'IBCItO + BP*
ozone + dimcthylac©tylene, -30°C
ozone + methyl linoleate, -40~C
ozone + methyl linoleate
Reference(s)
82HE01
82HE01
73JA0 I
81H101
81HI01
81H101
81Kl01
82AU03
82AU03
82HI02
83H101
835101
84TH03
82AU03
82AU03
82AU03
82AU03
82AU03
82AU03
82AU03
82AU03
73JA01
82AU03
82AU03
85HA03
85HA03
81CHOI
81CHOI
81CHOI
85EV03
73JA01
73JA01
865T01
81KIOI
81HI01
85MO01
73|A01
73JAOI
73JAOI
73JAOI
73J/~01
73JAOi
82PROI
73JAOI
82PROi
81PRO!
81PRO3
Spin adduct parameters
Table I (Continued),D M P O
Adduct
Dimethylnitrosoamine
Solvent
' W(P7.4)
AM/G
15.65
265
Spin Adduct Parameters
A./G
22,25
Diethylnitrosuamine
W(PT.4)
16.00
24.00
I-Nitrosopyrrolinc
W(P7.4)
15.50
22.80
Other A's/G, [g-value],
Source
nitrosoamine+ nucleior microsomes
nitrosoamine+ microsomes or nuclci
nitmsoaminc+ nuclei or micro-
Reference(s)
78FL01
78FL0 I
78FLOI
somc$
I-Nitmsopiperidine
W(PT.4)
15.45
23.70
C'?
C'?
C'?
W(TRT.5)
W
W(EPPS8.0)
15.9
14.5
15.53
21.9
16.2
22.0
C'?
C'?
C'?
W(P7.8) and LPC
W(P7.0)
W(P7,4)
16.1
16.25
15.9
24.5
22.5
23.0 .
LPC or serum autoxidation
ehlortetracyline
'+ UV light
"
[2,0056]hydroxypyruvaldehydeau-
86MA01
86PI01
86TH07
'cF,
13.22
14.6
15.54
14.6
toxidation
A~, = 1.01(3), CFjl + light
CCl~ + UV then water extraction
73JAOI
'CCIj
Benzene
W
N.I'
W(P7.5)
14.9
14.9
N3"
IsNj'
N j"
N3"
W
W
W
W
14.7
14.7
' 14.5
16.9
14.7
14.7
14.5
16.9
N~'
EtOH/W 9:1
13.7
12.2
N3"
W
14.70
14,70
nN~'"
tss3'
N3'
W
W(PT.6)
W(P7.6)
W(PT.4)
16.9
14.8
14.8
15.0
16.9
14.2
14.2
14.3
"NH2 (Da)
D,,O(9)
15.9
19.3
IS'NH2 (D~)
D~O(9)
15.9
19.3
'NH~, (Dj)
D~O(4)
14.0
18.74
"'NH~, (D3)
D~O(4)
14.0
18.74
'NH,
"NH-n-Butyl
RNHN'H
W
Benzene
15.85
13,95
19.03
16.39
W(BI0)
15.0
16.7
RNHN'H
RNHN'H2.
CHsC~H,SO~N'(Na')
W(BI0)
W(Ac5)
W(8.5)
15.0
14.I
15.87
16.7
18.5
18.13
N j ° ..
"OH
'OH
"OH
"OH
'OH
"OH
"OH
"OH
"OH
'OH
,~
[2.0054] nitrosoamine + nuclei or
microsomes
(2.007] microsomes
RSVM + AA
(2.0015] i-aminocyclopropane-I-carboxylic acid and Fcnton system
78FL01
790R02
81SM01
82LE01
82RO02
,4. = 3.0, [2.006] HP + azide +
80BU01
light
As = 3.0, e- irradiation
80KE01
A(15-N) = 4.5, e- irradiation
80KE01
As = 3.1, methylene blue + light
82HA01
AN --- 3.2, po~hyrin photosensitiza84MO01
tion
AN = 3. I;';2-phenylbenzoxazole +
84RE03
azide and UV
A~, = 2.95, ultrasound with
84RE09
ICo(NH~hN3]CI2
AN -'- 3.2. Blue dye No. I + light
85CA01
A(14-N) = 3.1, HRP/H2Oz + azide
85KA01
"A(15-N) = 4.3, HRP/HzO~ + azide
85KA01
AN = 3.17, anthrapyrazole +
86RE01
NADH, azide and light
AN = 1.60, sulfanilamide + UV
81CH01
light
A(15-N) = 2.24, iNN-sulfanilamide
81CH01
+ UV light
AN = 3.13, sulfanilamide + UV
81CH0I
light
A(15-N) = 4.40, tSN-sulfanilantide +
81CH01
UV light
AN = 1.71; [2.0054}; NH: + SOd
81KI01
As = 1.88
78JA02
AN = 2.5. hydralazine X.O. or red 835102, 825101
cells
AN = 2.56, hydralazine + HRP
835101
As -- 3.1, hydralazine + HRP
835101
AN --- 2.38, chloramine-T + UV
85EV03
light
See 83CA02 for a very useful kinetic !echnique to distinguish between free and "bound" "OH, also 86BU01.
W
15,0
15.0
radiolysis of water
W
15.0
15.0
t2.0062] H202 + UV light
W(P7.4)
15.0
15.0
[2.01~2] microsomes + NADPH
W(P7.8)
not given
Fenton system
W(P7.8)
xanthine + xanthinc oxidase with
not given
DETAPAC
W(P7.4)
14.90
14.90
micrmomes or nuclei and nitrosoamines
W(P7.4)
14.90
14.90
[2.0055] H202 + 'UV light
[2.0061] chlorophyll a or Bchl +
W(5.5)
14.9
14.9
light
W
14.77
14.77
ammonium pe~ulfate
W
14.83
14.83
ADP-Fe(III)-H20 z
765A01
77LA01
77LAOI
78BUOI
78BU02
781q.01
?81q.,01
78HA01
78JAO2
7&IA02
G. R. BunTTNnR
266
Table I (Continued).DMPO Spin Adduct Parameters
Solvent
Adduct
As/G
A./G
'OH
'OH
W(P7.4)
W(FT.4)
15.O
l',,0
15.0
15.0
'OH
'OH
'OH
'OH
'OH
W(PT.4)
AcN
W(PT.8)
W(P7.8)IDMF 10: I
W(PI 1.5)
15.0
14,10
14.87
14.8
14.9
15.0
12.29
14,81
14.8
14.9
'OH
'OH
'OH
W(P)
W
W(PT.2)
not given
not given
15.3
15.3
'OH
"OH
"'OH"
W(6.9)
W(PT.5)
W(7)
15.2
15.0
'OH
"OH
'OH
'OH
'OH
'OH
"OH
'OH
"OH
'OH
'OH
"OH
W(PT.4)
W
W(6)
W
w(Pg.3)
W
W
W
W(6.9)
Hanks
W(7)
W(7-11)
14.9
14.9
15.00
15.01
15.2
not given
15.1
15.1
14.90
14.90
'O"
W(13.5)
16.2
16.2
' 'OH
'OH
"OH
'OH
"OH'
W(P7)
W(P7.4)
W
W
W(PT.4)
15.0
14.95
14.9
14.9
14.9
15.0
14.95
14.9
14.9
14.9
'OH
W(7.4)
14.9
14.9
'OH
W
14.9 '
14.9
"OH
'OH
W(F7.4)
W(7)
14.8
14.7
14.8
14.7
'OH
"'OH"
"OH
'OH
"OH'
"OH
'OH
"OH
W(?.0)
W
W
W(7.8)
W(P7.4)
W(TR7.4)
W(PT.8)
W(FT.4)
14.9
14.9
14.9
14.9
14.8
15.0
14.9
14.9
14.9
14.9
not given
14.9
14.8
15.0
14.9
'OH
"OH
WOrks)
W(P7.4)
15.0
not given
15.0
W
14.9
14.9
"OH
W(IV7.4)
14.9
14.9
"OH
"'OH"
W(~.O)
W(RPMD
14.9
15.02
14.9
15.02
W(CH?.0)
l.oclanol
14.92
14.2
14.92
I 1.6
"OH"
• "OH
"OH
~'
15.2
15.0
not given
14.9
14.9
15.00
not given
14.9
14.9
15.0
15.0
15.0
15.0
15.01
15.2
Other A's/G, [g-value],
Source
Reference(s)
[2.0062] microsomes + NADPH
78LA01
[2.0062] NADPH-cytochrome c re78LA02
ductase
microsomes + NADPH
78LA02
[2.0060] Oz T + HzOz
78OZ01
xunthine + xanthine oxidase
79F!01
TMAop, l,,z = 2.5 h
79FI01
[2.006] 6-hydroxydopamine autoxi79FL01
dalton
stimulated neutrophils
79GR01
ZnO dispersion + light
79HA01
('*'0.3 G), polymorphonuclear ieuco79RO01
cytes
[2.0058] Pc(ll).bleomycin
79SU02
80BU01
[2.(X}60], itematopo~phyrin + light
80CH01, 80CH02
5-methylphenazinium + light, not
"OH
H~Oz + light
80FI01
e- irradiation
80KE01
H202 .4- UV, t,,2 = 870 s
80MA02
neutmphiles + latex IgG
80OK01
hepatic nuclei + NADPH
80PA01
IKIII), Ce(IV), Ti(IV) or KMnO,
80SC01
hematin + cumenehydropen~xidc
80SC01
Fe(II).eittate + H~O2
80SC01.
[2.0058] Fe(ll)-bleomycin
80SU01
neutrophiles + zymoson
81AR01
4-aminohenzoic acid + UV'light
81CH01
[2.0057J HiO~ + light or SO,',
81KI01
l,~ = <5 s
.[2.0057] H:O~ + light; pH depend81Ki01
ence of A's
reduced mitomycin C
81LO01
respiring mitochondria
81NO01
H202 + UV light
81RO01
[2.0061] Fenton system •
82BU01
H20~ + UV or decomposition of
82FI01
DMPO-OOH
Fenton system, bufferand chelate
82FL01
effect shown
[2.006] Phanerochaete chrysos82FO01
porium extract
daunomycin + light
82GROI
gamma radiation of water, t,,2 = 58
82HE01
rain
[2.01)55] DOPA or catechol + UV '
82KA01
82L103
a!r oxidation of DMPO
85R101, 82MA01
ultrasound in water
82MA02
Fe(III).EDTA + H202
[2.01)50] autoxiHtion of cysteine
82$A01
82SE01
Fe(ll) + cysteine
82TE01
[2.0056] Fenton system
83BA01
[2.0050] nM blood cells + adriamycin
Fe(II)-picolinate+ H202
83BA03
Fe(II)-EDTA or Fe(II)-DETAPAC +
83BU01
H~O,
adrizmycin or daunomycin + light,
83CA01
not "OH
[2.0050] reduced nucleotide and
83DA01
I~mtzine,
Fumc~mmin derivatives + light
83DE01
human polymorphonudear leuko83DG02
cytes
Fenton system
83FL01
Fenton system in water then exu'ac83FL01
tion
Spin adducl parameters
Table l
Adduct
'OH
'OH
'OH
'OH
Solvent
' W(CH6.7)
W(CH6.7)
W(P7,2)
W(KRP7.4)
(Cominued).DMPQ
AN/G
Spin Adduct Parameters
A,/G
14.92
14.92
14.92
14.92
not given
14,8
14.8
'OH
'OH
'OH
W
W(P'/,4)
W(HEPES7,6)
14.9
14.7
'OH
W(PT,4)
14.9
'OH
'OH
"OH
'OH
'OH
'OH
Oleic acid
Methyl oleate
W(F7.0)
W(7.0)
W(PII.0)
W(TR7.6)
13.9
14,5
15.0
14.9
14.9
'OH
W(IX7.4)
'OH
'OH
'OH
'OH
'OH
"OH
'OH
"OH
'OH
'OH
'OH
"OH
'OH
W(F'/,8)
W/PrOH I: I
W/Acetone I:I
W/PrOH 1:2
WIAcctone 1:2
t-BuOH
iso-Amyl alcohol
Ethyl acetate
Benzene
Toluene
W(P7,8)
W(P7,0)
W
'OD
267
14,9
14.7
not given
14,9
13.6
15.0
15.0
14.9
14.9
not given
not given
14.95
14,95"
14.7
13,I*
14.6
13.2•
14.5
12,65"
14.55
12.55"
14.6
12.0"
14.25
12.0"
13.75
10,95"
13.7
12. I*
15.75
15.00
14.9
14.9
12,1"
15.00
14,9
14.9
D~O
14.9
14.9
'OH
'OH
"OH
"'OH"
W(TR7.5)
W(HEPES7,4)
W
W(P'.7,4)
14.9
It,.9
not given
14.95
14.95
14.9
14.9
'OH
"OH
W(P7.5)
W(Pg.5)
15.0
14.9
15.0
14.9
'OH
W(F7,4)
14.9
14.9
"OH
"OH
"OH
"OH
"OH
'OH
W(PPg.6)
W(P6-8)
w(Pg.6)
W(F7.8)
W(CH7.1)
W(7.1)
14,9
14.9
(14.9-15.2)
not g i v e n
14.8
14.8
14.92
14.92
14.9
14.9
"OH
"'OH"
W(PT.0)
W
15.0
14.9
"OH
"OH
"OH
"OH
"OH
"OH
"OH
W(PT)
W(TR3.0)
W/AcN 3:5
W(P)
W(P3.5)
W(P6.5)
W/DMSO
19:1
14,9
14.9
14.9
14.9
14.86
14.86
not given
14,8
14.8
15,0
15.0
14.9
14.9
l
15.0
14.9
Other A's/G, [g-value],
Source
Fe(iI)-ADP-H202
Fc('iI)-ADP-H~O2
ozone + caffeicacid
stimulatedperipheralblood neutrophilcs
ultrasoundusing clinical equipment
xanthine oxidasewith u'ansferfin
microsomes
+ adriamycin +
NADH
[2,0051] primaquine + red cellsor
NADPH
Fenton reaction
Fenton reaction
methyleneblue + ascorbate + light
chlorpromazine+ UV light
Fe(I|I)-TPPS+ ]igh!
H20~ + light, HPLC detection
method given
x~thine oxida~, iron and merebranes
Fentonsystem
Fenlon system
Fcnton system
Fenton system
Fcnton system
Fenton system
Fcnlon system
Fenton system
Fen/on system
Fenton system
[2.0055]H20~ + drag semiquinone
photolysisof tmlrazine
A. = 0.227(OH), 0.224(6),
0.135(2), 0.229, 0.370; H202 +
UV, 90° out-of-phase detection
Au < 0.01, A, = 0.224(6),
0.135(2), 0.229, 0.370; H20, 4UV, 90° out-of-phase detection
adriamycin-Fe(]II)
+ HzO2
ubiscmiquinone
radicalreactions
ultrasound
menadione + NADPH-cytochrome c
reductase + NADPH + GSH and
GSH-peroxidase; reductionof
DMPO/OOH
enzymaticreductionof quinoids
[2.0051] DL-glyceraldehydeautoxidarien
[2.0050] AcPhHZ 4- oxyhaemoglobin or ned ceils
[2.0051J glyceraldchyde autoxidation
asbestos + H202
glyceraldehydc
autoxidation
xanthin¢ + xanthineoxidase
ADP-Fe(II)-H202
[2.0055J photodecomposition of
bleomycin
l~o(ofrin11 + ascoCoate + light
[2.0061],blue dye No. I + light,
not 'OH
phololysisof mitomycin C
Fentemsys~em---mxfrom ligninas¢
cyclic peroxide decomposition
Fenton system
[2,006],H202-MNNG + light
CPZ + UV light
diaziquone+ light
Reference(s)
83FL02
83FL03
830R02
83HA01
83MA05
83MO01
83NO01
83TH02
84BO01
84BOOl
84BUOI
84DE01
84FA01
84FL01
84GI01
84KAOI
84KA01
84KAOI
84KA01
84KAOI
84KA01
84KAOI
84KA01
84KAOI
84KA01
84KA02
84ME01
84MO04
84MO04
84MU01
84NO01
84RE09
84RO01
84TE01
84TH02
84TH03
84TH04
84WE01
84WO01
84UE02
84ZS01
gSAN01
85BU02
85CAOI
85CA03
8~KIO!
85MA03
85MF_,01
85MI03
85MO01
85MO02
268
G. R. RUiZTTNI!R
Table I (Continued). DMPO Spin Adduct Parameters
Adduct
ANIG
Solvent
Au/G
'OH
'OH
In cells
W(TRT.8)
14.4
'OH
W(PT.8)
14.9
'OH
'OH
'OH
W(7.0}
W(PP8.5)
W(P7.4)
14.8
14.8
not given
14.9
•14.9
'OH
'O11
W(P7.8)
W(P7.4)
14.9
14.9
14.9
14.9
'OH
W(PT.4)
14.9
14,9
'OH
'OH
'OH
'OH
W
Hanks
W(P7.0)
15.0
14.9
14.9 "
15.0
14.9
14.9
W(PT.4)
14.9
14.9
'OH
W(Pg.3)
14.9
14:9
'OH
'OH
'OH
"OH
W(C9.0)
W(7)
W(P7.8)
W(Swim's)
14.9
14.9
14.9
not given
14.9
14.9"
14.9
'OH
'OH
'OH
W(P7.8) + LPC
W(P7.4)
W(P7.4)
14.3
14.7
15.01
14.3
14.7
15.01
["O] 'OH
'OH
"OH
"OH
"OH
"OH
'OH
W(P7.4)
W(Ac4.6)
W(P7.0)
W(PT.4)
W(Ir7.4)
W and Cells
W(FrT.4)
15,01
14.8
14.9
15.0
15.0
14.9
14.9
15.01
14.8
14.9
15.0
15.0
14.9
14.9
"OH
"OH
"OH
"OH
W(PT.8)
W(7.0)
W(P7.8)
Ethyl acetate
14.9
14.9
not"given
13.60
10.87
"OOH
W
14.3
11.7
"OOH
W
14.1
II.3
"OOH
W(P)
not given
"OOH
W(P7.8)
not given
"OOH
"OOH
W
W
14.1
not given
11.3
"(}OH
Ethylene glycol
13.6
10.9
14.4
not given
14.9
Other A'slG, tg-value],
Source
Reference(s)
H202 + UV after DMPO is in c e l l s
H~O2 + UV, HPLC separation of
products
[2.0050) xanthine + xanlhine oxidase
xanthine oxidase and ferritin
monosaccharideautoxidation
[2.0050] 1,4-naphthoquinone.2-su]fonateoxidase
[2.0050]xanthineoxidase
[2.0050]adriamycin +hean saree.
85MO03
85PROI
85TH01
85TH03
85TH04
85TH05
85TH06
85TH08
SO[lleS
%
14.9
14.9
PRQ + Trypanosoma cruzi +
86AU01
NADH
F¢(II)with Desfcral'+ HzO2
86BO01
stimulatedneutrophils
86BR02, 86BR01
CPZ-SO or PZ-SO + light
86BU01
86DO01
Anth.racyclinc+ submitochondrial
pazliclcs
Fenton system or peroxisomes +
86EL02
CoA
melanin with hydrogen pcroxide
86HLOI
UV irradiation of Trp
86HO01
86MA01
ultrasound
menadione + enlerocyles,DMPO/
86MA02
OOH. reduction
LPC or ~emm autoxidation ,.
86MA01
Venton reaction
86MO01
xanthine + xanlhinc oxidase and
86MO03
Fe(ll)
A(17-O) = 4.66, xanthine oxidase
86MO03
indole-3-acetic acid + HRP + H2Oz
86MO04
chlonetracycline+ UV light
86P101
amhrapyrazole + li£htand N A D H
86RE01
anthrapyrazole+ lightand ascorbate
86RE02
radiolytic generation
86SA01
[2.0050] NADH/NADH dehydro86TH02
genase + addamycin
xanthine + xanthine oxidase
**86TU01
[2.006] Fenton system
87MI01
xanthine + xanlhin¢ oxidase
87SI01
87TROI
reeyaluation of 84KAOI
A, = 1.25, [2.0061] chloroplasls +
light
A, = 1.25, [2.0061] CdS dispersion
+ light
riboflavin + light; t,,2 = 35-80 s
for pH = 8-6
xanthine -i- xanthine oxidase with
DETAPAC
synthetic melanin + light
CdS or phthalecyanine pigments +
light
CdS or phthalocyanine pigments +
75HAOI
77HA01
78BU01
78BU02
78FFJ)I
78HA02
78HA02
light
"OOH
MeOH
13.3
10.4
EIOH
13.1
10.3
AcN
"13.0
10.3
DMSO
12.7
10.3
DMF
12.8
9.9
e
"OOH
•O O H ¸
•
"OOH'
•~OOH . . . . '..
.'+.: +"
• . ,'.
• .+.,
~..'. •
•
CdS or phthalocyanine pigments +
light
CdS or phthalocyanine pigments +
tight
CdS or phthalecyanine pigments +
liOIt
CdS or phthalocyanine pigments +
light
CdS or phthalocyanine pigments +
light
78HA02
78HA02
78HA02
78HA02
78HA02
Spin adduct parameters
•
(Continued). DMPO
Table i
269
Spin Adduct Parameters
Other
Adduct"
Solvent
AN/G
A,IG
"OOH
Acetone
13.1
8.1
"OOH
/
Benzene
12.9
6.9
"OOH
Heptane
12.9
6.8
O:
AcN
,
A'slG, [g-value],
Source
CdS or phthalocyanine pigments +
light
CdS or phthalocyanine pigments +
light
CdS or phthalocyanine pigments +
light
[2.0058] electrochemical generation
1~,.20
Reference(s)
78HA02
78HA02
78HA02
78OZ01
of O2=
'0OH
AcN
'OOH
W(TRT.5)
13.26
10.61
as in 7 4 H A O i
"OOH
"OOH
'OOH
"OOH
different
W(P7.8)/DMF I0:1
W(PT.8)
14,2
14.3
1I;6
11.7
'OO11
'OOH
W(P)
W(TRT.4)
14,3
not given
11,7
'OOH
'OOH
W
W(TR7.4)
I.;.3
not given
11.7
W(P7.0)
G'
,.
W(P7.5)
'OOH
W(P7.8)
14.3
11.7
'OOH
'OOH
'OOH
W(P7.4)
W(PT.4)
W(KRFT.4)
14.25
14.3
14.3
11.3
il.7
11.7
'OOH
pounds
protopo~hyrin
IX + light
potphyrinsand light
not given
not given
"OOH
not given
W(P7.8)
not given
'
'0OH
"OOH
W(P7.8)
W
14.2
'OOH
W(F7.8)
not given
"OOH
W(Ir/.5)
14.3
A, = 1,25, [2.0061] electr~hemical generation
microsomes+ aromalie nitrofom.
1 i.2
not given
11.7
78OZ01
78SE01
79BU01
79CO01
79F101
791:101
A. = 1.2, TMAS
A. = 1.25, xanthine + xanthine
oxidase
stimulated neutrophiis
A, = 1.25, microsomes + mitomycan C
neutrophiles + latex lgG and PMA
A, = 1.25, microsomes + ronidazole
chloroplasts and chloroplasts lipid
vesicles
A, = 1~3, FMN + NADPH, gun.
thine + X.O,, riboflavin
As = i.4, respiring mitochrondria
A, = 1.25, microsomcs + NADPH
A. = 1.25 {2,0061} NADPH oxidase + NADPH or NADH
xanthine oxida~ with la~toferrin
present
A. = 1.3 [2.0060] xanthine 9xidase
xanthineoxidase; cacodylate buffer
radical
xanthine oxidase
g3BA03
,4. =" 1.25, [2.0061]NADPH/pyo.
83DA01
79GR01
80KA01
80OK01
80PE02
80UAOI
81GROI
81NO01
81RO01
82BA01
82BA02
g2BU0I
82TH01
canine
'OOH
"OOH
"OOH
"OOH
"OOH
"OOH
"OOH
W(TR7.4)
W(P7.4)
14.3
14. I
not given
not given
I 1.7
11.2
not given
6,9
10.3
10.2
11.7
"OOH
W(Hanks)
W(Tricine8)
W(HEPES7.4)
Benzene
EtOH
DMSO
W(P7.4)
"OOH
W(MS7.8)
"OOH
W(PT.4)
'OOH
'0OH
'OOH
W(PT.4)
W(PT.4)
W(P7.4)
"OOH
W~TRT.4)
14.3
11.7
"OOH
W(PT.4)
14.3
I i.7
"0OH
W(P7.4)
14.3
! 1.7
"OOH
W(TP.7.4)
14.3
I i .7
12.8
13. I
12.9
14.3
not givea
14.3
11.35
not given
not given
not given
azsenazo I!I + tnicrosomes
adriamycin + NADPH
A. = 1.25, macrophages + PMA
A, = 1.3, chloroplasts + light
adfiamycin and mitochondtia
As = 1.7, benoxupmfen ÷ UV
A, = 1.4, benoxaprofen + UV
A, = 13, benoxapmfen ~ UV
A, -- 1.25, [2.0061] primaquine +
NADPH
pet chloroplasts, dioxathiadiaza-2.5penUdene
A, = 1.25, gentian violet + NADH
+ light
tfitmfunms + Yric~mnas foetus
nitmfunms + mt liver mitochondria
sx,.scmutoHI + motochondti~l pro-
8313001
g3GU01
83HUOI
83MC01
83NO01
83REOI
83REOI
83RE01
g3TH02
84B003
&IFIOI.
MMO02
MMO03
MMO07
tein
A. = 1.25, adriamycin + mitochondris + N A D I t
A, = 1.25, metmdio~ -¢- NADPHcytoclm~mec n~ductase
A. = 1.25, microsomes + nitrazepare
A. = 1.2, hepatic nuclei + sdriamycin
MPUIOI
g4ROOl
84RO04
84S!01
G.R. BUETTWER
270
(Continued). DMPO Spin Adduct Parameters
Table I
,
.
Adduct
.:
.
.
.
.
.
.
.
.
?
AnlG
Solvent
A.IG
'OOH
W(P7.5)
14.2
11.4
'OOH
W(TR7.5)
14.3
11.7
'OOH
'OOH
W/DMSO 19:1
W(P7.4)
14.2
14.2
il.6
11.6
"OOH
DMSO
12.7
10.3
'OOH
Oa'~
W(MS7,0)
DMSO
12.7
not given
10.3
'OOH
W(P7.0)
"~4.1
11.3
'OOH
W(P7.4)
'OOH
'0OH
~V(Cit4.0)
W(TR7.8)
14.2
11.3
not given
'OOH
W(PT.8)
14.3
11.7
'OOH
'OOH
W(7.0)
W(P7,8)
13.1
14.3
I 1.0
11.7.
"OOH
'OOH
"0OH
W(Hanks)
W(P8.0)/DMSO 1:1
W(PT.4)
14.3
12.7
11,7
10.3
not g i v e n
"0OH
W(TRT.4)
not given
'0OH
W(TR7.4)
not g i v e n
"0OH
'0OH
W(P7.4)
W(Ac4.6)
14.2
14.4
11.34
11,3
[I'O] 'OOH
W(PT.4)
14.2
11,34
"OOH
AcN-wet
"OOH
W(PT.4)
"OOH
W(PT.4)
not G i v e n
not given
14.4
11.4
14.3
1!.7
•
"OOH
W(P7.4)
14.3
11.7
"OOH
'0OH
W(F7,8)
W/Act I:1
14.3
14.3
11.7
11.7
CH~O"
CH3CH20"
CH~CH20"
Benzene
Benzene
EtOH
13.58
13.22
13,5
n-Butoxyl
tert-Butoxyl
ten-BuO"
ten-BuO"
ten-Butoxyl
Benzene
Benzene
Benzene
Di-I-BuOOH
30 d i f f e r e n t
,,~
13.61
13. I I
13.19
13.01
,12.77-14.84
ten-Butoxyi
ten-Buloxyl
W(PT.4)
Benzene
14.8
13.5
ten-Butoxyl
Toluene
13.08
Benzene
Toluene
12.24
13.08
ylo,,yl
Cumene Mkoxyl
,
7.61
6,96
7.4
- - -
--
Other A's/O, [g-value].
Source
Reference(s)
A, = 1.3, enzymatic reduction of
84TE01
quinoids
A, = 1.25, [2.0061] nnphthols +
84TH05
microsomes
A, = 1.2, KO~ in DMSO
84UE01
A,, = i.2, xanthine + xanthine oxi84UE02
dase
A, = !.3, Ga-phthalocyattine +
85BE01
light
pea chloroplasts + paraquat
85BO01
A, = 1,3, photolysis of aminoqui85CA03
none dn~gs
A, = 1,25, photolysis of mitomy85CA03
cin C
dihydroxyfumarate,
HRP + and 851:101
H~O,
A, = 1.3, CPZ + UV light
85MO01
H2Oz + UV, HPLC separation of
85PROI
products
A, = 1,2Y, [2.0061] xanthine +
85TH01
xanthine oxidase
A, = 1.3, xanthine oxidase
85TH03
A, = 1,25 [2,0061] xanthine oxi85TH06
dase
A. = 1.25, stimulated neutrophils 86BR02,86BRO;
A, < 0.5, potassium superoxide
86KO01
dihydroxyfumarate
+ HRP (not w i t h
86MA03
acetaminophen)
microsomes with nitrobenzyl chlo86MO01
ride
p.nitrobenzyl chloride + micro86MO02
somes
A, -- 1.25 xanthine oxidase
86MO03
A, = 1.3, indole-3°acetic acid +
86MOO4
HRP + HaO2
A, = i.25, A(17.O) = 5.9, xan86MO03
thine oxidase and '7Oa
KOz or ubisemiquinone radical r e a c 86NO01
tions
A, =- 1.3, anthrapyrazole + NADH
86REOI
and light
A. = 1.2, MPP* with NADH and
86SI01
cytochrome P450 reduction
A. --- i.25, [2.0061] adriamycin +
86TH02
NADH dehydrogenase
A. = 1.25, xanthine + X,O.
**86TUOI
AN = 1.25. chloroplasts + light
86YOOI
A. ~- 1.85, CH3OH"+ PbOAc,
.4. = I.sg, EtOH + PbOAc4
A. = 1.7, benoxaptofen + UV
light
6.83
A. -- 2,06, n-BuOH + PbOAc,
A. = 1.97, di-t-butylperoxalate
7.93
8.16
A. = 1,82, di-te~-butyiperoxide
6.63
A. = 2.04. di-tert-but3,1peroxide
6.13-16.03 A. = 1.23-2.15
A. = 3.%As-44,2, Ax = -0.484A~-8.21
16.0
[2,0645) erythrocytes + t.BuOOH
8.0
A. = 2,2, mainstream cigarette
smoke
A. = 1.68, pkotolysis of hydrope7.44
roxide
9.63
A. = 0.87(2), (C-JisCO2)2
8.88
A, = 1.68, dicumyl peroxide photolysis
73JA01
73JAOI
83REOI
73JAOI
73JA01
1"82HA01
"f82HA01
82JA01
83THO!
85HA02
86DA02
73IA01
86DA02
Spin udducl.parameters
271
Table I (Continued), DMPO Spin Adduct Parameters
Adduct
LO'
Oleic alkoxyl
Linoleic alkoxyl
Solvent
AN/G
A./G
Other A 's/G, [g-value],
Source
Reference(s)
A,.--- 1.6, methyl linoleate + ozone
81PR03
A, ~ 1.68,pe~xidized oleic
86DA02
acid + UV
•4, ~ 1.68,peroxidizedlinoleic
86DA02
Toluene
12.84
6.48
acid + UV
A, ~ 1.68, peroxidizedlinolenic
86DA02
Toluene
12.84
6.48
acid + UV
A,, ~ 1.68,peroxidizedarachidonic
86DA02
Toluene
12.85
6.48
acid + UV
vitamin K~ and oxygen
82F~01
EtOHIW 4: 1(6)
14.5
14.5
A, ~ 1.25,hematin + ethyl hydro83KAOI
W(P7.5)
14.6
II .0
peroxide
isoniazid + HRP
83S101
W(P7.4)
15.6
18.8
.4, -- 1,5, t-BuOOH + haemin
83TH01
W(P7.4)
14.5
10.5
As = i,44, tert.butylhydroperox86DA02
Toluene
12.72
9.36,
ida + UV
85KI01, 83SI01
A. = i.I, iproniazid + HRP
W(P7.4)
14.7
II .5
85HA03
A. = i.3, DMHB + ligninase
W(TAR5.0)
14.5
II .5
80RO01
A, = 1.75, eumene hydroperoxideW(3.0)
14.5
10.75
hematin
cumene hydroperoxide + UV
86DA02
Toluene
13.92
I1.20
Fenton reaction
84BO02
Oleic acid
14.7
11.6
A, = 1.41,Fenton reaction,Spectra
84BO02
Methyl oleate
12.62
10.2"5
of Leo' in methyl laurateand
linoleale also shown
peroxidized oleic acid + UV light
86DA02
Toluene
14.80
12.60
peroxidized linoleic acid + UV light
86DA02
Toluene
14.80
12.60
pemxidized linolenic acid + UV
86DA02
Toluene
14.80
12.60
light
pcroxidized arachidonic acid + UV
86DA02
Toluene
14.80
12.60
light
A, = 1.3, vitamin K~ quinol + ox82ES01
EIOH/W 4: 1(6)
13.4
10.8
ygcn
W
14.5
I0
As = 1.3, CCI, + UV, water ex82RO02
traction
See 87DA02 for additionalalkoxyl and dioxyl adducts of DMPO.
' Freon-II
Toluene
13.0
12.84
6.5
6.48
*
Linolenic alkoxy]
Arachidonic alkoxyi
Vitamin K semiquinone
C2HsOO'
RCO'7
tert-BuO0"
tert-BuO0"
(CHj)zC14OO'
Dioxyl unidentified
Cumcnedioxyl
Cumenedioxyl
Oleyl dioxyl
Lipid dioxyl
Oleic dioxyl
Linoleicdioxyl
Linolenicdioxyl
Arachidonic dioxyl
Vitamin K dioxyl
CCI300"
F'
Benzene
10.83
CI"
Thiyl radical
CH~S"
CH3CH3S'
HOCH2CHzS'
Benzene
W(HEPEST.4)
W(7.4)
W(7.4)
W(7.4)
19.67
15.2
15.33
15.33
15.20
16.4
18.00
17.07
16.80
HOOCCHzS"
W(7.4)
15.30
17.07
HINCH2CH2S"
W(7.4)
15.20
17.07
HOOC(CH2)zS"
W(7.4)
HOOE(CHDjS"
W(7.4)
2-Mercaptopropionylglycine-S' W(7.4)
15.32
15.36
15.20
17.12
17.28
15.20
DithiotlueitoI-S"
6,8-Dithiooctanoic acid-S'
Cysteinyl
Cysteinyl
Cysteinyl
Cysteinyl
Cyslein]fl
Cysteinyl
W(7.4)
W(7.4)
W(PT.4)
W(PT.8)
W(Ir/.4)
W(F'/.5)
W
w(Pg:0)
15.07
15.40
15.3
15.3
15.45
15.3
15.6, 15.2
15.2
16.53
16.13
17.2
17.25
17.2
17.0
17.7, 16.7
17.0
Cysteinyl
Cysteinyl
W(PS.0)
W(P'7.0)
15.2
15.3
17.25
Cysteinyl
Homocysteinyl
"W(7.4)
W(7.4)
15.12
15.28
17.44
16.80
17.0
Ap --- 21.6(2), As -- 1.74(2), difluoro DMPO; AgF2
Ao = 3.57(2), from chlorine
tert-BuOOH + mitochondria
photolysis of disulfide
photolysis of disulfide
A. = 0.53(2), 2-mercaptocthanol +
H202 and UV
2-mercaptoethanoic acid + H202
and UV
AH = 0.54(2), 2-mercaptoethylamine + HzOzUV
photolysis of disulfide
photolysis of disulfide
2-mercaptopmpionylglycine + H 2 0 2
and UV
photolysis of disulfide
photolysis of disulfide
[2.0047], autoxidation of cysleine
hematopoq~hyrin + cysteine + light
gen6,,'~ "io!et + cysleine + light
cysteine + HRP/H~Oz
Decomposition of Ihiol nitrite
acetominophen + HRP/llzOz or
l~3S
HRP + p-phenetidine + cysteine
CPZ-SO or PZ-SO + cysteine + ,
UV light
pho~olysisof cystine
photolysis of homocy~n¢
73JA01
73JA01
86KE01
87DA01
87DA01
87DA01
87DAO!
87DA01
87DA01
87DAOi
87DAOI
g7DAOI
87DAOI
82SAO1
84BUO2
84F101
84HA02
84JO01
$4RO02
85ROO4
86BUO!
87DA01
87DAO!
272
G.R. BUETrNER
,
Table 1 (Continued). DM[~3 Spin Adduct Parameters
Adduct'
Solvent
ANIG
A,IG
N-Acetyl ¢ysteinyl
N-Acctyl cysteinyl
CHjCN
W(P8.0)
13.7
15.0
14.3
16,8
N-Acetyl cysteinyl
w(Pg.0)
15.0
16,8
GS'
GS'
W/MeOH 3:1
W(P8.0)
14.9
15.0
15.4
16.3
GS'
GS'
W(HEPES7.8)
WOIEPES7.8)
14.9
not given
15.4
GS'
W
15.0
16.3
GS'
GS'
GS'
W(PT.0)
W(Pg,0)
W(PT.0)
15.0
15.3
not given
16.3
16.2
GS'
GS'
GS'
GS'
GS'
W(TR7.8)
W(TR8.3)
W(TR7.4)
W(PT.6)
W(7.4)
15.4
15.4
15.4
15.4
15.83
16.2
.16.2
16.2
16.2
16.24
p-CIC~f~S'
Benzene
13.6
14.3
p-CH3OC.~i,S'
Benzene
13.3
14.5
CH~CH2S"
Benzene
13.4
11.6
HOCH~CH2S"
Benzene
13.8
14.2
(CH3)~CS'
(CH3)2CHS'
PhCH2S'
Benzene
Benzene
Benzene
13.5
13.4
13.6
11.2
11.2
! 1.7
Ph,CS'
so:
so:
Benzene
W(7)
W
12.95
14.7
14.55
13.8
16.0
16.16
so:
so:
W(BT.9)
W(P'7.8)
14.7
14.4
16.0
15.9
SO:
SO:
SO:
SO:
W(BT.8)
W(8.5)
W(PT.4)
14.5
16.1
16.50
16.0
10.10
W
'AsO~ DMFO degraded
C-centen~d
3-DMPO-yl
DMPOX
DlvlPOX
DMI'OX
DMPOX
DMPOX
DMFOX
DMPOX
Dm0X.
~.
"
14.63
14.7
13.82
Other A'slG, [g-valuej,
Source
decomposition of the thiol nitrite
acetaminophen + HRF/HzOz or
PGS
HRP + phenetidine + N.acetyl
cysteine
decomposition of the thiolnitrite
acetaminophen + HRP/H202 or
PGS
PHS + AA with GSH
RSV microsomcs, aminopyrine,
GSH
acetaminophen or p-phenetidine +
HRP and GSH
xanthine + X.O. + GSH
HRP + phenetidine + GSH
CPZ-SO or PZ-SO + GSH + UV
light
pmstszlandin H synthetase + GSH
RSV +GSH + AA
HRP + :H~Oz + GSH
styrene + HRP + GSH + H202
AH = 0.60(2), 81utathione disul.
phide + UV
tz,~ -- 3.3s, photolysis of the disulfide
tz,2 = 1.7s, photolysis of the disulfide
A. = 0.8(2), decomposition of
thionitrite
A. -- 0.7(2)[2.0061] thionitrite decomposition
decomposition of thionitrite
decomposition of thionitrite
A, --- 1.14(2), decomposition of
thionitfite
[2.0067] decomposition of thionitrite
sulfite + UV light
[2.0055] sulfite + light, t,,2 = 1.2
rain
sulfite + HRP or micrmomes
illuminated chloroplasts with bisulrite
HRP + bisulfite
chloramine-T or sulfite + light
bisulfite autoxidation
A, = i.42, 0.83; [2.0059]
$20, 2- + light tt,2 -- 2Is
The following are reported to be various oxidation or degradation products of DMPO.
14.44
A,u = 7.49, SO/~ + ASO2",W
DMPO ring broken
hydrolysis of DMPO colored imW(PT.4)
not given
i,urity
chloropemxidase, DMFO-3C" adding
W(FT.4)
16.5
22.4
to DMPO
different
6.27-6.87
3.18-3.65 solvent dependency shown
[2.0065] cumenehydmperoxide +
W(PT.4)
7.I
4.2(2)
do
hematin
W and MeOH
not given
solvent dependence shown
h,(lll), Ce(IV), KMnO, Ti(IV) or
W
-7
~4
hemtin
[2.004g] superoxo-cobalt complex
W(P7)
7.2
4.1(2)
ten-BuOOH + hzmin
W(FT.4)
7.2
4.I(2)
poq~yrin photosensitization
W(7.6)
7.I
4.2(2)
[2.0048] AcPhHZ + 'oxyhaemogloW(FT.4)
7.2
4.I(2)
bin
Reference(s)
84JO01
84RO02
85RO04
84JO01
84RO02
85BO02
85EL01
: 85RO02
85RO03
85RO04
86BU01
86EL01
86EL01
86HA02
86ST01
87DA01
84I!"01
84IT01
84JO01
84JO01
84JO01
84JO01
84JO01
84JO01
81CH01
81KI01
82MO01
85CO01
85CO01
85EV03
86RE03
81Kl01
84RE01
78BU01
85KA01
71AU01
77FLOI
80RO01
gOSC01
82HI01
83TH01
84MO01
MTH03
Spin adduct parameters
Table l
(Continued). DMPO Spin-Adduct Parameters
AN/G
Solvent
Adduct
273
AE/G
- -
Other A's/G, [g-value],
Source
.
It
DMPOX
DMPOX
DMPOX
2,2'-dimer
DMSO
W(5)
W(TR3.0)
W(P7.4)
7.0
7.1
7.1
14.2
3.5(2)
4.2(2)
4.2(2)
15.9
2,2'-dimer
DMPO-degradation
W
W(P)
14.18
15.31
15.86
22.0
Unidentified oxidation
W
14.05
13.35
'N(OH)C(CH,)zCH~CHz
C( = 0)OH
Nitroso product
W(7)
14.3
16.2
CH~(~I:
15.50
,
Reference(s)
.
Fe-phthalocyanine + light
chloramine-T or permanganate
lignin model + ligninase
[2.0054] oxyhacmoglobln + hydrazinc
[2.0054]chemical synthesis of dimer
xanthine oxidasc + xanthine, appears late
DMPO + Fe(lil) additional products'
observed '
A, = 4.2, [2.0053] oxidation by
Co-O2=
trioxolane + DMPO
85BEOI
85EV02
86HA01
84TH03
84TH03
79FI01
80SCOI
82HI01
8IPR02
'In Reference84KA01 the valuesof As and AHwere inaevenentlyinterchanged(J. Tmdell and R. Mason, private communication, 1987. Sea also 8TTROI).
"'The hyperfinesplinings for the "OH and "0OH adducts of S-butyl-5-methyl-l-pyrrolineI-oxide,5,5-dipropyl-l.pyrrolineI.oxide and 2-uza-2-cyclopemencspirecyclopentane2-oxideare given in 86TU01. See also 86CA01 for an exampleof the use of the dipropylanalogueof DMPO.
tTert-butoxyl spin .:radductsof alkyl substitutedvariationsof DMPO are also pc:seatedin 82HAOI.
Table 2, PBN Spin Adduct Parameters
Adduct
Solvent
A,IG
A~,/G
H"
H'
H"
H"
e- + H'
H"
e- +- H" (reduction)
Benzene
Benzene
W
W
W(P7.0)
Toluene
W
14.25
14.22
16.8
16.7
16.2
14.99
16.2
7,13
7, II.
10.9(2)
10.6(2)
10.5(2)
7.49
10.5(2)
H"
H"
H"
H"
D"
W
W/EtOH3:I
W(8.5)
W
Toluene
16.4
16.5
15.50
16.57
14.66
10.2(2)
9.2(2)
8.75(2)
10.50(2)
7,44
"CHj
"CH3
'CH~
'CH3
Ethyl
Ethyl
Ethyl
Ethyl
Ethyl
"CH(CH3)2
'CD(CDj)2
n-Butyl
n-Butyl
n-Butyl
n-Butyl
CycloEexyl
"C.tlz(CN)
"CHz(CN)
"{~HzOH
"CH~OH
"CH2OH
"CHzOH
"CHzOH
"CHzOH
"CH2OH
Benzene
Benzene
Benzene
Toluene
Benzene
W(CIO.O)
W(P7.5)
Benzene
Benzene
Toluene
Toluene
• Benzene
AcN
Benzene
CHzCi2
Cyclohexane
Toluene
AcN
MeOH
MeOH and W
MeOH
W/MeOH 2: i
MeOH
.
MeOH
WCTR7.4)
14.20
14.15
14.24
14.91
13.g9-14.00
16.2
16.3
14.3
14.4
14.66
14.66
13.73- 4.15
14.88
14.6
14.6
14.5
14.41
14.43
15.3!
15.36
15,41
15.79
15.3
15.6
~6.00
3,45
3.41
3.45
3.66
3.13-3.20
3.4
3.2
3.3
3.2
2.58
2.58
2.08-3.13
3.05
3.4
3.3
2.2
3.58
2. I0
3.73
3.76
3.73
3.78
3.75
3.7
3.74
"CH~OH
W(P)/MeOH 9:1
16.07
3.86
Other, [g.value], Source
p:nitroperbenzoicacid and amine.
photolysis of n-BujSnH
radiolysis of water
[2.0056] electrolysis of water
NaBH, reduction of PBN
[2.0053] an alkylcobaloxime + light
sodium bomhydride reduction, air oxidalion
Tie + light with NaHCO~
chlorohemin + light
chloramine-T + light
gamma radiolysis of water
AD = 1.25, [2.0070] alkycobaloximes +
light
photolysis of dimethylmcrcury
organolithium and oxygen
CH~HgCI + light
[2.0061] alkylcobaloximes + light
photolysis of organo-Pb, -Sn or -Hg
Cu-calalyzed oxidation of ethyl hydrazine
micmsomes + ethyl hydrazine
Cu-catalyzed oxidation of ethylhydrazine
microsomes + ethylhydrazine
alkylcobaloximes + light
alkylcobaloximes + light
photolysis of organo-Pb, -Sn or -Hg
electrolysis of TBABBu,
tributy!tin chromate + UV
tributyitin chromate + UV
gamma radiolysis of cyclohexane
[2.0~5] Idkylcobaloximes + light
diazonium salt + ultrasound
t-butyi-O-O-/-bulyl + UV
pemxydisulfate + UV
H202 + UV
t-butyi-O-O-t-butyl
gamma-inadiated MeOH
gamma-irndiatod MeOH
[2.00561 liver mictmomas + NADPH +
E~OH
[2.0056] MeOH(10~) + I% HzOz +
IJV light
Reference(s)
69]A01 ?
69JA01 [
76SA01
78KA01
78LO01
78MA01
81LO01
82AU01
83MA02
85EV03
86LA01
78MAOI
69JA01, 6gJA0}
681,4,01
69JA01
78MA01
691A01
81AU01
81AUOI
g IAUOI
81AUOI
7gMAOI
78MAOI
69JA0 I
79BAO.!
81REOI
BIREOI
771W01
78MAOI
84RE07
73LEOI
'. 73LEOI
73LEOI
73LEOI
74MAOI
75ZU01
77SA01
77.¢A01
274
G, R. BUETrNER
'Fable 2 (Continued). PBN Spin Adduct Parameters
~V
Solvent
AN/G
Aj,IG
'CHIOH
'CH~OH or TRIS'
"CH2OH
'CH~OH
'CH2OH
'CH2OH
'CH2OH
"CH2OH
'CH2OH
'CH2CH2OH
.CHjC'HOH
CH3C'HOH
MeOH
W(TR7.4)IMeOH 19: I
MeOH
MeOH
W
Toluene
MeOH
MeOH/Toluene
MeOH
Toluene
EtCH
W(TR7.4)
14.14
16.2
15.3
15.40
16.1
15.0
15,1
2.06
3,60
3.8
3.77
3,75
6.6
3,6
15.25
14.66
15.36
16.10
3,75
3,58
3.62
3,35
CH3C'HOH
CHjC'HOH
CH~C'HOH
CH~C'HOH
CH~C'HOH
INCH radical
PrOH radical
PrOH radical
'CH(OH)C2Hs
(CHj)2C'OH
(CHj)2C'OH
(CHj)2C'CN
(CHj)~C'CN
(CHOzC'CN?
(CH3)~C'CN
(CH3)~C'CN
W(P)/EtCH 2: I
EtCH
W(P'/.4)
W(P7.8)
W/EtCH 3: 2
W(TR7.4)
W/PrOH I: I
PrOH
n-PtOH
2-P~3H
W(PT,8)
THF
Xylene
Benzene
Benzene
Benzene
15.94
15.4
16.2
16.1
15.5
16.10
14.9
14,9
15,3
15.48
16.1
14.6
13.4
13,87
14.05
14.29"
iso-Propyl radical
iso-Propyi radical
"CH(OH)CjH,
CH3C'(OH)C2H5
CHCI3
CHCIj
n-BuOH
sec-BuOH
ten.BuOH radical
W(P)/t-BuOH 1:1
ten.BuOH radical
ten.BuOH radical
t-BuOH
W(TR7.4)
14.9
15.0
15.1
14.9
14.1
14.1
16.03
3.34
3.6
3.34
3.3
3.7
3.23
2.96
2.96
3.6
3.60
3.6
3.07
3.7
2.09'
3.10
3.28
i
2.49
2.49
3.5
3.3
2.31
1.8
3.62
CHjCH2CH2C'HOH
n-Buell radical
n-BuOHIW 5: I
W(TR7.4)
15.46
16.03
3.61
3,44
TRIS radical
Acetone radical
AcetoniUile radical
DMSO "A"
W(TR7.4)
W(TR7.4)
W(TR7.4)
W(TRT.4)
16.00
15.91
16.02
16.46
3.75
3 34
3.88
3.60
DMSO "B"
W(TRT.4)
15.10
3.42
DMSO radical
DMSO radical
DMSO radical
D M N A radical
W(P)/DM50 1 :I
WO'R7.4)/DMSO 19:1
DMSO
W(1"RT.4)
14.8
15.2
13.9
15.56
2.83
3.47
2.31
5.75
D M N A radical
DENA radical
W(P)/DMNA 9:1
WtTR7.4)
15.68
15.56
5.66
4.70
DENA radiutl
Acyl radical :
Acetyl
Acetyl .
Acetyl "
• Ac~l . .
Acetyl
'
• AcclyI?
W(P)/DENA 9: I
2-MP
W(Gt0.0)
W(PT.5)
Benzene
Benzene
CH~CI2
ElM 2:1
15.68
14.0
16.0
16.0
14.4
14.0
14.2
14.4
14.3
14.4
14.4
14.2
4.50
3.0
4.6
3.9
2.3
2.2
3.4
3.12
2.47
2.53
2:0
2.1
Adduct
Ace~slT,~
cHcts
Acetyl'ie" :
"
Cycle6exadieayl
Cyck~odienyl
CHCI~
Benzene
Benzene
varies
•
Other, [g-value], Source
Reference(s)
77SA01
MeOH + H202 + UV light
HaO2 + M e O H + UV lightin TRIS
775A01
Fc(III) + lightin M e O H
79REOI
photolysisof cobaltazidocomplex
79RE02
82AU01
TiC + lightwith MeOH
[2.0058] Dry toluene, BP* + MeOH
82KO02
82KO02
[2.0058] BP*
variation of A,t shown venus [MeOH]
82KO02
84HAOI
decay of tritiated MeOH
78MAOI
[2,{]070] alkylcobaloximes + light
73LEOI
t-hutyI-O-O-t-butyl
[2.0056] liver microsomes + NADPH +
775A01
EtCH
775A0 I
H2Oz + EtCH + UV light
79REOI
Fe(lll) + light in EtCH
821:101
H2Oa + UV with EtOI!
[2,0057] EtCH + Fe(ll)
82TEOI
83MA02
chlorohemin + light
775A01
liver microsomes + NADPH + propanol
H~O2 + propanol + UV light
775A01
775A01
H2Oa + U V light
79REOI
Fe(lll) + light in n-propanol
peroxydisulfate
73LEOI
[2,0056]iso-PrOH + Fe(ll)
82TEOI
[2,0044] a, a'-azobisisobutronitrile
671W01, 701W01
dimethyl a, a'-azobisisobutyrate + heat 671W01, 701WOI
77OH01
azobisisobutyronitrile
azobisisobutyronitrile
82BEOI
E. G. Janzen, personal communication,
1987
85ALOI
hepatocytes + isopropylhydrazine
85ALOI
metal-oxidation of isoprupylhydrazinc
79REOI
Fe(lll) + light in n-BuOH
Fe(ill) + light in sec-BuOH
79REOI
775A01
H202 + tert.butanol + UV light
H20z + UV light
77SAOI
livcr microsomes + NADPH +
77SA01
ten-butanol
73LEOI
pewxydisulfate
liver microsomes + NADPH +
775AOI
n-butanol
microsomes + TRIS
775A01
775A01
liver microsomes + NADPH + acetone
775AOI
liver microsomes + NADPH + acetone
[2.0056] liver microsomes + NADPH +
775AOI
DMSO
[2.0058] liver micrusomes + NADPH +
775A01
DMSO
[2.0056] H2Oz + UV light
775A01
H202 + UV light
775A01
[2.0056] H20: + UV light
775A01
[2.0057] liver mictosomes. + NADPH +
775A01
DMNA
[2.0057] H2Oz + UV light
775A0I
[2.0057] liver microsomes + NADPH +
775A01
DENA
[2.O057] H202 + UV light
77SA01
ozon~tion of 2-MP
83PR02
Cu-catalyzed oxidationof acetylhydrazine"
81AU01
micrmomes + acetylhydrazine
81AU01
Cu-cmlyzed oxidation of acet'ylhydrazine
81AU01
micrmomes + acetyi hydrazine
81AU01
ozone + dimethylacetylene, -30°C
82PR01
hepatocyu:s + isoniazid, 213 K
83TO02
•hel~OCytes + acctylhydnzine
85AL01
metal-oxidationof acelylhydmzine
85AL01
cigarette smoke
85CH03, 84PR01
NO/iselaene/air
85CH03, 84PR01
275
Spin adduct parameters
Table 2 (Continued). PBN Spin Adduct Parameters
Adduct
Solvctlt
AslG
A.IG
Alkyl radical
Alkyl radical
Alkyl radical
SDS alkyl radical
Benzene
Benzene'
CCI,
Miceile
14.4
14.3
14.5
15.7
3.2
3.2
3.3
2.9
amino acid radicals
'CN
"CN
"CN
W(MT.0)
AcN
Benzene
AcN
16.3
15.04
14.96
15.04
5.0
1.98
!.94
!.98
[uC'] "CN
'CN
'CONH~
It)C] 'CONH2
AcN
AcN
W
W
15.02
15.05
15.53
15.53
2,03
i,98
3.20
3.2
'CONHz
AcN/W 6:1
14.85
0.82
C02"
COz*
t3COz~
W
W(KHBT.6)
W(KliBT.6)
~O2 ~
W
15.9
15.8
15.8
15.8
4.6
4.6
4.6
4.6
"CF)
"CCl)
Benzene
WCTRT.5)
13.30
14.1
1.54
I.g
"CCl~
"CCI)
"'CCI)
~C.I,
,CIM 2: I
C/M 2: I
13.4
"CC13
"CCi)
"CC13
u'CCl~
'CC13
*)'CCI)
'CCI~
CCI,
C/M 2: I
CHCI)
CHCI3
CHCIj
CHCI)
30 diffe.eent
"CCI~
*)'CCI)
WCTRT.5)
CCh
')'CCI)
W(PT.4)
13.9
!.5
"CCi)
"CCI)
C/M 2: I
CIM'2: I
C/M 2: I
14.0
14.45
14.45
1.75
1.85
1.85
Toluene
W(7)
13.60
15.54
14.0
14.67
14.66
13.1
14.70
1.86
2.66
i .5
2.37
2.37
1.6
2.37
CIM 2: I
14.67
14.32
15.40
14.70
2.37
2.03
2.72
2.37
CIM 2:1
14.67
2.38
Other, [g-value], Source
Reference(s)
cigarette smoke on solid PBN (on glass)
cigarette smoke on solid PBN (on silica)
cigarette smoke
naphthoquinonephotoreduction-SDS micelles
Ca(IV) + nonsulfhydryl amino acids
tetraethylammoniurnCN, electrochemical
CeHsCHzCN, (CH~hCN-~-O, DBPO
electrochemical oxidation of CN" or
SCN"
A(13-C) -- 9.85,'electrochemical
ICN + UV
AN = 0.5, A, = 0.5; Hg(CNh + UV
"As = 0.5, A(13-C) = 10.49, Hg(CNh
+ UV
.As = 1,70, A(13-C) - 10.01;
pemxydisulfate + CN + UV
TiO + light with formate
perfused liver
A(13-C) = 11.7', perfused liver
A(13-C) = 11.7; Fenton system +
85CH03,84PR01
85CH03, 84PR01
84PR01
85OK01
formate,
u'CCi3
'CCI3
"CCI)
'CCI)
"CHCIz
'CHCI~
'CHCIz or 'C.H2CI
')'CHCI2
'CHCI~
"CHCi2
"CHCI2
'CDCI2
CCI,
CIM 2:1
C/M 2: I
CHzCI~
CIM 2:1
C/M 2:1
Toluene
W(7)
"C~IClz
1.3
not given
14.10
i.74
14.
1.8
14.
1.8
14.
1.75
14.
1.75
14.
1.75
14.
!.75
14.O6-15.73 1.77-3.57
A, = 0.796,4,-9.40
not given
13.5
1.5
"CHBrz
"CH~CICHzC!
"CChCH)
84|A02
85RE03
85REOi
85REOI
85RE03
82AU01
86CO01
86CO01
86CO01
= 2.85
,4~ = 1.54, mfluoromelhyl iodide
[2.0059] CCI~ or BrCCI) + liver
microsomes
photolysis of.Fe(COh
CCI, given in vivo, liver extract
A(13-C) = 9.68, A(35-CI) = 0.23, CCI,
in vivo
e- irradiation, sample around 175K
CCI, + microsomes or hepatocytes
hepatocytes + CCI,
A(13-C) = 9.7, hep.~tocytes + CCI,
in vivo CCI, (rat)
A(13-C) -- 9.7, in vivo CCI, (rat),
photolysis of CCh or CBtCI3
for 'CC!3
microsomes + CCI, or CBtCI~
A(13-C) = 9.4, gamma irradiation of
CC],
A(13-C) = 9.5, Ac~ -- 0.23(3), microsomes + CCL,
hepatocytes + CCI,
per'fused liver and CCU
,4(13-C) = 9.20; perfused liver and
"CCI,
photolysis of CBtCi~
photolysis of CBtCI)
x-ray radiolysis of CCi,
hepatocytes + CHCI)
hepatocytes + CHBrCIz
photolysis of alphv,.phenylbenzoin
A(13-C) = 9.26, "CHCI~ + liver
hepatocytes
chloroform + hepatocytes (anoxic)~
photolysis or" CHBtCI2 or CHCI3
photolysis of CHBtCI2 or CHCI)
deuterated chloroform + hepatocyxes
(anoxic)
bromodichlommethane + hepatocyte's
68JAOI
78PO01
79CA01
79LA01
80PO01
80TO01
801'O01
85CH01, 82ALOI
85CH01, 82AL01
82AL01
82AL01
82JA01
82JA01
82MC01
82$Y01
84MC01
85AL02
~COOI
86CG01
86DA01
86DAOI
87HAOI.
85AL02
85AL02
85BA01
85TO01
851"OOi
86DAOI
86DAOI
8yrool
85TOOI
(~mo#.c)
7
"CH2CI
"CH2CI
'CHBr2
'CBr)
"Car,
pf,
83GR01
80JA02
80JA02
82WA02 •
C/M 2: I
Toluene
CIM 2: I
Toluene
W(7)
C/M 2: I
CIM 2: I"
C / M 2: I
14.77
13.60
14.87
13.52
15.44
14.87
14.05
14.65
2.38
1.84
2.38
1.76
2.64
2.38
3.0!
2.25
~patocym + CHzCI2
Idmtolysis of CHzCI2
helmtocytes + CHBr,
photolysis of CBr_.
photolysis of CBr,
bromoform + hepatocytes (anoxic)
hepzt~ytes + 1,2-dichlorocthme
hepatocytes + I,i,l-trichlometlume
85AL02
~DAOI
85AL02
86DA01
86DA01
8511301
85ALO2
gSAL02
276
G. R, BUEI"rNER
Table 2
AN/G
A,/G
C/M 2:1
C/M 2:1
14.55
14.5
2.95
2.15
Toluene
MeOH
W?
Toluene
W(7)
C/M 2:1
C/M 2: I
13.52
14.4
14.5-15.0
13.72
15.47 .
14.95
14.6
!.92
2.25
2.5-3.0
1.92
• 2.67
1.90
' 2,4-2.5
Adduct
'CHCICHzCI
H~CBrH/or
H~CHC'Br
'CClaCCI3
'CHCICFj
CFjC'HCI
'CHCICFj
'CHCICF~
'CHIt
Halothane-C'
Unidentified radical
(Continued). PBN Spin Adduct Parameters
Solvent
W(P7,4)
Linolenate-C'
Linolenate.C'
W
W
Methyl iinoleate-C'
Lipid dienyl
L'
L"
L'
L'
L'
Lipid radical (C')
Lipid radical (C')
Lipid radical (C')
Membrane-C"
Carbon-centered
Carbon-centered
Phenyl
Phenyl
Phenyl radical
Benzene
W(TR7.5)
W
W
W(PT.4)
W(FT.4)
W(PT.5)
C/M 2: I
C/M 2:1
C/M 2: I
Hexane
Hexanc
Hexane
Benzene
Benzene
Benzene
Phenyl radical
30 different
Phenyl
Phenyl
Phenyl
Phenyl (ENDOR)
Phenyl
Phenyl
4-McthyI-C.~H,"
W(P'7.4)
Hexane
Toluene
Benzene
AcN
Benzene
CH2CI2
4-rert-ButyI-C~'
CHzCIz
"CHF-.~H~
"CH2C~I~
Telndyl
Cumyl
Benzoyl radical
Benzene
Toluene
Benzene
Benzene
30 different
Benzoyl
Benzoyl
Benmyl
Diphcnyl ketyl
4-Nitrophenyl
W(F'/.g)
Benzene
CHzCI~
Benzene
30 different
N j"
W '~
not given
16.2
15.8
Other, [g-value], Source
hepatocytcs+ i,l,2-trichloroethane
A(13-C)= 9.2, 1,2 dibromoethanc +
hcpatocytcs
photolysisof hexaeloroethane
rat liver hepatocytes + halothane
rat liver lipid 'extract after halothane
photolysisof CF~CHCIBr
photolysisof CF~CHCIBr
A(X) = 8.0, iodoform + hepatocytes
in vivo halothane from liver
halothane and microsome.cytochrome
P-450
3.0
2.8
linolenate acid emuision+ Fc(ll)
linolenaticacid emulsion + gamma
radiolysis
15.03
2.83
ML + DBPO
not given
microsomcs~ CCI, (see also 80POOl)
15.83
3.31
[2.005] chloroplasts + oxyfluorfen
15.83
3.31
[2.005] ctqomplasts + diphenyl ethers
14.5
3.2S
microsomcs+ CCI, + NADPH
14.4
3.25
microsomes+ C.Ci, + NADPH
14.8
2.5
endothelialcells + menadione
14.64
3.92
in vivo radiation of brain then extracted
14.75
3.25
in vivo radiation of brain then extracted
14.97
4.01
in vivo radiation of spleen then extracted
14.4
3.3
3-methylindole+ microsomes
14.4
3.2
lung extracts after.3-methylindole
14.4
3.2
microsomes+ 3-methylindole
,,
14.41
2.21
PAT
14.41
2.21
phenylazotfiphenylmcthane
13.71-13.83
2.08-2.14
photolysisof 15 different organo-Pb, .Sn,
or -Hg compounds
14.10-15.96
2.00--4.21 PAT
An = I.!1A~13.69
for the phenyl radical ** (See also
8ZIA03)
16.2
4.3
[2.0054] phenylhydrazine + erylluocytes
14.25
2.10
/i(13-C on phcnyls) = 7.38(2), PAT
14.39
2.17
,4(13-C on phenyls) -- 7.41(2), PAT
+ 14.57
+2.16
A,¢ = 0.09(4), PAT at 290 K
14.70
2.76
diazonium salts + ulmtsound
14.38
.2.25
decay of ~tiatod benzene
14.25
2.19
phenylbenzoin+ 4-Me-CjI,N2BF, +
light
. 14.40
2.50
phenylbenzoin+ 4-terl-butyI-C~H,NzBF,
+ light
13.88-13.91 2.31-2.44
photolysisof organo-Pb, -Sn or -Hg
14.41
2.83
[2.0047]alkylcobaloximes + light
14.30
2.26
tetralin + tert-BuO'
14.25
2.19
cumene + tert-BuO"
14.17--14.83 4.14-4.76
benzaldehyde+ tert-BuO"
A, = O.655Aw-4.79
for the benzoy! radical
16'.0
4.35
[2..0055]PBN + Fe(Iil)
14.0
4.46
alpha-phenylbcnzoin+ light
14.1
4.47
alpha-pbenylbenzoin+ light
14. I
2.13
alpha-idgnylbenzoin + light
14.12-15.O9 1.90--2.97 4-nilrophenylazoeiphenylmethane
An = 1.08A~!3.24 for the 4-nitrophenyl radical
15.01
2.01
A~ = 2.OI, K3[Co(CN)~I~]photolysis,
Reference(s)
85AL02
83TO03
86DA0 I
83TO01
84FU01
86DA01
86DAOI
85AL02, 85TO01
811~)01
82FU01
83AZ01
83AZ01
84YA01
79KA02
84LA01
84LA01
84MC01
84MC01
84RO01
86LA01
86LA0I
86LA01
84KU01
86BR01, 85KU01
86BR01, 85KU01
75JA01
77OH01
69JA01
82JA01
82JAOI
83HI01
84JA03
84IA03
84JA04
84RE07
85HA01
85BA01
85BA01
69JA01
78MA01
77OH01
77OH01
82JAO!
8ZIA01
82TE01
85BA03
85BA03
85BA03
82JA01
82JA01
79REOI
'*l,z = 20 S
N3"
W~"
N3" .
W3"
W~"
W
W
W
W
W
14.9
14.91
15.01
15.05
15.2
2.1
2.25
2.01
2.06
2.1
A,, = 2.1, Fenton system with azide
A,, = 2.25, peroxydisulfate + azide
AN = 2.01, K~[Co(CNhN3] + UV
A~ =- 2.06, e- irradiation
A, = 2.1, methylene blue + light with
azide
80JA02
8OJA02
80|A02
80KEOI
82HA02
Spin adduct parameters
Table 2
' Adduct
Nj'
Solvent
AcN
(Continued), PBN
277
Spin Adducz Parameters
AN/G
A,/G
Other, [g-value], Source
Reference(s)
14.06
1.89
As = 1.89,electrochemicaloxidationof
82WA02
N3-
N~'
N3'
ISNj'
N3'
'NH,
AcN
W(P7.6)
W(AcS.0)
W
. W
14,10
15.25
15.25
14.97
1.90
2.35
2.35
2.10
16.14
3.54
"NHNH2
'NCO
'NCO
'NCO
CHCI~ .
W
W
AcN
16.6
15.91
5.76
15.09
3,1
3.21
3.26
3.15
'NCO
(SCN):
lndole (N')
Indole(N')
Indole (H')
CH~C~I,SO2N'(H)
Above feananged
CH~C~,SO2N'(Na')
AcN
AcN
Hexane
Hexane
Hexane
W(5)
15.10
14.44
13.9
13.9
13.9
15.63
7.1
15.58
3.18
1.09
3.61"
3.6
3,6
3,38
"OH
"OH
'OH
"OH
'OH
'OH
'OH
"OH
'OH
"OH
W
W
W
W(P7.4)
Benzene
W
W
W(PT.4)
W(F7.4)/DMSO 9:1
15.3
2.75
15.6
2.7
15.5
2.75
15.5
2.75
14.12
2.01
15.49
2.74
A, =- 0.604A¢-6.53
20.2
28.9
15.25
2.75
16.0
3.4
"OH
'OH
'OH
W/DMSO 9:1
W
W{6.9)
16,0
15.3
15.3
3.4
not given
not given
"OH
'OH
'OH
"OH
"OH
'OH
"OH
W
W
W
W(6.9)
Ethyl acetate
W •
W(PT.4)
15.6
15.3-15.6
15.6
15.3
15.35
15.3
2.7
2.6-2.7
2.6
not given
2.1
2.7
2.75
"OH
W(TR7.5)
16.2
'OH
"OH
"OH
"OH
"'OH"
W(TR9.1)
W(F7.0)
W(P'7.g)
W
W
15.6
15.5
15.46
15.46
2.7
2.72
2.72
"'OH"
W
15.46
2.72
"OH
W(P7.5)
15.5
2.7
"OH
"OH
"OH
"OH
"OH
"'OH"
['O]"'OH"
'OH
'OH
W(P7.5)
W(P7.4)
W
W
W
W
W
W(PT.0)
Ethyl acetate
15.5
2.7
16.0
3.2
15.49
2.75
15.53
2.72
15.98
3.12
15.5
2.72
15.5
2.72
not given
13.71
2. I
W(5)
W(8.5)
3.25
3.38
3.6
not given
/~s = 1.90,diazonium salt + heat
84RE07
A(14-N)= 2.0, catalase/HzO.,+ azide
85KA01
A(15-N) = 2,8, HRP/H20: + azide
85KA01
A, = 2.10, peroxydisulfate + azide +
85RE04
UV
As = i.23, A, = 0.54(2); pemxydisul85RE05
fate + Nj- + UV
microsomes + hydrazine
.: •
85NO01.
AN .= 1.89, KOCN + pemxydisulfate"
80JA02
As = 1.81, KOCN + UV
80JA02
AN = 1.84, tetraethylammonium OCN,
80JA02
electrochemical
As -- 1.85, diazonium salt + ultrasound
*~ 84RE07
A,~ = 3,70, diazonium sail + UV
84RE07
'As = 2.3, indoles + KO2
83KU01
As = 2.3, micmsomes + 3-methylindole
84KU01
As = 2.3, microsomes + 3.methylindole
85KU01
As = 1.75, chloramine-T in acid
85EV02
As -- 4.2, chloramine-T in acid
85EV02
As = 1.63, chloramine-T + light
85EV03
[2,0057] H2Oj + UV light
radiolysis of water
[2.0061] H:O: + U V light
microsomes + N A D P H
H20, + UV
Fe(III)-ADP-H202
summary of A's given
[2.{~45] electrolysisof water
[2.0061] microsomes + N A D P H
[2.0061] semiquinone of mitomycin +
PBN
[2.0061] Fasten system
°
[2.0057] Fe(ll)-Bleomycin
[2.0057J B L M or Tallysomyein and Cu(1)
or Fe(II)
e- irradiation
Ti(lll) + H202
Fe(ll)sulfate+ H202
[2.0057] Fe(ll)-bleomycin + oxygen
Fenton system
Tie + light
H20~ + UV or decomposition of
PBN-OOH
quinone d~gs + NADPH and
cylochtonq~ P.450
[2.0053] rifamycin SV
Fe(II)-BLM or Fenton system
[2.0057] Fenton system
SO: + AsO:
hexachloroplatinate + light; CI. and
hydrolysis
u'ans-[Co(1,2-diaunino-etane)2Ci2]CI +
UV
addamycin + cytochrome P-450
reductase
enzymatic reduction of quinoids
[2.0063] Elliptinium acetate, H~O2, Fe
Hg(CN)2 + UV light •
H20: + UV
gamma radiolysis of water
persulfate + Ag(1)
A(17-O) = 3.36, persulfate + Ag(l)
Fenton systemor Fe(II)BLM + H~O2
Fenton system
74HA01
76SA01
77LA01
77LA01
78JA02
78JA02
78JA02
78KA01
78LA01
78LO01
78LOO1
78SU01
79SU01
80KEOI
80SCOI
g0sc01
80SU01
81B~1
82AUOI
82FI01
82KO01
82KO05
82RO01
g2TEOI
~,RI~I
84RE02
g4RE08
84SU01
84TEOi
85DUOi
g5REO!
gSRIE03
86LAOI
86MOO3
86MOO3
86R001
87TROI
278
G, R. BUETrNER
Table 2 (Continued), PBN Spin Adduct Parameters
A~/G
AHIG
14.8
14.28
14.9
14.8
14.8
15.0
14.9
-
2.75
2.25
2.8
2.75
3.0
3.2
2.8
4.5
'OOH
[nO] 'OOH
W(P7.5)
W(P7,4)
W(P7,4)
13.40
14.8
14.81
14.81
1.25
2.89
2.7
2.7
'OOH
Ethyl uectate
14.90
4.28
KO~
87TROI
CHjO'
CH~O'
CHjO'
CHjO"
CHjO'
CHjO'
ChjO"
CH~O'
CH~CH~O'
CH3CH20'
n-PrO'
2-PRO'
2-PRO'
n-BuO'
n-BuO'
n-BuO"
n-BuO"
n-BuO"
sec-BuO"
MeOH
MeOH and W
W/MeOH 2:1
W/MeOH 2:1
MeOH
MeOH
MeOH
MeOH
EtOH and W
EtOH
n-PrOH
2-PrOH
2-PrOH
n-BuOH/W 5: !
AcN
n-BuOH
Benznne
CH~CI2
Benzene
14.37
14.50
14.90
14.93
14.5
14.3
14.2
14.5
14.49
14.4
14.3
14.60
14.4
14.40
13.80
14.3
13.6
13.6
13.94
2.86
2.94
3.35
3.32
2.80
2.95
2.7
2.8
2.68
2.6
2.5
2.20
2.2
2.42
2.27
2.5
2.0
2.2
1.91
73LEOI
73LEO I
73LE01
73LE0 !
74MAOI
75ZUOI
79REOI
84HA0 I
73LE01
79REOl.
79REOI
73LEOI
79RE01
73LE01
79BAOI
79REOI
81REOI
81RE01
77ME01
sec-BuO'
iao-BuO"
tert-BuO"
tert-BuO"
sec-BuOH
iso-BuOH
Benzene
Toluene
14.4
14.4
14.21
13.62
2.2
2.3
1.83
1.72
paraquat + UV
peroxydisulfate
paraquat + UV
peroxydisulfate
gamma-irradiated MeOH
gamma-irradiated MeOH
Ce(IV) + light
decay of tritiated MeOH
paraquat + UV
Ce(IV) + light
Ce(IV) + light
paraquat + UV
Ce(IV) + light
"
paraquat + UV
electrolysis of TBABBu, with oxygen
Ce(IV) + light
tributyltin chromate
tributyltin chromate
[2.0062] lead tetraacetate + peroxide,
RT
Ce(IV) + light
Ce(IV) + light
te•-BuO" ["O]
Toluene
13.62
1.72
tert-BuO"
tcrt-BuO"
tert-BuOH
14.0
14.29
14. I I
14.48
14.34
+ 14.48
13.g9
13.g3
14.Ig
14.g-15.3
14.8
14.6
14.4
13.7
13.8
13.5
13.88
1.4
1.84
1.83
1.86
1.84
+ 1.73
2,21
2,27
2.28
2,0
1.8-2.0
3.7
3.4
1.8
2.0
2.0
2.17
Adduct
'0OH
'OOll
'OOH
'OOH
'OOH
'OOH
"OOH
"QOH
Solvent
W
Benzene
W
W(TR7.4)
AcN
W
W(6.9)
Ethyl acetate
I
'0OH
'0OH
CH~CIz
Benzene
Benzene
Benzene
Benzene
Benzene
Benzene
AcN
Benzene
AcN
ML
W
tert-BuO"
tert-BuO"
tert-BuO"
ten-BuO" (ENDOR)
n-Pentyloxyl
n-Pcnlyloxyl
Tetralyloxyl
MLO"
MLO'
Cumene-O"
Cumene-O"
LO"
LO'
LO"
~
W
Freon.II
W(PT.4)
W(PT.4)
LO"
W(I~.4)
LO"
LO"
LO" ' =: :
? ....... "
L', LO" andl~
Benzene
Foich
W(P7.4)7
W(]~/:4)
Fmon-I I
Otimr, [g-value], Source
[2.0057]HzOz + UV light
nutoxidationof cyclohexa-l,4-dienc
[2,0057]Fe(ll)-bleomycin
microsomes + mitomycin C
oxidizingM L + FeEl3
Cumene hydroperoxide+ Fe(ll)sulfate
[2,0057]Fe(ll)-bleomycin+ oxygen
KOz or N A D P H + cytochromeP-450
reductase
trioxolane, - 60°C
enzymatic reduction of quinoids
microsomes/paraquut/NADPH
A(17-O) = 2.7, microsomcs/paraquat/
NADPHI"O2
tert-BuOOC(O)C(O)OO-tert-BU
[2.0064] di-tert-butylketone + UV,
•273 K
A(17-O) -- 5.05, di-tert-butylketone +
UV, 298 K
Co(IV) + light
di-tert-butylperoxide
tert-BuOOC(O)C(O)OO-tert-Bu
tert-BuOOH + Co(ll)
tert-BuOCH2Ph + tert-BuO" + MNP
A~4 = - 0.70(4), di-tert-butylperoxylatc
14.22
13.8
13.8
16. I
13.7
2. I0
2.2
2.2
3.0
!.8
[2.0062] lead tetracelate .+ peroxide, RT
KOz + I-bromopentane
tetralylOOH -,- Co01)
oxidized ML + FeCIj
oxidizing ML + Fe(ll)sulfate
cumene hydmperoxide + FeCI3
cun~ne hydmperoxide + Fe(ll)sulfate
ozone + methyl linoleale, RT
microsomes + CCI~ + NADPH
micmsomes + CCI. + NADPH
microsomes + CCI~ + NADPH under
oxygen
methyl linoleate hydmperoxide + Co01)
liver extract with AMOL in vivo
liver homogenate + ~ H
microsomes + MLOOH
ozone + methyl linoleate, -40°C
13.5
1.8
ozonation of TME, 240 K
Reference(s)
74HA01
77OH01
78SU01
80KA01
80SC01
80SC01
80SU01
81BOOt
81PR02
84KU01
86MO03
86MO03
79REOI
79RE01
77OH01
78HO01
78HO01
79REOI
82HAOI
83N10I
83NI01
83NIOI
84JA04
77MEOI
79gAOl
83N101
805C01
80SC01
80SC01
80SCOI
81PR03
84MC01
84MC01
84MC01
84YA01
85Mi02
85M!01
85MI01
81PRO!
83PR02
O O " ""
Alkoxyl radical
TME
Spin adduct parameters
279
Table 2 (Co,tinued). PBN Spin Adduct Parameters
Adduct
RO"
Alkoxyl radical
Alkoxyl radical
Alkoxyl radical
Alkoxyl radical
Alkoxyi radical
Alkoxyl radical
Alkoxyl radical
Vinyl nitroxidc7
Cigarettesmoke
Solvent
Benzene
Benzene
Benzene
Benzene
Benzene
Benzene
CCI~
Benzene
Benzene
t-BB
Acctoxyl
CH2CI2
Acetoxyl
Benzene
Acetoxyl
Benzene
Benzoyloxyl
Benzene
Benzoyloxyl
Benzene
Benzoyloxyl
Benzene
Benzoyloxyl
Benzene
(ENDOR)
Acy[oxyl or peroxy[ T M E
PBN---O'
W
.4 s/G
A./G
i3.76
13.6
13.8
13.7
13.8
13.7
13,8
13.63
10.25.
13.4
1.99
1.9
1.9
2.0
2. I
2.0
1,8
2.0
13.4
12.84
12.84-13. I0
12.76
12.6-12.85
13.07
13.22
71BLOI
85CH03, 84PROl
85CH03, 84PROl
85CH03, 84PROl
85CH03, 84PROI
85CH03° 84PROI
85CH03, 84PROI
85HA02
85HA02.
g3PROl
1.4
1.73
1.73-2.05
1.40
1.20-1.48
1.44
1.41
1.4
2.0
1.6-1.9
2.0
ozonation of TME
Ti(lil) + H~O2
PBN + FeCIj
Peroxidized methyl linoleate + FeCI3
83PR02
80SCOI
80SCOI
80SCO I
[2.0062] lead tetr.~acetatc + peroxide,
193 K
[2.0062] lead tetraacetate + peroxide at
193 K
autoxidation of tert-BuOOH
tert-BuOOH + tert-BuO"
[2.0064] di-tert-butylketone + UV,
213K
[2.0064] di-tert-butylketon¢ + UV, 253273 K
A(17-O) = 2.9. di-tert-butylketonc +
UV 213 K
tert-BuOOH + tert-BuO"
tert-BuOOH + Co(ll)
autoxidation of cumylhydroperoxide
cumyl hydroperoxide + tert-BuO"
autoxidation
tetralyl hydroperoxide + ten-BuO'
tetralyl hydroperoxide + Co(ll)
letr.dyl hydroperoxid¢ + tert.BuO"
tetralyl hydropcroxide + lead tetraacetate
tetralin + ten-Bee" + O2
autoxidation
77MEOI
1.8
PBN---O"
W
PBN---O"
AcN
sec-BuO0"
CH2C12
13.50
1.40
tert-BuO0"
CH~CI2
13.39
1.19
tert-BuO0"
terl.BuO0"
tert.BuO0"
Benzene
Benzene
Toluene
13.40
13.34
12.65
1.57
1.25
0.95
tert.BuO0"
Toluene
13.42
0.95
tert.BuO0" ["O]
Toluene
12.85
0.95
tert-BuO0"
tert-BuO0"
Cumyldioxyl
Cumyldioxyl
Tetralyldioxyl
Tetralyldioxyl
Tetralyldioxyi
Tetralyldioxyl
Tetralyldioxyl
Tetralyldioxyl
a-Methylbenzyldioxyl
a-Methylbcnzyldioxyl
MLOO"
MLOO"
Benzene
Benzene
Benzene
Benzene
Benzene
Benzene
Benzene
Ben~ne
Benzene
Benzene
Benzene
13.35
13.53
13.55
13.54
13.66
13.68
13.79
13.86
13.81
13.57
1.38
1.39 :
1.82
1.71
1.84
1.84
1.98
1.94
1.83
1.88
1.78
Benzene
13.54
1.82
ML
Benzene
14.4
13.44
2.2
1.63
n-CsH.O0"
CH~Ci~
13.44
1.39
CJ4sC(CH3)2OO"
CH2CI~
13.46
1.47
CmHj~OO"
CH2C12
13.50
1.61
n-C,,H.OO"
CCIjOO"
CCijOO"
Oxy-Centered
"OPO~'-
Benzene
CCI,
CCI,
Hexane
W
W
W
AcN
AcN/W 6: I
13.86
13.5
13
13.7
15.46
15.87
16.08
13.90
13.90
2.18
1.6
1.63
2.0
1.84
3.13
3.17
1.23
i.23
"PO~2-
'HI)O.,"OSO)"OSO:
:
Reference(s)
cigarette, cigar or pipe smoke
cigarette smoke
cigarette smoke using solid PBN, glass
cigarette smoke using solid PBN, silica
NO/isoprene/air
NO2/isoprene/air
cigarene smoke
mainstream cigarette smoke
mainstream cigarette smoke
sidestream cigarette smoke: an oxy
radical
ozone + dimelhylacetylene, -70eC
lead tetraacetate + light
photolysis of organometallics
benzoyl peroxide
organometallic or peroxides
benzoyl peroxide
AH = 0.11(4), benzoyl peroxide
i3,l
15.8
15.9
15.7
13.96
Other, [g-value],Source
photolysis of azobis-a-phenylethane
under 02
oxidizing ML + FcCI3
methyl linoleate hydroperoxide +
tert-BuO"
[2.0062] lead tetraacetate + peroxide,
193 K
[10062] lead tetraacetate + peroxide,
193 K
[2.0062] lead tetriacetate + peroxide,
RT
[2.0062] lead telraacetate + peroxide RT
gamma-inradiation
e- irradiation of CC14, about 175 K
derived from phosphate buffer
A(31-P) = 21.66,,4. = 0.2(2)
A(31-P) = 16.03, A, = 1.84, 0.27(2)
pemxydisulfatephotolysis
82PR01
68$A01
69JA0 l
68JA01
69JAOl
82BE0 I
84JA04
77MEOI
770H01
77OH01
78HO01
78HO01
78HO01
83NI01
83NI01
77OH01
77OH01
77OH01
77OH01
83NI01
83NIUI
83NI01
83N!01
77OH0 !
77OH01
80SC01
g4YA01
77MEet
77MEOI
77ME01
77MEOI
85CH01, 82SY01
80TO01
84KU01
85RE05
85REO5
85RE05
gSRE05
85RE03
280
G.R. Bue'rrmeR
Table 2
Adduce
Solvent
'
(Continued). PBN
Spin Adduce Parameters
As/Ca
A.IG
Other, [g-value], Source
Reference(s)
SO:
AsO," oxy.centered
W
W
14.95
15.46
1.97
2.72
A, = 0.34(2)
A(As, 1 = 312) = 0.96, S~O,'" +
Na2HAsO, and light
85RE05
84RE01
Cysteinyl
p.CIC~H,S'
p-CHaOCdi,S'
CH2CsH,S'O2
F'
CI'
W(M7.0)
Benzene
Benzene
W(8.5)
Benzene
AcN
15.7
13.8
13.9
14.75
12.2
12.27
3.4
1.8
1.8
2.25
1,18
0.82
83GR01
841T01
841T01
85EV03
85RE05
80JA02
CI'
Benzene
12.12
0.75
CI'
CCh
12.22
0.8
CI'
CI'
CCI,
AcN
12.2
12.70
0.7
0.82
CI'
AcN
12.70
0.89
CI'
CI'
AcN
Toluene
12.70
12.32
0.82
0.70
CI'
CCI,
12.25
0.75
Br'
Benzene
11.3
Unidentified
Unidentified
Unidentified
Unidentified
Unidentified
Unidentified
PBN"
PBN"
PBN'
PBNOx
PBNOx
ten-butyl aminoxyl
W
W
W
W
AcN
W
W
W
W
CHaCI2
CCh
W
16.1
15.9
15.9
16.5
14.5-15.0
17.1
16.2
16.1
16.0-16.3
8.0
7.95
14.58
t,,2 : 5 rain, Co(IV) + cysleiue
t,,2 = 0.38s, photolysis of the disulfide
fl,a = 0.15s, photolysis of the disulfide
chloramine-T+ light
.4(19-1:)= 45.6
A(CI-35,37) = 6.20, 5.12; electrochemical
A(CI-35,37) = 6.05, 4.88; electrochemical
A(Cl-35,37) = 6.08, 5.0; electrochemical
A(35--CI)= 6.1, radiolysis of CCI,
A(CI-35,37) = 6.20, 5.12; electrochemical
A(CI-35,37) = 6.20, 5.12,
hexachloroplatinate
A(CI-35,37) =: 6.20, 5.12
A(CI-35,37) = 6.16, 5.17, photolysis of
CCI,, CBK:Ij, C2CIs
A(CI-35,37) = 6.25, 5.2; CCI, x-my
radiolysis
A(Br-79,81) = 32.4, 34.9; bromine +
light,t,2 < 2s
Fe(ll)sulfate+ H202
Fe(ll)sulfate,
ascorbate, EDTA, H~z
cumene hydroperoxide + Ti(lll)-citrate
PBN + Fe(ll)sulfate
oxidizedML + Fe(ll)sulfate
cumene hydtoperoxide + Fe(ll)sulfate
cumene hydroperoxide + Ti(lll)-citrate
cumcne hydroperoxide + FeCI3
cumene hydroperoxide + Fe(ll)sulfate
ozone + dimethylacctylene, -30°C
CCI4 x-ray radiolysis
degradationof PBN by SO,, + AsO:
2.7
3.7
3.7
3.6
2.7-2.9
14.0
3.5
3.7
3.7
13.90
80JA02
80JA02
85CH01, 82SY01
82WA02
84RE02
85RE05
86DAOI
87HA01
84REIO
80SC01
80SC01
80SCOI
80SC01
80SC01
80SCOI
80SCOI
80SC01
80SCOI
82PROI
87HAOI
84RE01
*This adductis thoughtto be an oxygen-centeredradical (E. G. Janzen,personalcommunication, 19117).
**ReferenceI~2JA03alsoshows the v~ttion inAN and A, foreightdifferentsolventsas wellas A(15-N) and A(13-C). In additionthe temperaturedependence
of the h.vperfinespliningsare investigated.
tThe valuesof An and A, were inadvertentlyint-rthmged in 83KU01(E. G. lanzen, penonalcommunication.1987).
Table 3*. MNP Spin Adduct Parameters (Also referred to as t-NB and NtB)?
Adduct
.
.
.
W
W
W(TRT.5)
W(4.0)
W(>4.5)
+ H " (reduction)
e- + H i (Rduaion)
e- + W -
W(HEPi~7.4)
W(PT.8)
W(P'I.6)
DzO
D,O
lk,nzem
wt'rR9.O)
e-+D"
e" +:D; .
"C]~]
:
.
H'(e" + H')
e-+H*
e-+H"
H"
H' (mtuction + H')
H"
e:
~ . .."
: C t l ~ . :i.:..'
..''..
•
As/G
Solvent
W
A./G
Other, [g-value], Source
Reference(s)
t'
14.4
14.34
14.4
14.55
14.55
14.7
14.4
13.85
14.4
13.95
14.0
14.2
14.4
14.4
14.6
14.34
14.4
14.4
14.4
14.0
15.25
16.2
! 1,3(3)
13,3(3)
ndiolysis of water
pmflavin + 440 nm light
Nagl~ reduction or microsomes
sulfanilamide + UV
[2.0~39] methionine + "OH
potphyrin photosensitization
(occasionally)
reduction of MNP by mitochondria
reductioQ of MNP by RSVM + AA
reducdon by HRP/styrene/H20/GSH
•4,, = 2.1, pmflavin + 440 nm light
.4o --- 2.2, NtBI.I~reduction
di~yl peroxide
cumeae hydroperoxide + metmyoglobin
76SA01
78LI01
79KA01
80EH03
830AOI
84M001
86KEOI
86SC02
86ST01
781.I01
79gAOl
70PEOI
78GROI
281
Spin adduct parameters
Table 3* (Continued), MNP Spin Aclduct Parameters (Also referred to as t-NB and NtB)I"
Adduct
Solvent
AN/G
'CHj
'CHj
W(ll.5)
W
17.3
17.20
'CH~,
W(P?.8)
1"7.0
'CHs
'CH3
W(BI0)
W(7, i)
17.8
17.2
'CH~
'CH3
'CH2CH3
'CH(CHjh
W
W(HEPEST,4)
Benzene
W(P7.4)
n.Bu"
CH2CI2
n-Bu'
Benzene
'C(CH3)s (i,e, tert-butylb..-seealso DTBN
W( I 1.5)
tert-But) l
Benzene
tert-Butyl
CH)CI2
ten.Butyl
Benzene
CH~(CHD,'
Benzene
N-succinimidyl-CH,'
MeOH/Vv"
"CH~OH
MeOH
"CH2OH
W(PT.4)
"CH2OH
W/MeOH 1:1
'¢H,OH
17. I
17.3
15.25
16.6
15.2
15.1
! 7.2
15.0
15.84
15,0
14,6
15,2
14.2
15.3
15,0
'CH~CH2OH
W(P?.g)
EtOH
W(F7.4)
EtOH/W
W(Ac4.6)
W(9.1)
15.4
14.5
15.5
15,2
16, I
16,6
CH3CH2C'HOH
"CHO
'C(O)CH3
n-PrOH
CH2C12
MeOH
14. I
7.0
7.8
'CH2OH
CHjC'HOH
CH3C'HOH
CH3C'HOH
CH3C'HOH
A,/G
Reference(s)
14.2(3) gamma radiolysisof M N P
80MA05.79MA02
14.20(3) CPZ or t!10., + DMSO and UV light
82Li03
14.25(3) [2.0055]adfiamycinsemiquinone
84KA01
+ t-BuOOH
14.5(3)
pro~arazinc+ HRP
845102
14,5(3)
[2.0055]photodecomposition of
85AN01
bleomycin
14,2(3)
220 nm UV on acetic acid
85CA01
14.3(3) tert.BuOOHand mitochondria
86KE01
10.4(2) diaeylperoxide
70PE01
2.0
iproniazid+ PGS
83SI01
9.9(2)
tributyl tin chromate + UV
81RE01
10,0(2)
tributyl tin chromate + UV
81REOI
gamma radiolysis of MN P
80MA05,79MA02
MNP + tert.BuO"
80Ni01
trioxolane + PBN, - 30°C
81PR02
9,9(2)
A. = 0.6(2), diacyl peroxide
70PE01
11,2(2)
As = 1,4, diacyl peroxide
?OPE01
5.45(2) proflavin+ 440 nm light
78L101
4.8(2) di-tert-butylperoxyoxalate
70PE01
6.4(2) Fentonsystem with MeOH
79LA03
10,5(2)
[2.0055] photodecomposition of
g5AN01
;
bleomycin
6.25(2)
15-HPETE + RSVM + MeOH
86SC01
2.3
di-tert.butylperoxyoxalate
"70PE01
1.8
Fenton system with EtOH
79LA03
2.06
proflavin + 440 nm light
78LI01
2,12
indole-3-acetic acid + HRP + EtOH
86MO04
13,1(2)
A. = 0.5(2), 2-chloroEtOH +
84MO01
porphyrin + light
1.8
di,tert-butylpezoxyoxalate
70PE01
1.4
dichromate+ UV
g2RE01
phenyl acetateor acetonilide+ UV
82RO05
phenyl acetate + UV
82RO05
phenyl acetate + UV
82RO05
phenyl acetate + OV
82RO05
8,5(2)
dye 4- light and molJochloroacetic acid
gSCA01
A(CI-35,37) = 3.3, 2.?, dichromate
' 82RE01
+ UV
70PE01
Ao = 2.2(3), di-tert-butylperoxy-
'C(O)CH3
AcN
7.9
'C(O)CH~
'C(O)CH~
'CH2CI
'CHCI2
Benzene
Dioxane
W
CHCIj
7.8
16.2
12.2
'CCI~
CHCI~
12.5
"CCI3
CCI,
13.1
"CCIj
"COO
Toluene
CCi,
12.56
6.75
'COCl
'CHr-COO"CH2-'-COO-
CHCi3
W(9.1)
W
6.7
16.0
16.0
8.6(2)
"CH2CH~--COO-
W
16.8
12.2(2)
Acyl radical
Acyl radical
"CH2CH~OH
CH~CI2
2-MP
W
7.85
73
16.6
13.1(2)
"CH:---COO"CH~CH~CH:--COO-
W
W
16.0
16.7
8.5(2)
12.1(2)
"CH2CH2CH2COO-
W
16.7
10.3(2)
"CH2(CH2)f"COO"CH~C(OH)(COOH)CH2COO"CH(OH)(CH(OH))COO"
W
W
W
16.8
16.1
15.0
i 1.7(2)
11.7(2)
!.9
"CH(OH)CH2COO"
W
15.6
8.0
Other, [g-value], Source
oxalate
,t
8.5(2)
1.8
A(35-CI) = 2.25(3), photolysis of
85CH01,82SY01
CCh
A(~sCI) = 2.40, photolysis of CBrCI3
g6DAOi
A(13-C) = 5.7, A(35-CI) = 0.6;
85CH01,82SY01
CCI4 + UV
dichromate + UV
82REOI
Giy + porphyrin + light
84MO01
dye photosensitization with malonic
85CA01
acid
Aa = 0.65(2), dye, light and succinic
85CA01
acid
trioxolane + PBN, - 60°C
g I PRO2'
ozonation of 2-MP
g3PR02
A, = 0.5(2), 2-chlorecthanol +
MMO01
po~hyrin + light
Gly + poq~Eyrin + light
MMO01
A, = 0.65(2), dye light and glutaric
85CAOi
acid
AH = 0.60(2), dye + light and seba85CA01
tic acid
dye photosensitization with adipic acid
85CA01
dye photosensitization with citric acid
85CA01
AH = 0.60, dye + light tad taNtric
85CA01
acid
dye + light and nudic acid
85CA01
O.R. BUETTNER
282
Table 3* (Continued). MNP Spin Adduct Parameters (Also referred to as t-NB and NtB)t
,
-
=
~
,
Adduct
,
.
.
Solvent
.
.
.
.
.
" An/G
AH/G
'CH2CH(OH)CO0"
W
16.3
!1.7(2)
'CH2(CH2hCOOH
CHCI3
15.1
9.9(2)
Other, [g-value], Source
Reference(s)
A, = 0.75, dye + light and malic
acid
AH = 0.5(2), decomposition of
85CA01
79GA01
(HO2C(CH2hCO0h
CH3SCH2CH2C'H(NH, •)
W(2.5-4.5)
14.55
CHjSCH,CH~C'lt(NH2)
W(>4.5)
16.0
'CH~CH(NH~+)--CO0"
W(P5.0)
16.3
1.45
2.90, A, = 0.35(2), methionine
+' 'OH
1.4
AN = 1.4, A, = 0.65(2), methionine
+ 'OH
16.7,10.9 A, = 0.45; cysteinesulfinicacid +
AN =
83DAOI
83DAOi
84HA02
HRP/H20~
'CH2CH(NH3')CO0'CH2CIt(NH~)COO-
W(FT.5)
W
15.9
16.3
16.1
13.70(2)
'CH2C(CH3hN(OH)N-----O
W(I 1.5)
W(4.5)
16.2
16.2
I0.1(2)
11.4(2)
w(t 1.5)
16.6
W(Ac4.6)
I 7.I
17.l
I I.I (2)
10.9(2)
"CH,C(CH~hN(OH)N--O
'CH2C(CH3hN--O or
"CH2C(CHjhN(O)----N(O)--t-Bu
Indole-3-C'H2
Indole-3-C'D~
W(Ac4.6)
CJI,C'(OH)(CH3h
W(TAR3.0)
W(TAR3.0)
a-Phenylethyl
Styrene ('C-7)
Styrene ('C-7)
W(P7.6)
W(P7.6)
12.3
12.45
14.25
15.0
16.63
15.80
15.23
15.00
15.4
15.6
14.8
16.
16.
Cumyl
Benzoyl
Benzoyl
Benzoyi
Benzoyl
Benzene
MeOH
AcN
Benzene
Dioxane
15.5
8. I
8. I
8.0
8.0
C~HsC(CHjhC'H2
Benzene
'CH2C.J4,NO2
"CH2CJ'I,NO,
W(TRT.4)
W(TR7.4)
Phenyl
Phenyl
C.d'IsCHf
Benzyl
Benzyl
Benzyl
Benzyl
Benzyl
a-Hydoxybenzyl§
Benzene
Benzene
Toluene
Benzene
W
MeOH
AcN
Benzene
Benzene
10.56
8.50
8.53
7.50
2.6
2.1
3.8
3.7
8.65(2)
'CH2C~LSO~N(CI)Na
W(8.5,1 I)
RC.~,C'H,
P', pmmazyl
P', promazyl
W(3.5-6.5)
W(4.0)
CJ'IsN(CHj)C'H,
Benzene
14.4
C,H,CO~CH2C'H(C4Hs)
Styrene
Benzene
14.8
Benzene
14.4
W(4.0)
W(4.0)
13.81
13.65
1.95(2)
i.95(2)
W(4.0)
12.73
2.11(2),
1.01(2)
W(IO--12)
W(~.O)
W(F7.0)
W(PT.0)
16.30
15.70
15.2
15. I
15.2
w(pT.o)
ts.o
W(P7.0)
15.75
16.70
15.15
14.3
CH3(CH~CHf
C~H~I(C2Hs)C'HCI~,
"C-,H,SOzNHz
'C,H,COOH
Uracilyl at C5
Uracilyl at C5
Uracilyl at C5
Uracilyl at C6
Uracilyl at C6
1,3-Dimethyl ur~il C6
c ~ , ~ e . , cs
. l"nymiac at c5
Thymine at Ni or N3
Uddiayl at NI
w(~.o)
W(F7.0)
W(P7.0)
W(PT.0) •
"
14.5
86P102
82L!03
80MA05,79MA02
80MAO5,79MA02
80MAO5,79MA02
gemma.radiolysis of MNP
86MO04
indole-3-acetic acid + HRP + H~O2
86MO04
AD = 0.6(2), indole-3-acetic acid +
tIRP + H202
78ZUOI
1.97(3) A, = 0.87(2); benzoyl peroxide
82BE01
1.80(3) A, = 0.87(2); benzoyl peroxide
70PEOi
7.25(2) di-tert-butylperoxyoxalate
toluene + tert-BuO"
80NIOI
7.5(2)
15.0
17.I
16.5
16.75
15.5
14. I
14. I
W(BI0)
A. = 10.5, cysleinyl dopa + UV
DL-alpha-alanine + CPZ and UV
light
gamme-radiolysisof MNP
gamma-radiolysisof MNP
14.4(2)
10.6(2)
10.38(2)
6.0(2)
1.99(2)
1.99
7.6(2)
3.1
I0.0
4.8
2.4
2.3
0.8
1.5
2.15
2.8
1,3-diphenyl-3-propane + UV
1,3-diphenyl-3.propane + UV
1,3-diphenyl.3.propane + UV
1,3-diphenyl-3-propane + UV,
A(13-C) = 4.5, DMHB + ligninase
A(13-C) = 4.5, DMHB + ligninase
ethylbenzene + tert-BuO"
styrene/HRP/GSH/H202
AD = 0.6, deuterated styrenclHRP/
GSH/H202
cumene + tert-BuO"
phenylbenzoate + UV
phenylbenzoate + UV
phenylbenzoate + UV
phenylbenzoate + UV
tcrt-butylbenzene+ tert-BuO"
o-nitrobenzyl + microsomal protein
p-nitrobenzyl + microsomal protein
chloramine-T + light
procarbazine + HRP
AN -- 0.92(I); CPZ + 330 nm l i g h t
A, = 1.95, 0.95; CPZ + UV light
,
As = 3.1, benzoyl peroxide + dimethyl aniline
benzoyl peroxide + d.imethyi aniline.
lauroyiperoxide + dimethyl aniline
A, = 4.8. benzoyl peroxide and
• N,N-diethylaniline
At, = 0.96(2), sulfanilamide + UV
A. = 0.97(2), 4-amino~nzoic acid +
UV
A.v = 0.48, 4-nitrobenzenesulfolutmide
+ UV
gamma irradiation of 5-bromouracil
air-flee, adriamycin + light
adriamycin + light
AN = 3.5, addamycin + light
A,, = 3.4, adriamycin + light
As = 2.15, adriamycin + light
adriamycin + light
adnamycin + light
A, = 3.40, adriamycin + Ill,hi
As = 3.0, radiolysis of u:idine-5'-
m~phosphate
85RO05
85RO05
85RO05
85RO05
S5HA03
85HA03
80NIOI
86ST01
86ST01
80NIOI
82RO05
82RO05
82RO05
82RO05
80NIOI
86MO01
86MO01
85EV03
84SI02
85CH02
85MOO!
75SA01
75SA01
75SA01
75SA01
80CH03
80CH01
80CH03
82HEO!
85CA02
85CA02
85CA02
85CA02
85CA02
gSCA02
85CA02
85CA02 "
76KO01
283
Spin adduct parameters
Table 3*
(Continued). MNP Spin Adducl Parameters (Also referred 1o as t-NB and NtB)?
Adduct
Solvent
A,/G
A,/G
4.8
Uridinyi-5'-monophosphate ('C6)
W(P7.0)
14.9
NH--C(~O)~NH--C(~O)~C'H
N~C(--O')~N~C(OH)~C'H
Gly-G}y" (~COOH)t
Gly-Gly' (--COOH)t
Ala-Gly" (~COOH):I;
Aia-Giy" (~COOH):I:
W(9.5)
W(ll.9)
D~O
W
W(PT.0)
W/DMSO 4:1
15.3
15.2
16.15
16.2
16.05
16.0
Gly-Gly-Gly' (~COOH):]:
Gly.Glu" (--COOH):[:
Gly-Asp" (~COOH)t
Ala-Asp' (~COOH):~
Gly-lle" (--COOH)$
Gly-Ala" (~COOH):[:
Gly-Ala" (~COOH):[:
Gly-Ala' (~COOH):~
Ala-Ala" (~COOH)q:
W
D20
D20
W
D,O
D20
W
W(P.7.0)
W/DMSO 4: I
1(3.2
15.7
15.6
15.6
15.8
16.0
16.0
15.95
15.9
Asp-Ala' (~COOH):[:
Asp-Ala" (--COOH)~:
W(P.7.0)
WIDMSO 4: I
15.95
15.9
Glu-Ala" (~COOH):[:
Asp-Ala' (--COOH):[:
Gly-Gly-Ala' (---COOH):[:
Gly-Val" (~COOH):]:
Gly-Vai" (~COOH):[:
Gly-Vai" (~COOH)$
W
W
W(P'/.O)
W
W(P7.0)
WIDMSO 4:1
16.0
16.0
.16.00
15.8
15,75
15,6
Gly-Gly-Val'(--COOH)t
Ala-His'(--COOH)t
Ala-His'(--COOH)t
Gly-Tyr" (--COOH):[:
Gly-T)~r' (.--COOH):I:
Ala-Ser" (~COOH):I:
Ala-Ser" (--COOH):[:
Ala-Thr" (~COOH)t
Gly-Gly-Arg" (--COOH):~
Phe-Asp-Ala-Ser-Val' (--COOH):I:
Lipid radical or CCI~OO"
Allylic L"
Methyl linoleate-C"
Lipid radicals
Li,mleic-C" (9 or 13)
Linoleic-C'
Linolenic-C"
Oleate radical
W(F7.0)
W
W(P7.0)
W
W(P7.0)
W
W(P7.0)
W
W(P7.0)
W(P7.0)
W(TR7.4)
Freon-I I
Freon- I 1
W(C9.0)
W/EtOH I:1
w(cg.0)
W(C9.0)
THF
15.75
15.6
15.60
15.7
15.70
15.6
15.60
15.6
15.70
15.'75
15.0
15.2
15.2
15.
15.9
15.3
! 5.'7
14.77
Linoleate radical
I'HF
14.75
Linolenate radical
THF
14.75
Oleate (C')**
THF
14.77
Linoleate (C')**
THF
14.75
Linolenate (C')**
THF
14.75
Linoleate (C" at 13)**
THF
+ 14.75
Linoleate (C" at 12)**
THF
+ 14.75
15-HPETE ('C-! 1)
15-HPETE ('C-13)
AA ('C-I I)
W(PT.g)
W(FT.8)
W(TR7.5)
'
15.0
13.5
15.7
Other, [g-value], Source
A, = 1.6, radiolysis of uridine.5'monophosphate
3.0
hydantin + gamma radiation
3.0,0.9 hydantin + gamma radiation
9.9(2) As = 2.7,210-230 nm U V
9.9(2)
A, = 2.70, dye photosensitization
9.90
AN = 2.70, addamycin + light
9.8(2)
As = 2.75, photoiysis of aminoquinone drags
9.19(2) As = 2.70, dye photosensitization
1.7
.4. = 2.4, 210-230 nm UV
1.8
As = 2.6, 210-230 nm UV
1.70
As = 2.80, dye photosensitization
1.0
A. = 2.8,210-230 nm UV
2,18
A~ = 2.18, 210--230 nm UV
2.16
A. = 2.18, dye photosensitization
2.15 " As = 2.15, adriamycin + light
2.2
AN -- 2.2, photolysis of aminoquinone
drags
2.15
As = 2.15, adriamycin + light
2.2
As = 2.2, photolysis of aminoquinone
drugs
2.20
As = 2.20, dye photosensitization
2.20
As = 2.20, dye photosensitization
2.20
A, - 2.20. addamycin + light
1.00
As = 2.45, dye photosensitization
1.10
As = 2.80, adriamycin + light
1.2
A. --- 2.9, photolysis of aminoquinone
drags
I.I0
AN = 2.80, adriamycin + light
1.26
As = 2.?0, dye photosensitization
1.26
A, -- 2.70, adnamycin + light
1.25
AN = 2.70,dye photosensitization
1.25
As = 2.70, adfiamycin + light
1.58
AN = 2.75, dye photosensitization
1.58
As = 2.'75, adriamycin + light
1.26
As --- 2.80, dye photosensitization
1.70
As = 2.'75, adriamycin + light
A, --- 2.80, adriamycin + light
CCI, and microsomes
1.8
ozone + methyl linoleate, -40°C
1.8
[2.0066] ozone + methyl linoleate
microsomes + CCI,
1.5
gamma irradiated linoleic acid
2.1
linoleic acid + lipoxygenase
2.0
linolenic acid + lipoxygenase
1.72
A. -- 0,50, 0.38, autoxidizing lipids
29O K
1.75
/ill = 0,52, 0.39, autoxidizing lipids
29O K
1.75
.4. = 0.56, 0,35, autoxidizing lipids
29O K
1.60
A, = 0.53, 0.39, 0.1; oleate autoxidation, 220 K
A, = 0.584, 0.548, 0.36, 0.24, 0.09;
1.53
autoxidation, 220 K
1.49
A~, - 1.25, 0.587, 0.374, 0.08; autoxidadon, 220 K
+ 1.53
A(HI2, HI4, HII. HIO, Ht-Bu) =
(Hi3)
-0.58, -0.55, +O.36, -0.24,
-0,09 Rspectively, 220 K
A(HI3, HII, HI4, HI0, Ht-Bu) =
1.38
-0.57, -0.54, +0.36, +0.24,
(U12)
-0.09, respectively, 220 K
15-HPEYE + RSVM or hematin
2.25
15-HPE'rE + RSVM or hematin
2.35
RSV microsomes + AA
2.5
Reference(s)
76KO01
83MA03
83MA03
80LI01
85CA01
85CA02
85CA03
85CA01
801.101
80LI0I
85CA01
80LI01
80LI01
85CA01
85CA02
85CA03
85CA02
85CA03
gSCAOI
85CA01
85CA02
85CA01
85CA02
85CA03
85CA02
85CA01
85CA02
85CA01
85CA02
85CA01
85CA02
85CA01
85CA02
85CA02
781N01
81PROI
81PR03
82AL01
81TA01
g2AL01
$2AL01
84EV01
84EV01
84EV01
84EV01
84EVOI
84EV01
g5EV01
85EV01
865C01
865C01
80MAO!
284
G.R. BUEYrNEn
Table 3* (Continued), MNP Spin Adduct Parameters (Also referred to as t-NB and NtB)i"
'
r "
Adduct
-
"A,/G
Solvent
AA (chemicAl)
Att/G
"
"
'
Other, [g-value], Source
Reference(s)
15.5
2.0
nonradicaladdition of AA to MNP
80MAO[
AA--C"
AA ('C-II or 'C-15)
AA deutcruted"
AA unidentified C'
2-Azidoprop-2-yl
W(TRg.0)/EtOH
I:1
W(C9.0)
W(P7.8)
W(P7.8)
W(FT.8)
B::nzene
14.4
15.6
15.6
15.9
15.2
2.75
2.3
82AL01
86SC02
86SA02
86SC02
83CO01
a-Azidobenzyl
Benzene
14.3
i.85
"OH then + e'OH (7 see 79KA01)
n-BuO"
W
W(PT.4)
Benzene
Benzene
Toluene
Benzene
2-MP
Toluene
28.0
14.4
28.4
26.6
27.2
26.8
29.2
28.7 "
urachidonicacid + lipoxygenase
RSVM + AA
RSVM + AA
RSVM + AA
A, = 1.70, [2.00591 isopropylazide + TBHN
AN -- 2.35, [2.0061] benzyl azide +
TBHN
radiolysis of water
Fenton system
tributyltin chromate
Toluene
28.7
CI3COO'
Cysteinyl
CCl,
W(PT.6)
27.0
18.4
GS"
W(PT.6)
18.3
GS"
SOj ~"
SO3:
SO~•
'SO2NH2
'SO2NHz
CH~C+H,SOz"
H2NCeH,SO/
"SO2CH2CH(NHj)---COO-
W(P7.6)
W(PT.5)
W(8.5)
W
W(4.0)
W(8.5)
.W(8.5)
W(4.0)
W(P7.5)
Benzene
tert-BuO"
tert-BuO"
ten-BuO"
Alkoxyl radical
tert-Butylperoxy["O]
or isopropylperoxy["OJ
4.4
14.4
1.3
(rerr-BuO--(~Oh
_
tert.ButylOOC(O)C(O)-rert-Butyl
terI.ButylOOC(O)C(O).tert-Butyl
i. 1(2)
18.5
14.8
14.87
14.76
13.9
14.01
13.12
13.3
12.7
p-XCdI,S"
17.0318.18
[X = Br, C.I, H, ten-butyl, CH3, OCH3, NH2 in the order of increasing A.]
"AsO2
W
I'~. I
DTBN [see also (CH~hC']
DTBN
DTBN
'
Benzene
Benzene
15.2
15.2
•
DTBN
Toluene
15.7
DTBN
DTBN
DTBN
DTBN
DTBN
W
W
W/EtOH 1:1
Benzene
W/MeOH I: I
:7.0
DTBN
DTBN
W(8.5)
W(PT.g)
.
16.7
15.4.
16.3
17.16
17.1
,
not given
ozonation of 2-MP
A(17-O) = 4.6. from 2-propyl-t-butyl
trioxide
A(17-O) = 4.6, from 2-propyl+
butyl triozide
gamma irradiation
[2.0065] cysteine + hematoporphyrin
+ light
[2.0065] GSH + hematophorphyrin +
light
styrene + PHS + GSH + H20~
cysteine sulfinic acid + HRP/IJ202
chloramine-T and light or dithionite
PBN + peroxydisulfate + UV
12.0055] benzylsulfonamide + UV
chloramine-T + light
chloramine-T + light
[2.0056] sulfAcetamide + UV
cysteine sulfinic acid + HRP/H202
photolysis of corresponding disulfide
83CO01
76SA01
79LA03
81REOI
70PE0 i
77OH01
80NI01
83PR02
77HO01
77HO01
82SY01
83FEOl
83FE01
86ST01
84HA02
85EV03
84RE04
80CH03
85EV03
85EV03
80CH03
84HA02
831T01
A(As, I = 3/2) = 7.72, SO,'- +
AsOz"
84RE01
from MNP
tevt-butyl radical from decomposition
of MNP
[2.0063], di-rert-butyl ketone + UV,
183 K
MNP, proflavine + 440 nm light
UV and 8amma-radiolysis
commercial
12.0061], isopropylazide + TBHN
[2.0055] photcdecomposition of
bleomycia
[2.00.~5] chlOramine-T + light
RSVM + AA
70PEOI
75SA01
77HOO1
78L101
tglMA01
81TAOI
83CO01
85ANOI
85EV03
g6SC02
*There are many spin trapping studies on the free radicals generated by gamma-i:radiation and UV photolysis of nucleic acids and their
constituents, amin.o acids and pcptides. These detailed studies demonstrate and identi~ the many radicals generated in these systems. Thus, the
original pa~.rs must be consoled. Oply a small sampling of these radical adducts of MNP ate included here. The original work in this a~a can
be found in nfferences:76/O01, 76KOO1, 77RUOI, 77RU02, 7gJO01, 78/002, 7gRUOI, 7gRUO2, 78RU03, 78RU04, 78RU05, 78RU06, 7gRU07,
:
•
79MA01, 79MA02, 79MA03, 79RI01, 80LI01,80MA03, 80MA04, 80MA05, 80MA06, 80MI01, 80MI02, 80MOO1,81KU01, 81KU02, 81KU03,
gill01; 81RO03, 81ROO4,.81MOOI, 81MOO2, 81SUOI, 82ETOI, 821.102, 82L103, 82MAO3,'82MA04, g2MO02, g2MOO3, 82MO04, 82Ri01,
87.RO04, 82SPOI, 83LI01, g3MA03, g3MAO,!.;841C.g)1,84MA02, 84MO05, 84MO06, 85CAOI, 85MA02, 86KUOi.
tRefexence 81MAOI ptevides a good deal of information on the chemislxy of MNP which might interfere in spin trapping experiments. See
also 80MA07.
'
.
~(-.~'~'OOH)~.ptt'sents.decmb0xylation of the amino acid.
.... : * * . ~ eutnes iep~sent hyperfme coupling constants derived from the use of ENDOR to study the spin adducts of AUtOxidizingfA~ acids.
~Here Hio in,lies the coupling from the proton(s) on emt~on I0 of the faw/acids, etc.
§Note that this is the same as the "OH adduct of PBN.
Spin adduet parameters
Table 4. POBN
Adduct
H'
H'
H"
H'
D'
'Ct{~
"CH3
"CI.i~
"CH2
"CH3
"CHj
'CH3
'CH3
'CH~
"CH2OH
"CH2CH3
"CH2CH~
"CHzCH~OH
CH3C'HOH
CH3C'HOH
CHjC'HOH
CH3C'HOH
['C]CH3C'HOH
CHjC'HOH
CH3C'HOH
{'CICHjC'HOH
CHjC'HOH
(CHj)~C'OH
(CH3)2C'OH
(CH3),C'OH
2-Phenylethyl
2-Phenylethyl
Phenyiethyl
2-BuOH (C')
2-BuOH (C')
CO2~
CO2~
CO2~
CO~~
COl~
COt;
"CCI3
L"
Linoleate-C"
Lipodienyl-type
Lipodienyl-type
CHjCJ44SO2N'(H)
Unidentified
Nf
Nf
A~/G
Solvent
W
W
W
W(6.7)
DaO
W(7)
W(P7.4)
W(PT.4)
W(P7.4)
Benzene
Benzene
W/DMSO 19:1
W(P7.8)
W and Cells
C/M 2:1
W(P7.4)
Benzene
W(7)
W(P7.4]
W(PT.4)
W
C/M 2: I
C/M 2: I
C/M 2:1
C/M 2:1
C/M 2:1
W(P7.8)
W(PlI.O)
C/M 2:1
C/M 2:1
W(P7.4)
Benzene
W(P8.0)
C/M 2:1
C/M 2:1
W
W(B9.0)
W
W(6.7)
W(PII.0)
W/DMSO 19:1
W
W(P7.4)
W(B9.0)
C/M 2:1
C/M 2:1
W(5)
W
W
AcN
285
Spin Adduct Parameters
A./G
Other, [g-value], Source
16.6
10.25(2)
16.2
10.2(2)
16.2
10.2(2)
16.2
10.2(2)
16.2
10.2
15.83
2.16
16.12
2.77
16.0
2.7
16.00
2.72
14.76
2.53
14.73
2.55
15.2
2.4
16.33
2.61
15.9
2.65
14.78
3.56
15.78
2.73
14.43
2.50
15.75
2.75
15.56
2.59
15.60
2.65
15.5
2.6
14.97
3.48
not given
14.97
3.48
14.97
3.5.0
14.97
3.47 .
15.50
2.50
15.6
2.6
14.98
2.67
15.13
2.92
15.73
2.75
14.41
2.68
not given
15.10
2.56
15.18
2.64
15.6
3.4
15.8
3.4
15.5
3.0
15.6
3.4
15.5
3.0
15.5
3.0
14.8
1.5
15.7
2.5
15.8
2.56
14.84
2.87
14.80
2.90
15.00
2.25
15.6
2.6
14.8
2.0
13.87
1.43
Tie + light with MeOl!
ultrasoundin water
ultrasoundin water
gamma.irradiationof water, kinetics given
Ao = 1.5, ultrasound in D~O
[2.0059] cobaltoxime photolysis
HRP/H202+ 1,2-dimethylhydrazine
microsomes+ 1,2-dimethylhydrazine
mierosomes+ 1,2-dimclhylhydrezine, extract
HRP/H202+ 1,2-dimethyihydrazine
microsomes-i- 1,2-dimethylhydnzine
diaziquone+ DMSO + light
primaquine+ NADH + DMSO
radiolyticgeneration with DMSO
Fenton system with MeOH
DDEP + microsomes (P.450) or Cu(lI}
DDEP + C'u(ll)
[2.0044] cobaltoxime complex photolysis
HaO2 + UV with EtOH
decompositionof 4.POBN.OOH with EtOH
ultrasoundin water
liver microsomes + EtOH
but shown, liver microsomes + labeled EtOH
liver microsomes + EtOH
Fenton system + EtOH
A(13-C)= not given spectral shown; mierosomes
paraquat+ NADH + EtOH
Fe(III)-TI'PS + UV with 2-PrOH
mierosomes+ 2-PrOH
Fenton reaction + 2-PrOH
12.O06] pl~enelzinc + microsomes or Cu(ll)
phenelzine+ Cu(ll)
phenylethylhydrazine
and oxyhemoglobin
microsomes+ 2-BuOH
Fenton reaction + 2-BuOH
Tie + light with formate
formate + M. formicicum
ultrasoundin water
of water, kinetics given
gamma-irradiation
Fe(III)-TPPS+ light with formate
diaziquone+ formate + light
CCI, + UV, then extracted to water
mictosomes+ 1,2-dimethylhydrazine
lipoxygeltase+ linoleate
hepatocytes+ FeSO4
hepatocytes+ ADP-FeCI3
As = 2.25, chlolamine-T in acid
I% H20~ + UV light
AN = 2.0. methylene blue + light with azide
A~, = 2.09, electrochemical
Reference(s)
82AU01
85RI01, 82MA01
85RI01, 83MAOi
84CA01
85RI01, 83MA01
82MA06
85AU01
85AU01
85AU01
85AUOI
85AU01
85MO02
86AU01
86SA01
86AL02
82AU02
82AU02
82MA06
82Fi01
82FI01
85R!01, 83MAOI
86AL01
86AL01
86AL02
86AL02
86AL02
86AU01
84FA01
86AL02
86AL02
83OR01
83OR01
84AUOI
86AL02
86AL02
82AUOI
83BAOI
85R101, 83MAOI
84CA01
84FAOI
85MO02
82ROOI
85AUOI
86CO02
86POOI
86POOI
85EV02
78JAOI
82HA02
82WA02
"OH
W(2-10)
14.97
1.68
A, = 0.34, I% H2Oz + U V light,mean for A's
78JAOI
'OH
"OH
"OH
"OH
"OH
"OH
"OH
e~
W(2-6)
W
W(P7.8)
W
W(P7.4)
Benzene
Benzene
W
W(2.3)
W(2.3)
W(P7.8)
W(P7.4)
W(P7.4)
W(P7.4)
W(PT.4)
14.97
14.96
14.93
14.95
14.93
14.5
14.4
14.95
15.1
15.1
14.16
14.16
14.16
14.18
14.18
1.68
1.68
1.69
1.68
1.69
1.8
1.8
1.67
1.66
!.66
1.75
i.80
1.80
i.72
1.72
AN = 0.36, 0.05M Na2S2Oi
FeCIj + ADP + H:O:
H202 + UV light
AH = 0.33, Tie + light
H202 + UV
troposphere'OH, on filter then extracted
"OH trapping in an atmospheric model
Aj, = 0.33, H20~ + UV light
AN = 0.3, ixrsulfate + AgNOj
,4(17-O)= 3.9, persulfate + AgNO~
xanthine+ xanthin¢ oxidase
micfosomes/paraquat/NADPH
A(17-O) = 3.60, micresomes/par~luat/NADPH
micmsomes/ [',araquat/ NADPH
A(17-O) = 3.6, mi~meslpamquat/NADPH/
78JA01
78JA01 •
79F!01
82AUOI
821:!01
82WAO!
82WA01
85TAO!
86MOO3
86MOO3
79FI01
86CO02
86COO2
86M003
86MOO3
'OH
['70]'0['[
'OOH
'OOH
['70]'OOH
"OOH
[~O]'OOH
'
'70~
286
G.R. BUErr~ER
Table 4 (Continued). POBN Spin Adduct Parameters
-
-
Adduct
LO0' (7 see
86CO02)
LOO' (? see
86CO02)
LOO' (? see
.
,
.
t
.
.
.
.
.
.
ANIG
A./G
W(B9.0)
15.8
2.6
lipoxygenase
+ linoleicacid
81RO02, 81RO01
W(B9.0)
.15.8
2.6
microsomes+ NADPH
81R002, 8lRO01
W(PT.4)
15.8
2.6
microsomes + NADPH • CCI,
82RO02
W(P7.4)
15.8
2.6
liver homogennte + MLOOH
85M!01
W(P7.4)
15.8
2.6
N-hydroxynorcocaine+ micmsomes
82RO03
W(P7.4)
15.8
2.6
Microsomes+ nitrozepam
84RO04
W(P7.4)
15.8
2.6
microsomes+ MLOOH
85M!01
C/M 2: I
16. I
2.7
liver extract with AOML in vivo
85MI02
EtOH/W 5:1
Benzene
15.13
15.23
2.32
2.28
Solvent
Other, [g-value], Source
Reference(s)
8ecoo2)
LOG' (7 see
86CO02)
LOO' (? see
86CO02)
LOO' (7 see
86CO02)
LOO' (? see
86CO02)
LOG" (7 see
86CO02)
GS'
(IS"
. a-chromanoxylradical + GSH
tenobutoxylradical + GSH
82N[OI
82N101
Table 5. M,PO--3,3,5,5-tetramethylpynoline-N-ox!de (sometimes referred to as TMPO)
Adduct
Solvent
AN/G
AHIG
Other, [g-value], Source
H'
H"
"CH3
"CH~OH
MeOH
Benzene
W
MeOH
15.56
14.61
16.60
15.12
19.8(2)
18.29(2)
27.00
21.99
Phcnyl
Phenyl
Phenyl
Benzene
w(Ir/.4)
W(PT.4)
14.41
16.2
16.2
CsHsC'(=:O)
DBPO
14.18
(CH~)2NC' (=:O)
CO:
DBPO
13.59
23.86
27.2
27,2
14.18
13.59
di-tert-butyiperoxalate
di.tert-butylperoxalate
W
W
W(P6)
W(P6)
W(P6)
W(2)
Benzene
W(P6)
W
Benzene
Toluene
15.71
14.88
15.30
15.28
15.29
15.29
13.38
45.67
Benzene
di-tert-bulylperoxalate with formate
,% = 2.98, azide with pemxydisulfate
30% H202 + UV
I% H20~ + UV
pcroxydisulfate
pemxydisulfate
KOj
I% HjO2 + UV
[2.006O]
di-ten -butyiperoxalate
photolysis of tert-buO]lhydroperoxide
di-tert-butyiperoxide
n-Bu3SnH
,.
n-Bu3SnH
HzC)2 + UV
Ph2CO + light
phenylazotriphenylmethane
phenylhydrazine + erythrocytes
[2.0(~.5] phenylhydrazine + erythrocytes
13.39
19.85
14.88
16.88
16.73
16.81
16.82
7.95
20.01
20.0
5.81
5.42
5.88
ten-BuG"
Di.tert-butylpemxide 13.16
4.90
di-tert-butylperoxide
Cumene Mkoxyl
Oleic Mkoxyl"
Linoleic alkoxyl
Toluene
Toluene
Toluene
13.12
13.12
13.28
4.56
4.32
4.32
IAnolenic Mkoxyl
Arachidonic alkoxyl
C~C(=:O)O"
SO,':
SO,CH,S"
Toluene
Toluene
lknzene
W(I~)
W(2)
W(~4)
13.28
13.28
12.53
14.1)4
13.99
4.32
4.56
7.97
8.34
8.33
CH~C'H2S"..
w(r.4)
15.47
15.6O
17.60
HOCH~'TH~S'
HOOCCH,S" "
NH2~'H~"H,S"
Homueystine-S"
W(7.4)
W(7.4)
W(7.4)
W(7.4)
15.47
17.87
15.30
15.6O
15.47
15.~
15.47
17.80
19.20
I 8.13
18.oo
photolysis of dicumyiperoxide "
UV photolysisof pemxidizedoleic acid
UV photolysisof pemxidized linoleic acid
UV ph0tolysisof pemxidizedlinolenicacid
UV photolysisof pcmxidizedarachidonicacid
(PhC(==O)O)~
pemxydisulfate
peroxydisulfate
UV photolysisof disulfide
UV. phololysisof disulfide
UV + H2Ojwith 2-mercalsectlumol
UV + H202with 2-mercaiXeetlumoicacid
UV + H202with 2.mercaptocthylamine
UV phowlysisof homecystine
UV photolysisof 3,Y-dithiopropionicacid
UV pho/olysisof 4,4'-dithiobetyricacid
UV photolysisof cystine
UV photolysisof glutathione disulphide
UV + H202with 2-mmr.at~opmpimyl-glycine
Nj"
"OH
'OH
'OH
'OH
02"
"OOH (tentative)
"OOH
ten-BuO"
ten-BuG"
ten-BuG'
xooc(c'H~),s"
w(7:4)
HOOE(CH2)jS"
W(7.4)
Cy~m..yl
.,.
GS" ..;:-~...,. " "
•. 2-M~oayl
15.7
13.31
13.28
W(7.4)
17.o7
tg.oo
weak
W(7.4)
15.00 18.13
W(7.4)
15.33
18.13
Reference(s)
81JA01
81JA01
81JA01
81JA01
8IJA01
82HI02
83H!01
81JA01
81JA01
81JA01
81JA01
81JA01
81JA01
81JA01
81JA01
81JA01
81JAOI
85TH02
81JA0I
86DA02
82HA01
82HA01
86DA02
86DA02
86DA02
86DA02
86DA02
81JA01
81JA01
81JA01
87DAOI
87DA01
87DA01
87DA01
87DA01
87DAO!
87DA01
87DA01
87DA01
87DA01
87DAOI
Spin adduct parameters
287
Table 6. Nilrosodurene or ND (2,3,5,6-tetramethylnitrosobenzene)
As/G
As/G
13.70
12.17(3)
14.4
14.4
14.4
13.7
13.91
14.4
13.68
14.4
13.6
13.6
13.49
13.7
12,4
12.3
14.3
13.72
14.3
13.7
13.37
14.7
14.3
13.4
13.7
13.49
13.60
10. ! I
10,12
6,8
8.4
I I. 13
13.1(3)
13.2(3)
13.3(3)
12.9(3)
7.71(2)
8.2(2)
10.97(2).
11.2(2)
10.1(2,).
10.0(2)"
9.67(2)"
6.7
6.3
6.2(2)
11.3(2)
6.92
9.1
7.0
tert.Bu"
"C~,H~qO~*
'C,,H~O~*
"CHO
"COO
"CHCI,
GAIMeOH 1: I
GA/i-I~3H 1:1
GA
Benzene
MeOH
GA/MeOH ! : I
Benzene
Proprionic acid
Benzene
Benzene
AcN
GA/EtOH I : I
GA
GA
Pmprionic acid
Benzene
iso-Proprionic acid
Benzene
Benzene
GA/n-i~3H I : !
GA/iso-P~H I : I
Benzene
CH~CI~
Benzene
Benzene
AcN
Benzene
CH~CI~
CH~CI~
CH~CI~
"CHCI~
"CCI)
CHCI~
Benzene
I1.1
10.73
Adduct
'CH~
'CH)
'CHj
"CH)
'CH)
'CH2OH
'CH2OH
'CH2CH~
"CH2CH3
'CH2CH~
'CHjCH3
'CH2CN
CHjC'HOH
'CH2COOH
'CH2COOH
n-Propyl
iso.Propyl
ise-Propyl
iso-Propyl
iso.Propyl
C2H,C'HOH
CH3C'(OH)CH~
n-Bu'
n-Bu"
n-Bu"
Solvent
Benzene
"CCIj
CCI,/CH~CI: 9: I
Benzyl
Benzene
Benzyi
Toluene
tBenzyi, substituted-from pesticide photolysis.
Phenylethyl
Benzene
Cumyl
Benzene
Benzoyl
Benzene
Phenyl
Benzene
Phenyl
Benzene
Phenyl
Benzene
Phenyl
AcN
2.7
10.4
' 10.9
10.65(2)
2.90
2.88
1.6
!. 14
I.I
10.7
13.61
7.93
13.4
7.48
See also 82M!02.
13.59
10.87(2)
13.59
7.24
10, I I
I0. I
2.76(3)
10. I
235(3)
10.47
2.86(3)
Phenyl
Benzene
10.08
2.79(3)
Phenyl
Phenyl
p-HOC,HI
Benzene
Benzene
Benzene
10.10
10. I
11.80
2.75(3)
2.8(3)
N)"
N~"
MeOH
MeOH/CH~CI~
t'N3"
I~"
N~"
"NCO
iso-BuO'
W
CH2CI2
CH~CI2
CH~i2
GA/iso-BuOH 1 : I
ten-BuO"
rm-BuO"
CH3S"
n-propyl-S"
PhenyI-S"
GA/ten-BuOH [: I
Benzene
Benzene
Benzene
Benzene
7.34(2)
7.3(2)
7.7(2)
7.21(2)
7.21(2)
7.23(2)
26.7
25.18
27.8
16.4R
16.82
16.O1
Other, [g-value], Source
A(para.H) = 0.34, methyliodide + tri.nbutyltin
Cr(IV) complex + UV
Cr(IV) complex + UV
UOa(NO~)a+ UV
sonolysis of (CH3hSnSn(CH3)~
di.tert.bu*.ylperoxide + MeOH + UV
Ct(IV) complex + UV
ethylbromide + tri.n-butyltin
UC)~(NO~)2+ UV,
sonolysis of Sn(CHaCeH~)~CI + ethyliodide
sonolysis of Sn(methyl), with ethyliodide
diazonium salt + ultrasound
Cr(IV) complex + UV
Cr(IV) complex + UV
UO~NO~)a+ UV
UO~(NO0~+ UV
2.bromopropane + tri-n.butyltin
UO~(NO3)~ + UV
sonolysis of Sn(Bu)~(Phenyl)~ + 2-iodopropane
pesticide photolysis
Cr(IV) complex + UV
C!XIV)complex + UV
.4(13-C) --- 7.0, tributyltin chromate
~(13.C) --- 7.0, tributyltin chromate
.4, --- 0.75(2), sonolysis of Bu)SnSnBu~
~erl-butylbromide + tri.n-butyltin
diazonium salt + ultrasound
.4, = 0.99, diazonium salt + ultrasound
dichromate + UV
dichromate + UV
A(CI) = 3.01 (2), CH2Ci~ + di.tert.butyl
peroxide + UV
A(CI) = 3.0, dichromate + UV
A(CI) = 1,31(3), di=tert.BuO0 + CHCI~ +
UV
.4(CI) -- 1,3, dichromate + UV
di-tert-bu;,yl peroxide + toluene + UV
8amma-mdiolysis
I.phenyl-2-bmmoethane + tri-n-butyltin
[2.0064] 2-phenyipropane + tert-BuO"
benzaldehyde + di-tert-butyl peroxide + UV
[2.0057] benzoyl peroxide + UV
A, = O.95(2), gamma-irradiation
A, = O.95(2), 8mnma-irradiation
At, = O.98(2), di~onium compounds +
ultrasound
A, = 0.95(2), diazonium compounds +
ultrasound
AN(recta) : 0.95(2), decay of u.itiated Benzene
sonelysis of (phenyl)jSnSn(phenyl)~
,4,, --- 3.25, 2.75, 0.83(3) [2.0050] Ni-peroxide
+ PhOH
A. = 2.29, photolysis of cobalt azido complex
A. = 2.3 [2.0059] metal complex + UV and
azide
A(15-N) = 3.3, H~O2 + azide + UV
,4N = 2.38, tetrabutyhunmonium azide + UV
AN = 2.38, teUabmylammonium azide + UV
As =. 2.40, tetmamonium cyanide + UV
Cr(IV) complex + UV
di.tert.butyl peroxide + UV
CrOV) complex + UV
[2.0068] phololysis of disulfide
[10068] photolysis of disulfide
[2.00S7] photolysis of disulfide
* 2,S-Diethoxy-4-(N.mol~lW)phenyL
1'Thehypefme spli~inlp for nine ~,baituted ben~! ulducu of niumoctum~, ,s well as ~ samem4ical _,,~_,~sof N-be~lidene-tm.t~tykmim
fmMm~d in 85M104.
'*'!1~ hypafme splininID for 34 different wj! and srylcyclehexadienyldu~l ui~os~dettee Feuumt~lin 7f~U01.
Reference(s)
73TE01
79RE04
79RE04
82RE03
84RE05
73TE01
79RE04
73TE0182RE03
84RE05
84RE05
84RE07
79REO4
79REO4
82RE03
82REO3
73TEOI
82RE03
84RE05
85M102
79REO4
79REO4
81REOI
81REOI
84RE05
73TEOI
84RE07
84RE07
82REOI
82RE01
73TEOI
82RE01
73TF~!
82RE01
73TE01
78ZO~1
73TE01
73TE01
73TE01
73TEOI
78ZUOI
78ZU02
84RE07
~;ItE07
85HAOI
85REO5
73TEOI
79R.e.O2
79REO5
82KROI
~REO4
84RE06
84RE06
79P.£O4
73TEOI
79REOt
73TEOI
73TEO!
73TE01
N-ol,.idg, In:
G. R. BUETTNEI~
288
Table 7. Other Spin Trap Spin Adduct Parameters
Adduct
Solvent
.4.PyBN--4-pyvidyI.N.ten.butyl nitrone
H"
W
Phenyl
30 dif~ren!
N~'
'OH
W
W
AslG
""
AH/G
16.0
I0.0
14.06-15.73
1.77-3.57
A, = 1.06As--13.08
14.68
1.95
15.0
1.9
Other, [g-value], Source
ultrasoundin water
PAT
for the phenyl radical
As ~ 1.95, e- irradiation
e" irradiation
Reference(s)
82MA01
B2JA01
82JA01
80KE01
80RE01
4.MePyBn--4.(N-methylpyridinium) ten.butyl nitrone •
H"
W(P3.0)
15.51
H'
W
16.0
D'
D~O
16.0
'CH~OH
W(6)
15.23
Phenyl
W
15.20
'OH
W(P6.0)
14.70
'OH
W(6)
14.81
'OH
W
14.7
"'OH"
W
14.70
"OD
D20(P6.0)
14.76
'OOH
W(PT.0)
13.78
"0OH
W
13.80
'SO, •
W(P6.0)
13.96
CI"
AcN
12.27
6.24(2)
I0.0(2)
I0.0
2.59
2.88
1.45
1.45
1.5
1.45
1.43
1.65
1.58
1.21
0.82
petoxydisuifate
ultrasound in water
Ap ~ 1.5, ultrasound in water
H2Oz + UV with MeOH
electrochemical
A. = 0.38, HzO2 + UV
H202 + UV
AH - 0.4, ultrasoundin water
Blue dye No. I + light, not 'OH
H~O2 + UV
[2.0091] pheomelanin + light or XOD
adriamycin or daunomycin + light
peroxydisulfate
A(CI-35,37) = 6.20, 5.12; electrochemical
DMNS--perdeuterio 2,4-dimethyl.3-nitrosobenzenesulfonate
SDS alkyl radical
Micelle
14.7
9.1
pholoreductiouof naphthoquinone
85OK01
DOPBN.--c~.(4-dodecylozyphenyl)-N.tert.butylnitrone
Phenyl
W/SDS
15.05
Phenyl
W/SDS
15.02
Phenyl
W/AN I:1
15.05
Phenyl
W/AN I : I
15.06
Phenyl
W/AN I:1
15.08
Phenyl
Vesicles
14.73
Phenyl
Vesicles
14.77
Phenyl
Vesicles
14.76
Phenyl
Vesicles
14.77
Phenyl
CHCI~
14.70
Phenyl
W/SDS
15.29
3.19
3.22
3.21
3.23
3.19
2.81
2.70
2.75
2.75
2.73
3.56
phenylazotriphenyimethane in micelles ,
phenyldiazonium tetrafluoroborate in micelles
phenylazotriphenylmethane
phenyldiazonium tetrafluoroborme
phenyllithium
DODAC/DOPBN vesicles + PAT
DODAC/DOPBN vesicles + PDT
lecithin/DOPBN vesicles + PAT
lecithin/DOPBN + PDT
phenyllithium
phenylazo-4-pyridyldiphenylmethane
81WAOI
81WAOI
81WAOI
81WAOI
81WAOI
82WA02
82WA02
82WA02
82WA02
82WA02
84JA02
5.90.
2.97
5.2
5.28
5.28
phen,ylazo-4-pyridyldiphenylmethane
A,'= 2.17, electrochemical
octacyanomolybdate(V) + UV
sodium persulfate
sodium per'sulfate with SDS micelles
84JA02
82WA02
82RE02
84JA02
84JA02
NaBl~ or microsemes + NADPH
lipoxygenase + linoleic acid
81RO01
81RO01
in vivo CCL in rat liver, extracted
A(*3C) = 9.02, in vivo rat liver, extracted
hexachloroplatinate(lV) + light,
CI hydrolysis
in vivo hyd:olysis of (MO)3PBN
84MC01
MMC01
MREOI
79JA01
85RI01, 83MA01
85RI01, 83MA01
80MA01
82WA02
79JA01
80MA02
85R101, 83MA01
85CA01
79JA01
80SA01
83CA01
79JA01
82WA02
2-SSPBN--Sodium 2-sulfanatophenyl tert-butylnitrone
Phenyl
N3"
"OH
"'OH"
"'OH"
W
AcN
W
W
VI/SDS
15.98
14.36
15.7
15.qI
15.71
MNPOL---2- Methyl- 2-nitrom- I.propanol
H"
lipid radical
W(B9.0)
W(B9.0)
15.7
16.6
26.2
2. I
HO( MO )2PBN----(2-hydroxy-4,6-dinmhyloxyphenyl ten-butyl nitrone)
L"
'3"CC13
"'OH"
Folch
AcN
W
15.45
14.31
16.21
ten-butylhydmnitronide?Folch
14.5
2.07
2.35
8.85
13.8
MMC01
Nitrosobenzene
CH3(CN)C:
:'~ Phenyl radical
a-methylbenzyl
a,a-dimelhylbenzyl
mdical
vxc~s"
2.18(3), 0.86(2) ambisisohetyronitrile
1.79(6), 0.80(4) benzoyl peroxide
wfrR3.O)
5.0
AN = 3.4, I.I; lipin model + ligninase
wcrR?.4)
A. --- 1.0; lignin model + ligninase
W(PT.5)
not given
[2.006] retinoic acid and haematin
II.53'-12.00
AOl,2) = 2.50-2.60, A(H,I) = 0.95-1.00
Benzene
X = Br, CI, H, ten-Butyl, CH~, OCH3, NH2 pho~olysis of respective disulfide.
Benzene
11.54
9.60
14.0
12.6
82BEOI
82BEOI
86HAOI
86HAOI
861WOI
831T01
MDN-~.thyI.N-dmylniwo~
Methyl linoleme4T
,. ,,'OOH
•"
i.':.'::
i .~..:.,.,,/,,'..,~; : ....•
lknt~ene
Benzene/ten.BuOH
. i . ~ ..
•
14.32
13.12
6.46
4.67
med~yt linolem + ten.BuO"
[2.~O59] H202 + U V
MYAOI
g2KO03
Spin udduc{ parameters
289
Table 7 (Continued). Other Spin Trap Spin Adduct Parameters
Adduce
[MDN Continued]
tert-BuO"
tert.BuO"
AN/G
Aa/G
7,91
4.76
Benzene
Benzene
Benzene
13113
12,82
14. I 0
13.35
13.08
12.80
Benzene
Benzene
Benzene
Benzene
Benzene
Benzene
12.45
12.63
12.67
12.78
12.78
12.61
Solvent
Other, [g-value], Source
Reference(s)
di.tert-butyl peroxide + UV
[2.0059] di.tert.butyl peroxide + UV"
tert-BuOOC(O)C(O)OO-tert-Bu
LOON + Co(ll)
tetralylOOH + Co01)
tert.BuOOH + tert-BuO"
82KO03
82KO03
83NI01
83NlOl
83NI01
83NI01
LOOH + tert-BuO"
te~ralylOOH + tert.BuO"
0,90(3), 0.45(4) disulfidephotolysis
0,57(6) photolysisof disulfide
0.56(4) photolysisof disulfide
0.45(4) photolysis of disulfide
83NI01
83NI01
82K003
82KO03
82KO03
83KO03
DBNBS--3,5-dibromo.4-nitrosobenzene sulfonate*
"CH3
W
not given
O : (? see 87ST01)
W(PT.2)
12.63
0.71(2)
SOj ~
W
12.9
0.8(2)
SO:
W/DMSO I:1
12.6
0.62(2)'t
D'MSO and base + HzO2
[2.0066] xanthine oxidase or DMSO, basic
[2.0063] sulfite + Ca(IV) or H:Oz
decomposition of DMSO in base
86OZ01
8607.01
87OZ01
87ST01
Praline
'OH
W(CH7.1)
15.8
21.3(2)
A. =
tlydroxyproline
"OH
W(CHT.I)
15.4
25.6.20.3
14.30
11.74
20.53
tert-BuO"
LO'
Tetralyloxyl
tert-BuOO"
MDN Continued
LO0"
Tetralyldioxyl
CH~S"
CHjCH2S"
n-PropyI-S'
PhenyI-S"
. Benzene
Benzene/tert.BuOH
Benzene
TMPO--2,5,5 trimethyl- I-pyrroline- I-oxide
H"
Benzene
F'
Benzene
tert-BuO"
Benzene
C~H~C(~O)---O"
Benzene
"OOH
W(P7.8)/DMF 10/I
7.47
6.25
5.95
4.6 l
4.69
4,55
4,44
4.80
A, =
.4. =
A, =
A, =
4.80
5.36
12.90
12.7 I
15.6
17.7, ADPoFe(Ii)-HzOz
84FL02
As = 1.51, ADP'Fe(II)'H202
84FL02
As = <l.0, photolysis of n-BujSnH
A, = 1.63(2), A~ = 52.7, silver difluoride
A, = 2.30, DBPO
A, = 1.2, 0.7; (C~HsCO2)z
tetramethylammonium superoxide
73JA02
73JAOI
73JA02
73JA02
791101
•See reference81KAOIfor the initial workwith this spin trap. In addition, Rference82ETOIprovidesresults fromgamma-irradiatedaminoacids.
tAddi|ional hyperfinesplittings are resolvedand assigned.
tEFERENCES
671W01. Iwamura M., Inamoto N. Novel formation of nitroxide
radicals by addition to n!trones. Bull. Chem. Sac..Ipn. 40: 703;
1967.
68JAOI. Janzen E. G., Blackburn B. J. Detection and identification
of short-lived free radicals by an electron spin resonance trapping
• technique. J. Am. Chem. Sac. 90: 5909-5910; 1968.
691A01. Janzen E. G., Blackburn B. J. Detection and identification
of short-lived free radicals by electron spin resonance trapping
techniques (spin trapping). Photolysis of organolead, -tin, and
-mercury compounds. J. Am. Chem. Sac. 91:4481-4490; 1969.
701WOI. lwamura M., lnamoto N. Reactions of nitrones with free
radicals, il. Formation of nitroxides. Bull. Chem. Sac. Jpn. 4;$:
860-863; 1970.
*70NO01. Norman R. O. C. Electron spin resonance studies of free
radicals and their reactions in aqueous solution. In: Essays in
Free Radical Chemistry, pp. 117-145, Special Publication No.
24, Chemical Society, London (1970).
70pE01. Perkins M. J., Ward P., Horsfield A. A probe for homolytic
reactions in solution. Part II!. Radicals by hydrogen abstraction.
J. Chem. SoL (B) 395-400; 1970.
*70PE02. Perkins M. I. The trapping of free radicals by diamagnetic
scavengers. In: Essays in Free Radical Chemistry, pp. 97-115,
Special Publication No. 24, Chemical Society, London (1970).
*Those references that are noted with an asterisk are review articles
dealing with various aspects of spin trapping or which include an
informative section on the use o¢ spin trapping.
71AUOI. Aurich H. G., Trocsken J. Loesungsmittelabhaengigkeit
der ESR-Spectren van Alkyl-acyl-nittoxiden. Liebigs Ann. Chem.
745: 159-163; 1971.
71BLOI. Bluhm A. L., Weinstein J., Sousa |. A, Free radicals ill
tobacco smoke. Nature 219: 500; 1971.
*71JA01. ianzen E. G. Spin trapping. Accounts Chem. Res. 4: 31-
40; 1971.
*71LAOI. Lagercrantz C. Spin trapping of some short-lived radicals by the nitroxide method. J. Phys.. Chem. 'IS: 3466-3475;
1971.
731A01. Janzen E. G., Liu J. I.-P. Radical addition reactions of
5,5-dimethyl-I -pynoline- I-oxide. ESR spin trapping with a.cyclic
nitrone. J. Mar. Resonance 9: 510-512; 1973.
73JA02. Janzen E. G., Evans C. A., Liu i. i.-P. Factors influencing
hyperfine splitting in the ESR spectra of five-membered ring
nitroxides. J. Mar. Resonance 9: 513-516; 1973.
73LEOi. Ledwith A., Russell P. J., Sutcliffe L. H. Alkoxy radical
intermediates in the thermal and photochemical oxidation of alcohols. Proc. R. SoL Load. A 332: 151-166; 1973.
73TEOI. Terabe S., Kuroma K., Kanaka R. Spin trapping by use
of nitroso-compounds. Part IV. Nitrosodurene and other nitrosobenzene derivatives. J. Chem. Sac. Perkin Trans. H 12521258; 1973.
74HAOI. Htd~our I. R., Chow V., Bolton |. R. An electron spin
resonance study of the spin adduces of OH and Ha2 radicals with
niuones in tile ultraviolet photolysia of aqueous hydrogen per" oxide solutions. Can. J. Chem. $1: 3549-3553; 1974.
290
G.R. Bue'rmnR
74MA01. Mao S. W., Kevnn L. Electron paramagl~etic resonance
studies of spin trapping of the primary neutral radicals formed
in gamma-irradiated methanol. Cltem. Phys. Letters 24: 505507; 1974.
75HA01. Harbour J. R., Bolton J, R. Supcroxlde formation in spinach chloroplasts: Electron spin resonance detection by spin trapping. Biochem. Biophy~. Res. Comm,n. 64: 803-807; 1975.
75JA01. Janzen E. G., Evans C. A. Rate constants for the addition
of phony[ radicals to N-(tert.butyl).a.phenylnitronc (spin trapping) and benzene (phenylation) as studied by electron spin resonance. J. Am. Chem. Sac. 97: 205-206; 1975.
75SA01. Sara T., Kita S., Otsu T. A study of initiationof vinyl
polymerization with diucyl peroxide-tertiaryamine systems by
spin trappingtechnique.Makromol, Chem, 176:561-57 I; 1975.
75ZU01. Zubarcv V. E., Bclcvskii V, N., Bugacnko L, T. A spintrap study of radicalproducts of gamma-radiolysis of methanol.
Moscow Utli~,.Chem. Bull. 30: 28-31; 1975.
76JO01. Joshi A., Rustgi S., Riesz P. E.S,R. of spin-trappedradicalsin gamma-irradiated aqueous solutionsof nucleic acids and
theirconstituents,hat. J. Rudiat. Biol. 30: 151-170; 1976.
"I6KO01. Kominami S., Rokushikn S., Hatano H. Studies of shortlived radicals in the gamma-irradiated aqueous solution of uridine-5'-monophosphatc by the spin-trappingmethod and the liquid chromatography. Int. J, Radiat. Biol. 30: 525-534; 1976.
76SA01. Sargent F. P,,Gardy E. M. Spin tr.,ppingof radicalsformed
during radiolysisof aqueous solutions.Direct electron spin resorts.neeobservations. Can. J. Chem. $4: 275-279; 1976.
76SU01. Suehiro T., Kamimori M., Tokumaru K., Yoshida M.
Reactivity pattern of aryl radicalstoward benzene and nitrosodurenc. Trapping of cyclohcxadienyl radicalsby nitrosodurene.
Chemistry Lett. 531-543; 1976,
77FLOI. Floyd R. A., Soong L. M. Spin trapping in biological
systems. Oxidation of the spin trap 5,5-dimcthyl-l-pyrroline-loxide by a hydropcroxidc-hematin system. Biochem. Biophys.
Res. Co#tmun. 74: 79-84; 1977.
77HA01. Harbour J. R., Hair M. L. Superoxidc generation in the
photolysis of aqueous cadmium sulfide dispersions. Detection
by spin trapping.J. Phys. Chem. 81: 1791-1793; 1977.
771W01. lwahashi H., Ishikawa Y., Sara S., Koyan 0 K. The applicationof spin trap, phcnyl t-butyl nitroncto the study of the
gamma-radiolysis of cyclohexanc. Bull, Chem. Sac. Jpn..~;O:
1278-1281; 1977.
..
77KO01. Kotake Y., Okazaki M., Kuwata K. Electronnucleardouble resonance study of some nitroxideradicalsproduced in spin
trapping. J. Am. Chem, Sac. 99: 5198-5199; 1977.
77LAOI. Lai C.-S., Piettc L. H. Hydroxyl radical production in.valved in lipid peroxidation of rat livermicroson}es. Biochem.
Biophys. Res. Common. '18:51-59; 1977.
77ME01. McrrittM. V., Johnson R, A. Spin trapping,alkylperoxy
radicals and superoxide-alkyl halide reactions..I.Am. Chem.
Sac. 99: 3713-3719; 1977.
"I7OH01. Ohlo N., Niki E., Kamiya Y. Study of autoxidation by
spin trapping. Spin trapping of peroxyl radicals by phenyl N-t.
butyl nitrone. J. Chem. Sac. Perkin Trans. II 1770-1774; 1977.
77RU01. Rustgi S., Joshi A., Moss H., Riesz P. E.S.Rrof spintrapped radicals in aqueous solutions of amino acids. Reactions
of the hydroxyl radical. Inf. J. Radial. Biol. 31: 415-440; 1977.
77RU02. Rustgi S., Joshi A., Ricsz P., Friedberg F. E.S.R. of spintrapped radicals in aqueous solutions of amino acids, Reactions
of the hydrated electron. Int. J. Radiat. Biol. 3~: 533-552; 1977,
77SA01. Saprin A:. N., Platte L. H. Spin trapping and its application
in the study of lipid petol(tlation and free ~dical production
with liver microsomes. Arch.'Biochem. Biophy.s. IIMJ:480-492;
1977.
78BU01. Bu-.ttner G. R., Oberley L. W. Considerations in the spin
uapping of supemxide and hydroxyl radical in aqueous systems
using 5,5-dimethylpynr, line-l-oxid¢. Biochem. Biophys..Res.
Common. $3: 69-74; 1978.
75BU02. Buenner G. R., Oberley L. W., Leuthauser S. W. H. C.
• The effect of iron on the distribution of superoxide and hydroxyl
:
radicals as seen by spin trapping and on the superoxide dismutase
' i assay. Phmochem.,P&Ttobioi. 211:693-695; 1978.
78FE01. Felix C, C., Hyde J, S,, Sarna T., Scaly R, C. Melanin
photorcactions in aerated media: Electron spin resonance evidence for production of superoxidc and hydrogen peroxide.
Biochem. Biophys. Res. Commun. 84: 335-341; 1978.
78FLOI. Floyd R. A., Soong L. M., Stuart M. A., Rcigh D, L.
Spin trapping of free radiea,ls produced from nitrosoamine carcinogens. Photochem. Photobiol. 28: 857-862; 1978.
*78FR01. Freidlina R. Kh., Kandror I. I., G~sanov R. G. Study of
short-lived chlorine- and sulfur-containing radicals by a spin trap
method. Usp. Khim. 47: 508-536; 1978.
78GR01. Griffin B. W., Ting P. L. Spin trapping evidence for free
radical oxidcnts of aminopyrinc in the mctmyoglobin-cumene
hydroperoxide system. FEBS Lett. 119: 196-199; 1978.
78HA01. Harbour J. R., gallon J. R. The involvement of the hydroxyl radical in the destructive photooxidation of chlorophylls
in viva and in vitro. Photochem. Photobiol. 28: 231-234; 1978.
78HA02. Harbour J. R., Hair M. L. Detection of supcroxide ions
in nonaqueous media. Generation by photolysis of pigment dis.
persians. J. Phys. Chem. 82: 1397-1399; 1978.
78HO0 I. Howard J. A., Tail J. C. Electron paramagnetic resonance
spectra of the tert-butylperoxy and tert.butoxy adducts to phcnyl
tart-butyl nitrone and 2-methyl-2-nitrosopropane. Oxygen-17
hypcrfine coupling constants. Con. J. Chem. $6: 176-178; 1978•
781N01. Ingall A., Loft K. A. K., glarer T. F., Finch S., Slier A.
Metabolic activation of carbon tetrachloride to a free-radical
product: Studies using a spin trap. Biochem. Sac. Trans. 6: 962964; 1978.
78JA01. Janzcn E. G., Wang Y. Y., Shelly R. V. Spin trapping
with alpha-pryidyl I-oxide N.tert-butyl nitrones in aqueous solutions. A unique electron spin resonance spectrum for the hydroxyl radical adduct. J. Am. Chem. Sac. I00: 2923-2925; 1978.
78lA02. Janzcn E. G., Nuttcr D. E., Jr., 'Davis E. R., Blackburn
B. J., Payer J. L., McCay P. B. On spin trapping hydroxyl and
hydroperoxyl radicals. Can. J. Chem. 56: 2237-2242, 1978.
781~01• Joshi A., Rustgi S., Moss H., Riesz P• E.S.R. of spiw
trapped radicals in aqueous solutions of peptides. Reactions of
the hydroxyl radical. Int. J. Radial. Biol. 33: 205-229; 1978.
78JO02. Joshi A., Moss H., Riesz P. E.S.R. study of the postradiolysis growth of spin-trapped radicals in gamma-in'adiated
aqueous solutions of thymine. Int. J. Radiot. Biol. 34: 165-176;
1978.
• 78KA01. Kasal E H.,'McLeod D., Jr. Detection by spin trapping
of H and OH radicals generated during electrolysis of water. J.
Phys. Chem. 82: 619-621; 1978.
78LAOI. Lai C. S., Picttc L. H. Spin-trapping studies of hydroxyl
radical production involved in lipid peroxidation. Arch• Biochem.
Biophys. 190: 27-38; 1978.
78L101. Lion Y., Van de Vorst A. Spin trapping of free radicals
formed during visible irradiation of an acridine dye: 3,6-diaminoacridinc (profiavine). J. Photochem. 9: 545-550; 1978.
78LO01. Lawn J. W., Sire S.-K., Chen H.-H. Hydroxyl radical
production by free and DNA-bound aminoquinone antibiotics and
its role in DNA degradation. Electron spin resonance detection
of hydroxyl radicals by spin trapping. Can. J. Chem. $6: 10'1,2IO47; 1978.
78MAOI. Maillard P., Massot J. C., Giannotti C. Photolysis in
aprotic solvents of some alkylcobalt(lll) complexes; an ESR and
spin-trapping technique study. J. Organomeral. Chem. Isg: 219227; 1978.
78OZ01. Ozawa T., Hanaki A. Hydroxyl radical produced by the
reaction of superoxidc ion with hydrogen peroxide: Electron spin
resonance detection by spin trapping. Chem. Pharm. Bull. 26.
2572-2575; 1978.
78PO01. Payer J. L., Floyd R. A., McCay P. B., Janzen E. G.,
Davis E. R. Spin-trapping of the trichloromcthyl radical produced during enzymatic NADPH oxidation in the presence of
cat,ben tetrachlorid¢ or bromotrichloromethane. Biochim• Biophys. Acta S39: 402-409; 1978.
78RU01. Rustgi S., Riesz P• Hydrated electron-initiated main-chain
scission in peptides. An e.s.r, and spin-trapping study. Int. J.
Radial. Biol. 34: 449-460; 1978.
7BRU02. Rustgi S. N., Riesz P. An e.s•r, and spin-trapping study
Spin adduct parameters
of the reactions of the 'SO+-radical with protein and nucleic acid
constituents, Ira. J, Radial, Biol. 34: 301-316; 1978.
78RU03. Rustgi S, N., Riesz E E.S.R. of free radicals in aqueous
solutions of substituted pyrimidines. Int. J. Radial, Biol. 33: 2139; 1978.
78RU04, Rustgi S. N., Riesz [~, E.S,R. study of spin-trapped radicals formed during the photolysis of aqueous solutionsof acid
amides and H~Oj. Int. J. Radial. Biol, 33: 325-339; 1978.
78RU05. Rustgi S. N., Riesz P, E.S.R, of spin trapped radicalsin
aqueous solutions of dihydropyrimidine bases, Radiation Res.
75: 1-17; 1978.
78RU06. Rustgi S. N., Riesz P. E.S,R. and spin-trapping studies
of the reactions of hydrated electrons with dipeptides. Int. J.
Radial. Biol. 34'. 127-148; 1978.
78RU07. Rustgi S. N,, Riesz P. Free radicals in UV irradiated
aqueous solutions of substitutedamides. An E.S.R. and spintrapping study. Int. J. Radial. Biol. 34: 149-163; 1978.
78SE01. Scaly R. C., Swartz H. M., Olive P, L. Electron spin
resonance-spin trapping. Detection of superoxide formation during aerobic microsomal reduction of nitro-compounds. Biochem.
Biophys. Res. Commun. 82: 680-684; 1978,
78SU01, Sugiura Y., Kikuchi T. Formation of superoxid¢ and hydroxy radicals in iron(ll)-bleomycin-oxygen system: electron spin
resonance detection by spin trapping. J. Antibiotics 31: 13101312; 1978.
78ZU01. Zubarev V. E., Belevskii V. N., Zarazilov A. L. Identification of radicals during gamma-radiolysis of benzene and teluene by the spin trap method. Moscow Unit,, Bull. 33: 62-66;
i 978.
78ZU02. Zubarev V. E., Bugaenko L. T, Identification and determination of the yields of radicals in gamma-irradiated liquid
benzene with the aid of nitrosodurene. Doklody Akademii Nauk
SSSR 242: 136-139; 1978 or Doklady Phys, Chem, 241: 765768; 1978.
79BA01. Bancroft E. C., Blount H. N,, Janzen E. G. Spin trapping
in electrochemistry. I. On the electrooxidation of organoborides.
J,Am. Chem. Sac. 101: 3692-3694; 1979.
79BU01. Buettner G. R., Oberley L. W. Superoxide formation by
prot,~porphyrin as seen by spin trapping. FEBS Left. 98: 18-20;
1979.
79CO01. Cox G. S., Whitten D. G., Giannotti C. lmcraction of
porphyrin and metalloporphyrin excited states.with molecular
oxygen. Energy-transfer versus electron-transfer quenching
mechanisms in photooxidations. Chem. Phys. Left. 67: SI 1-515;
1979.
*79EV01. Evans C. A. Spin trapping. Aldrichimica Acta 12: 2329; 1979.
79F101. Finkeistein E., Rosen G. M., Rauckman E. J., Paxton J.
Spin trapping of superoxide. Mot. Pkarmacol. 16: 676-685;
1979.
79FLOI. Floyd R. A., Wiseman B. B. Spin-trapping free radicals
in the autooxidation of 6-hydroxydopamine. Biochim. Biophys.
Acta 586: 196-207; 1979.
79FO01. Forester A. R., Neugebauer E A. (Eds.) Magnetic Properties of F;ee Radicals. Landolt-B6mstein, New Series Group
Ii, Vol. 9, Part CI, Springer-Verlag, Berlin (1979).
79GA01. Gasanov R. G. Determination of rate constants for n:arrangement of w-carbalkoxyalkyl radicals by the EPR method
employing spin traps. Bull. Acad. Sci. USSR 215:835-837; 1979.
79GA02. Gasanov R..G., Freidlina R. K. An ESR and spin-trap
study of the interaction of acyl peroxides with tetrahalomethanes
in the presence of iron compounds. Bull. Acad. Sci. USSR 28:
+ 34-37; 1979.
79GR01. Green M. R., Hill H. A. O., Okolow-Zubkowska M. L,
Segal A. W. The production of hydroxyl and superoxide radicals
by stimulated human neutrophils~measurements by EPR spectroscopy. FEBS Lear. IW: 23-26;. 1979.
79GR02. Green M. R., Hill H. A. O'., Okolow-Zubkowska M. L,
Esnouf M. P., Walter S. J. The production of radicals by rat liver
microsomal fractions: Inhibition by copper complexes. Biackem.
Sac. Trans. 7: 718-719; 1979.
79HAOI. Harbour J. R., Hair'M. L. Radical intermediates in the
291
photosynthetic generation of H202 with aqueous ZnO dispersions. J. Phys. Chem. 83: 652-656; 1979.
79JA01. Janzen E. G., Dudley R. L., Shctty R. V. Synthesis and
dcctron spin resonance chemistry of nitronyllabelsfor spin trapping. alpha-phenyl N.[5-(5.melhyl.2,2.dialkyl-l,3-dioxanyl)]
nitroncs and alpha-(N-alkylpyridinium)N-(tert-buty})nitrones.
J. An,. Chem. Soc. I01: 243-245; 1979.
79KA0[. Ka[yanaramun B., Pcrez-Reyes E., Mason R. P. The reduction of nhroso-spin trapsin chemical and biologicalsystems.
A Cautionary note. Tetrahedron Lea. 4809-4812; 1979.
79KA02. Kalyanaraman B., Mason R. P.,Pere,,.ReyesE., Chignell
C. F. Characterizationof the free radical formed in aerobic microsomal incubationscontainingcarbon leVachlorideand NADP.H.
Biochem. Biophys. Res. Commun. 89: 1065-1072; 1979.
79LA01. Lai E. K., McCay P, B., Noguchi %, long K.-L. In rive
spin-trapping of trichloromethyl radicals formed from CCI,.
Biachem, Phurmacol. 28: 2231-2235; 1979.
79LA02, Lai C,-S., Grover T. A,, Pictt¢ L. H. Hydroxyl radical
production in a purified NADPH-Cytochrome c (P-4.50) reducruse system. Arch, Biochem. Biophys. 193: 373-378; 1979.
79LA03. Lai C,-S., Pictte L. H. Further evidence for OH radical
production in Fenton's system. Tetrahedron Leu. 77.5-778; 1979.
79MAOI. Makino K. Studies on spin-trapped radicals in gammairradiated aqueous solutions of DL.methionine by high performance liquid chromatography and ESR spectroscopy. J. Phys.
Chem, 83: 2520-2523; 1979.
79MA02. Makino K., Suzuki N., Moriya F., Rokushika S,, Hatano
' H. Separation and characterization of spin-affducts in a gammairradiated aqueou~ solution of 2-methyl-2-nitropropane by a high
performance liquid chromatograph equipped with an ESR spectrometer, Chem. Lear. (Japan)675-678; 1979.
79MA03. Makino K,, Hatano H. Separation and characterization
of short-[ivcd radicals in DL-methionine aqueous solution by
high speed liquid chromatograph equipped with ESR spectrometer. Chem. Lett. (Japan) 119-122; 1979.
79RE01. Rehorek D. Photokatalytisehe Systeme, XVII. Spin-Trapping yon Radikalen bei der Photolyse yon Car(IV) in Alkoholen.
Acta Chim. Acad. 5ci. Hung. 101: 395-403; 1979,
79RE02. Rehorek D. Ueber dic Bildung freier Radikale bcider
Photolyse yon Eisen(Iil)chlorid in AIkoholen. Z. Chem. 19: 262263; 1979.
79RE03. Rehorek D., Thomas P., Henning H. Spin trapping ofazide
radicals in photolysis of azido cobalt(Ill) complexes. Inorgan.
Chim. Acta 32: LI-L2; 1979.
79RE04. Rehorek D., Wagener R. Ueber die Bildung freier Radikale bei der photochemischen Oxydation yon Alkoholen durch
Chromium(VI) in Eisessig. Z, Chem. 19: 108-109; 1979.
79RE05. Rehorek D., Hennig H. Ueber die Photooxydation yon
Azidionen durch Metallkompiexe. Z. Chem. 19: 263-264; 1979.
79R101. Riesz P., Rustgi S. N. Aqueous radiation chemistry of
protein and nucleic acid constituents: ESR and spin-trapping
studies. Radiat. Phys. Chem. 13: 21-40; 1979.
79ROOI. Rosen H., Klebanoff S. J. Hydroxyl radical generation
by polymorphonuclear leukocytes measured by electron spin resonance spectroscopy. J. Clin. Invest. M: 172.5-1729; 1979.
79SU01. Sugiura Y. The production of hydroxyl radical from copper(i) complex systems of bleomycin and tallysomycin: Comparison with copper(li) and iron(liD systems. Biochem. Biophys.
Res. Commun. 90: 375-383; 1979.
79SU02. Sugiura Y. Production of free radicalsfrom phenol and
tocopherol by bleomycin-iron(ll)complex. Biachem. Biophys.
Res. Commun. 8?: 649-653; 1979.
*79ZU01. Zubarev V. E., Belevskii V. N., Bugaenko, L. T. Use
of spin traps for studying the mechanism of radical processes.
Lisp. Khim. 411: 1361-1392; 1979.
80BUOI. Buetmer G. R., Oberley L. W. The apparent production
of superoxide and hydroxyl radicals by hematopoq~hyrin and
light as seen by spin trapping. FEBS Lear. 111: 161-164; 1980.
gOCHOi. Chew V. S. F., BoRon J. R. Photochemistry of 5-methylphenazinium salts in aqueous solution. Products and quantum
yield of the reaction, J. Phys. Chem. !14: 1903-1908; 1980.
80CH02. Chew V. S. F., BoRon |. R., Brown R. G., Porter G.
G.R. BUETrNER
292
Photochemistry of 5-methylphcnazinium salts in, aqueous solution. 2. Optical flash photolysis and fluorescence results and a
proposed mechanism. J. Phys. Chem. 84: 1909-1916; 1980. :
80CH03. Chignell C. F., Kalyanaraman B., Mason R. P., Sik R.
H. Spectroscopic studies of cutaneous photosensilizing agents1. Spin trapping of photolysis products from sulfanilamide, 4aminobenzoic acid and related compounds. Phowchem. Photobiol. 32: 563-571; 1980.
80FI01. Finkelstein E., Rosen G. M., Rauckman E. J. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals
with nitrones. J. Am. Chem. Sac. 102: 4994-4999; 1980.
• 80FI02. Finkelstein E., Rosen G. M., Rauckman E. J. Spin trapping of superoxide and hydroxyl radical: Practical aspects. Arch.
Biochem. Biophys. 200: 1-16; 1980.
• 80JA01. Janzen E. G. A critical review of spin trapping in biological systems. In: Free Radicals in Biology, Vol. IV, (W. A.
Pryor, ed.), pp. 115-154, Academic Press, New York (1980).
80JA02. Janzen E. G., Stronks H. l., Nutter D. E., Jr., Davis E.
R., Biount, H. N., Payer J. L., McCay P. B. Spin trapping
azidyl(N/), cyanatyl(OCN'), eyanyl('CN) radicals, and chlorine
atom(Cl'). Can. J. Chem. 58: 1596-1598; 1980.
80KA01. Kalyanaraman B., Perez-Rcycs E., Mason R. P. Spintrapping and direct electron spin resonance investigations of the
rcdox metabolism ofquinon anticancerdrugs. Biochim. Biophys.
Acra 630: 119-130; 1980.
80KE01. Kremers W., Singh A. Electron spin resonance study of
spin-trapped azide radicals in aqueoussolutions. Can. J. Chem.
$B: 1592-1595; 1980.
80LI01. Lion Y. F., Kuwabard M., Riesz E UV photolysis of aqueous
solutions of aliphatic peptidcs. An ESR and spin-trapping swdy.
J. Phys. Chem. 84: 3378-3384; 1980.
80MAOI. Mason R. P., Kalyanaraman B., Trainer B. E., Eling T.
E. A carbon-centered free radical intermediate in the prosta: gfandin synthetase oxidation of arachidonic acid. J. Biol. Chem.
25S: 5019-5022; 1980.
~OMA02. Marriott P. R., Perkins M. J., Griller D. Spin trapping
for hydroxyl in water: A kinetic evaluation of two popular traps.
Can. J. Chem. 58: 803-807; 1980.
80MA03. Makino K. Studies on spin-trapped radicals in gammairradiated aqueous solutions of L-isoleucinc and L-leucine by
high-performance liquid chromatographyand ESR spectroscopy.
J. Phys. Chem. 84: 1968--1974; 1950.
80MA04. Makino K. Studies on spin-trapped radicals in gammait'radiatod aqueousL-valine solutions by high-performance liquid
chromatographyand ESR spectroscopy../.Phys. Chem. M: 10161019; 1980.
80MA05. Makino K. Studies on spin-trapped radicals in gammairradiated aqueoussolutionsof 2-methyl-2-nitrosopropaneby highperformance liquid chromatography and ESR spectroscopy. J.
Phys. Chem. 84: 1012-1015; 1980.
80MAO6. Makino K., Suzuki N., Moriya F., Rokushika S., Hatano
H. Spin-trap-radical chromatography of spin adducts produced
from L-valine by ~amma-inradiation. Anal. Lett. 13: 301-309;
1980.
80MA07. Makino K., Suzuki N., Moriya E, Rokushika S.:Hatano
H. Cautionary note for use of 2-metbyl-2-nitrosopropane as spin
trap. Analytical Left. 13(A4): 311-317; 1980.
• 80MCOI. McCay P. B., Noguchi T., long K.-L., Lai E. K., Payer
J. L. Production of radicals from enzyme systems and the use
of spin traps. In: Free Radicals in Biology (W. A. Pryor, ed.),
Vol. IV, pp. 155-186, Academic Press, New York (1980).
80MIOI. MinegishiA.. Bergen('~., Riesz P. E.S.R. of spin-trapped
radicals in aqueous solutions of dcuterated amino acids and al• cabals. Int. J. Radiat. Biol. 38: 395-415; 1980.
80M!02. Minegishi A., Bergene R., Riesz P. E.S.R. of spin-trapped
radicals in gamma-irradiated polycrystailine amino acids, N-acetyl amino acids.and dipeptides. Int. J. Radiat. Biol. MI: 627• 650; 1980.
"
80Me01. Moriya E,Makino K., Suzuki N., Rokushika S., Hatano
: H. Studies on spin-trapped radicals in gamma-irradiated aqueous
•soldtions of glycine and L-alanine by high-performance liquid
'.
":
.~,
~
." . . .
•
.
.
chromatography and ESR spectroscopy. J. Phys. Chem. 84: 30853090; 1980.
80NI01. Niki E., Ohto N., Kanauchi T., Kamiya Y. Hydrogen atom
abstraction from polypropylene and polystyrene by t-butoxy radical. Site of radical allack studied by spin trapping. Ear. Polym.
J. 16: 559-563; 1980.
*80OK01. Okolow-Zubkowska M. J., Hill H. A. O. Spin trapping
of superoxide and hydroxyl radicals produced by stimulated human neutrophils. In: Biological and Clinical Aspects of Super.
oxide and Superoxide Dismutases. (W. H. Bannister and J. V.
Bannister, ads.), pp. 201-210, Elsevier/North Holland, New
York (1980).
80PA01. Patton S. E., Rosen G. M., Rauckman E. J. Superoxide
production by purified hamster hepatic nuclei. Mol. Pharmacol.
18: 588-593; 1980.
*80PE01. Perkins M. J. Spin trapping. Advances in Physical Organic Chemistry I?: 1-64; 1980.
80PE02. Percz-Reyes E., Kalyanaraman B., Mason R. P. The reductive metabolism of metronidazole and ronidazole by aerobic
liver microsomes. Mol. Pharmacol. 17: 239-244; 1980.
80PO01. Payer J. L., McCay P. B., Lai E. K., Janzen E. G., Davis
E. R. Confirmation of assignment of the trichloromethyl radical
spin adduct detected by spin trapping during tJC-carbon tetrachloride metabolism in vitro and in viva. Biochem. Biophys. Res.
Comman. 94: i 154-1160; 1980.
*80RE01. Rehorek D. Spin-Trapping~eine Methode zum Nachwcis kurzlebiger paramagnetischer Reaktionsprodukte. Z. Chem.
20:" 325-33 I; 1980.
80Re01. Rosen G. M., Rauckman E. J. Spin trapping of the primary.
radical involved in the activation of the carcinogen N-hydroxy2-acetylaminofluorene by cumene hydrol~eroxide-hematin. Mol.
Pharmacol. 17: 233-238; 1980.
"80RO02. Rosen G. M., Rauckman E. J., Finkelstein E. J. Spin
trapping of radical species involved in the propagation of lipid
peroxidation. In: Auroxidation in Food and Biological Systems
(M. G. Simic and M. Karal, ads.), pp. 71-88, Plenum Press,
New York (1980).
80SAOI. Sanderson D. G., Chedekel M. R. Spin trapping of the
superoxide radical by 4-(N-methylpyridinium) t-butyl nitrone.
Phowchem. Phombiol. 32: 573-576; '1980.
"80SCOI. Schaich K. M., Borg D. C. EPR studies in autoxidation.
In: Auroxidation in Food and Biological Systems (M. G~ Simic
and M. Karel, ads.), pp. 45-70, Plenum Press, New York (1980).
80SU01. Sugiura Y. Bleomycin-iron complexes. Electron spin resonance study, ligand effect, and implication for action of mechanism. J. Am. Chem. Sac. 102: 5208-5215; 1980.
80TOOI. Tomasi A., Albano E., Loft K. A. K., glarer T. F. Spin
trapping of free radical products of CCI, activation using pulse
radiolysis and high energy radiation procedures. FEBS Lett. 122:
303-306; 1980.
8OVA01. van Ginkei G.. Raison J. K. Light-induced formation of
O2• oxygen radicals in systems containing chlorophyll. Photochem. Phorobiol. 32: 793-798: 1980.
81AR01. Arthur |. R.. Boyne R., Hill !{. A. O., Okolow-Zubkowska M. J. The production of oxygen-derived radicals by
neutrophils from selenium-deficient cattle. FEBS Lett. 135: 187190; 1981.
81AUOI. Augusta O., Ortiz de Montellano P. R., Quintanilha A.
Spin-trapping of free radicals formed during microsomal metabolism of ethylhydrazine and acetylhydrazine. Biockem. Biophys. Res. Comman. 1el: 1324-1330; 1981.
81BO01. l~6sterlingB., Trudell |. R. Spin trap evidence for production of superoxide radical anions by purified NADPH-cytochrome P450 reductase. Biochem. Biophys. Res. Commun. 98:
569-575; 1981.
81CHOI. Chignell C. F., Kalyanaraman B., Sik R. H., Mason R.
P. Spectroscopic studies of cutaneous photosensitizing agentsIi. Spin trapping of photolysis products from sulfanilamide and
4-aminobenzoic acid using 5,5.dimethyl-l-pynoline-l-oxide.
Photochem. Photobiol. 34: 147-156; 1981.
• 81CO01. Coxon J. M., Gilbert B. C., Norman R. O. C. Electron
Spin adduct parameters
spin resonance studies of spin trapping. On the role of hydroxylumines and an oxaziridine in the formation of nitroxides tellowing addition of hydroxyalkyl radicals to N-t-butyl-aiphaphenylnitrone. J. Chem. Sac. Perkin Trans. II 379-381; 1981.
81GR01. Grover T. A,, Pierre L. H, Influence of flavin addition
arid lemuvul on the formation of superoxide by NADPH-cytochrome P-450 reductasc: A spin trap study. Arch. Oiochem. filephys. 212:105-114; 1981.
81HI01. Hill H. A. O., Thornalley P. J. Phenyl radical production
during the oxidationof phenylhydrazine and in phenylhydrazineinduced haemolysis. FEBS Left. 12~;:235-238; 1981.
*81 HI02. HillH. A. O., Okolow-Zubkowska M. J. The exploitation
of molecular oxygen by human neutrophiles:Spin.trapping of
radicals produced during the respiratoryburst. In: Oxygen and
Life, proceedings of the Second PriestleyConference, pp. 98106, Royal Society of Chemistry, London (1981).
81JA01. Janzen E. G., Sherry R. V., Kunanec S. M. Spin trapping
chemistry of 3,3,5,5-tetramethylpyrroline-N-oxide:An improved cyclic spin trap. Can. J. Chem. 59: 756-758; 1981.
81JA02. Janzen E. G., Stronks H. J. Assignment of the ESR spectrum of the cyanyl radical spin adducl of phenyl tert-butylni&
Irene. J. Phys. Chem. 85: 3952-3954; 1981.
81KA01. Kaur H., Leung K. H. W,, Perkins M. J. A water-soluble,
nitroso.aromatic spin-trap. J.C.S. Chem. Comm. 142-143; 1981.
81KI01. Kirino Y., Ohkuma T., Kwan T. Spin trapping with 5,5dimethylpyrroline-N-oxide in aqueous solution. Chem. Pharm.
Bull. 29: 29-34; 1981.
81KU01. Kuwabara M., Lion Y., Riesz P. E.S.R. of spin-trapped
radicals from sugars. Reactions of hydroxyl radicals in aqueous
solutions artd gamma-radiolysis in the polycrystalline stale. Int.
J. Radiat. Rioi. 39: 451-455; 1981.
81KU02. Kuwabara M., Lion Y., Riesz P. E.S.R. of spin-trapped
radicals in gamma-irradiated polycrystalline nucleic acid constituents and their halogenated derivatives. Int. J. Radiat. Biol.
39: 465-490; 1981.
81KU03. Kuwabara M.. Lion Y., Riesz P. E.S.R. of spin-trappcd
radicals in aqueous solutions of 5-halo dcrivatives of nucleic
acids and their constituents. Reactions of hydrated electrons,
hydroxyl radicals and U.V. photolysis. Int. J. Radiat. Biol. 39:
491-514; 1981.
8ILl01. Lion Y., Kuwabara M., Riesz P. Spin-trapping and ESR
studies of the direct photolysis of aromatic amino acids, dipeptides, tripeptides and polypeptides in aqueous solutions-I. Phe.nylalaninc and related compounds. Photochem. Photobiol. 34:
297-307; 1981.
81LEO1. Lown J. W., Chen H.-H. Evidence for the generation of
free hydroxyl radicals from certain quinonc antitumor antibiotics
upon reductive activation in solution. Can. J. Chem. 59: 390395; 1981.
81MA01. Makino K., Suzuki N., Moriya E, Rokushika S., Hatano
H. A fundamental study on aqueous solutions of 2-methyl-2nitrosopropane as a spin trap. Radiation Res. 86:294-3 i 0: 1981.
81MOO1. Mossoba M. M., Rosenthal !., Riesz P. Hydrogen-deuterium exchange in gamma-irradiated polycrystalline DL-alanine: A spin-trapping and E.S.R. study. Int. J. Radiat. Biol. 40:
397-41 I; 1981.
81MO02. Mossoba M. M., Rosenthal I., Riesz P. E.S.R. and spintrapping studies of dihydropyrimidines. Gamma-radiolysis in
polycrystalline state and UV photolysis in aqueous solution. Int.
J. Radiat. Biol. 40: 541-552; 1981.
81NO01. Nohl H., Jordan W., Hegner D. Identification of free
hydroxyl radicals in respiring rat heart mitochondria by spin
+ trapping with the nitrone DMPO. FEBS Lett. 123: 241-244;
1981.
81PO01. Poyer J. L., McCay P. 13,, Waddle C. C., Downs P. E.
In rive spin-trapping of radicals formed during halothane metabolism. Biochem. Pkarmacol. 30: 1517-1519; 1981.
81PROi. Pryor W. A. Autoxidation in biological systems. A novel
low-temperature method for spin trapping and the mechanism of
reaction of ozone with polyunsaturated fatty acids. In: Oxygen
and Oxy-Radicais in Chemistry and Biology (M. A. J. Rodgers
293
and E. L. Powers, ads.), pp. 133-139, Academic Press, Inc.,
New York (1981).
81PR02. Pryor W, A., Govindan C. K. Oxygen-atom-transfer reactions from u carbonyl oxide (produced from a i ,2,3-trioxolane)
to electron.deficient unsaturatedcompounds. J. Am. Chem. Sac.
I03: 76B[-7682; 19gi,
8IPR03, Pryor W. A., PrierD, G., Church D. F, Radical production
from the interactionof ozone end PUFA as demonstrated by
electron spin resonance spin-trappingtechniques. Environ. Res.
24: 42-52; 1981.
81RE01. Rehorek D., Winkler W., Wagoner R., Hennig H. Photocatalyticsystems XLVI. The photoinduced decomposition of
tributylstannylChromate(Vl) as studied by ESR spin trapp!ng.
Inorg. Chim. Acta 64: L7-L9; 1981.
g[RO0I. Rosen G. M., Rauckman E. J. Spin trappingof free tad.
ica[sduring hepatic microsomal [ipidperoxidation.Prec. Natl,
Acad. Sci. USA 78: 7346-7349', 19g[.
'81RO02. Rosen G. M., Rauckman E. J. The spin trapping of
biologically generated free radicals. In: Oxygen and Oxy-Radicals in Chemistry and Biology (M. A. J. Rodgers and E. L.
l~owers, ads.), pp. 97-108, Academic Press, Inc., New York
(1981).
81RO03. Rosenthal I., Mossoba M. M., Riesz P. Dibenzoy}, peroxide induced photodecarboxylation of amino acids and peptides, A spin-trapping study. I. Phys. Chem. S~: 2398-2403;
1981.
81RO04. Rosenthal l., Mossoba M. M., Riesz P. Photochemistry
," of pyrimidin¢ bases as studiedby E.S.R. and spin-trapping.Int.
J. Radiat. Biol. 40: 385-395; 1981.
81RO05. Roscnthal i., Mossoba M. M., Riesz P. Sonolysis of perhalomcthane as studied by EPR and spin Irapping. J. Magn.
Reson. 4S: 359-361; 1981.
81SM01. Smith F. L., Floyd R. A., Carpenter M. P. Prostaglandin
synthetase-dependent spin trapped free radicals.In: Oxygen and
Oxy-Radicals in Chemistry and Biology (M. A. J. Rodgers and
E. L. Powers, eds.), pp. 743-745, Academic Press, Inc., New
York (1981).
81SU01. Suzuki N., Makino K., Moriya'F., Rokushika S., Hatano
H. Studies on spin-trapped radicals in gamma-irradiated aqueous
solutions of L-praline and trans.4.hydroxy-L-proline by highperformance liquid chromatography and ESR spectroscopy. J.
Phys. Chem. 85: 263-268; 1981.
81TAOi. Taniguchi, H., Aoshima H. Radical cfiromatography of
spin adducts produced from gamma-irradiated linoleic acid in
nonaqueous solution. Chemistry Lett. 1599-1602; 1981.
81WAOI. Walter T. H., Melntire G. L., Bancroft E. E., Davis E.
R., Gierasch L. M., Blount H. N. Interracial spin trapping in
model membrane systems. Biochem. Biophys. Res. Commun.
102: 1350-1357; 1981.
82ALOI. Albano E., Loft K. A. K., Slater T. F., Slier A., Symons
M.C.R., Tomasi A. Spin-trapping studies on the free-radical
products formed by metabolic activation of carbon tetrachloride
in rat liver microsomal fractions isolated hepatocytes and in rive
in the rat. Biochem. J. 204: 593-603; 1982.
82AU01. Aurian-Blajeni B., Halmann M., Manassen J. Radical
generation during the illumination of aqueous suspensions of
tungsten oxide in the presence of methanol, sodium formate and
sodium carbonate. Detection by spin trapping. Photochem. Photobiol. 35: 157-162; 1982.
82AU02. Augusto O., Beilan H. S., Ortiz de Montellano P. R. The
catalytic mechanism of cytrochrome P-450. Spin-trapping evidence for one-electron substrata oxidation. J. Biol. Chem. 257:
11288-11295; 1982.
82AU03. Augusto O., Kunze K. L., de Montellano P. R. Orhz NPhenylprotoporphyrin IX formation in the hemoglobin-phenylhydrazine reaction. Evidence for a protein-stabilized iron-phcnyl
intermediate. J. Biol. Chem. 257:6231-6241; 1982.
• 82AU04. Aurich H. G. Nitroxides as reaction intermediates. Can.
J. Chem. 60: 1414-1420; 1982.
82BA01. Bannister J. V., Bellavite P., Sena M. C., Thornailey P.
J., Rossi F. An EPR study of the production of superoxide rad-
294
G, R. Buerr~eR
teals by neutrophil NADPH oxidase. FEB$ Lute. 14$: 323-326;
1982.
82BA02. Bannister J. V., Bannister W. H., Hill H. A. 0., Thornalley P. J. Enhanced production of hydroxyl radicals by the
xanthine-xanthine oxidase reaction in the presence of lactoferrin.
Bioehim. Biophys. Acto ?IS: i 16-120; 1982.
82BE01. Bevington J. C., Fridd P. F., Tabner B. J. An electron
spin resonance study of some trapped primary radicals. J. Chem.
Soc. Perkin Trans. I! 1389-1391; 1982.
*82BU01. Buettncr G. R. The spin trapping of supcroxide and hydroxyl radicals. In: Supero.~ide Di~*mutase (L.W. Oberley, ed.),
Vol, 2, pp. 63-81, CRC Press, Boca Raton (1982).
82ES01. Esnouf M. P., Gainey A,, Hill H. A. O., Thornalley P. J.
The carboxylation of preprothrombin. In: The Biology of Copper.
(J. Sorenson, ed.), pp, 209-220, Humana Press, New Jersey
(1982).
82ET01. Ettinger K. V., Forrcster A. R., Hunter C. H. Lyoluminescence and spin trapping. Can. J. Chem. 60: 1549-1559; 1982.
82FI01. Finkelstein E., Rosen G. M., Rauckman E. J. Production
of hydroxyl radical by decomposition of superoxide spin trapped
adduces. Mol. Pharmcol. 21: 262-265; 1982.
82FL01. Floyd R. A. Observations on nitroxyl frce radicals in aryl.
amine carcinogenesis and on spin-trapping hydroxyl free radicals. Can. J. Chem. 60: 1577-1586; 1982.
82FO01. Fomey L. J., Rcddy C. A., Ting M., Aust S. D. The
involvemcnt of hydroxyl radical derived from hydrogen peroxide
in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J. Biol. Chem. 25'/: 11455-11462; 1982.
82FU01. Fujii K., Miki N., Kanashiro M., Miura R., Sugiyama
T., Morio M., Yamano T., Miyake Y. A spin trap study on
anaerobic dehalogenation of halothane by a reconstituted liver
microsomal cytochromc P-450 enzyme system. J. Biochem. 91:
415-418; 1982.
"82GI01. Gilbert B. C., Norman R. O. C. Radical reactions in
aqueous solution: Use of act-anion of nitromethanc as a spin
trap. Can. J. Chem. 60: 1379-1391; 1982.
82GR01. Gray P. J., Phillips D. R., Wcdd A. G. Photosensitized
degradation of DNA by daunomycin. Photoehem. Photobiol..~:
49-57; 1982.
"82GR02. Griffin B. W. Usc of spin traps to elucidate radical mechanisms of oxidations by hydroperoxides catalyzed by hemeproloins. Can. J. Chem. b0: 1463-1473; 1982.
82HA01. Hairc D. L., Janzen E. G. Synthesis and spin irapping
kinetics of new alkyl substituted cyclic nitrones. Can. J. Chem.
60: 1514-1522; 1982.
82HA02. Harbour J. R., Issler S. L. Involvement of the azide radical in the quenching of stagier oxygen by azide anion in water.
J. Am. Chem. Soc. 104: 903-905; 1982.
82HE01. Hed.'ick W. R., Webb M. D., Zimbrick J. D. Spin trapping
of reactive uracilyl radicals produced by ionizing radiation in
aqueous solutions. Int. J. Radiat. Biol. 41: 435-442; 1982.
82H!01. Hill H. A. O., ThomaUey P. J. The oxidative ring opening
of the cyclic nitrone spin trap 5,5-dimethyl- I-pyrroline. l-oxide
(DMPO): Free radical involvement. Inorg. Ckim. Acta 6"/: L35L36; 1982.
82HI02. Hill H. A. O., Thornalley P. J. Free radical production
during phenylhydrazine-induced hemolysis. Can. J. Chem. 60:
1528-1531; 1982.
82JA01. Janzen E. G., Coulter G. A., Ochler U. M., Bergsma J.
P. Solvent effects on the nitrogen and [~t-hydrogen hypedine
spl!tting constants of aminoxyl radicals obtained in spin trapping
experiments. Can./. Chem.&0: 2725-2733; 1982.
*gZIA02. Janzen E. G., Davis E. R. Detection of free radicals by
• spin.lrtpping using the nitmxyl method. In: Free Radicals and
Cancer (R. A. Floyd, ed.), pp. 397-422, Marcel Dekker, Inc.,
New York (1982).
*g2KA01. Kalyanaraman B. Detectionof toxic freeradicalsin biology and medicine. In: Reviews in Biochemical Toxicology Vol.
• 4,.(E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), pp. 73-139, Elsevier, New York (1982).
82KA02., Kalyanaraman B., Felix C. C., Scaly R. C. Photoionization of melanin p~cursors: An electron spin resonance laves-
tigation using the spin trap 5,5-dimcthyl-l-pyrroline-l-oxide(DMPO). Photochem. Photobiol. 36: 5-12; 1982.
82KO01. Komiyama T., Kikuchi T., Sugiura Y. Generation of hydroxyl radical by the anticancer quinone drugs, carbazilquinone,
mitomycin C, aclacinomycin A and adriamycin, in the presence
of NADPH-cytochrome P-450 reductase. Biochem. Pharmacol.
31: 3651-3656; 1982.
82KO02. Kotak¢ Y., Kuwata K. Formation of intramolecular hydrogen bond in hydroxy-substitutcd nitmxide radicals as evidenced by electron spin resonance. Bull, Chem. Son. Jpn. SS:
3686-3689; 1982.
"82KO03. Konaka R., Terabe S., Mizuta T., Sakata S. Spin trapping by use of nitrosodurene and its derivatives. Cwt. J. Chem.
60: 1532-1541; 1982.
82KO04. Kotake Y., Kuwata K. Electron spin resonance and electron nuclear double resonance study of diastereometric nitroxyl
radicals produced by spin trapping. Can. J. Chem. 60: 16101613; 1982.
82KO05. Kono Y., Sugiura Y. Electron spin resonance studies on
the oxidation of rifamycin SV catalyzed by metal ions. J. Biochem.
91: 397-401; 1982.
82KR01. Kremers W., Koroll G. W., Singh A. Spin trapping of the
azide radical with nitroso compounds. Can. J. Chem. 60; 1597;
1982.
82LE01. Legge R. L., Tl~ompson J. E., Baker J. E. Free radical.
mediated formation of ethylene from i-aminocyclopropane-I.
carboxylic acid: A spin trap study. Plant Cell Physiol. 23:17 !177.; 1982.
82LI01. Lion Y., Kuwavara M., Ricsz P. Spin-trapping and ESR
studies of the direct photolysis of aromatic amino acids, dipepo
tides, tripeptides and polypeptides in aqueous solutions.ll. Tyrosine and related compounds. Photochem. Photobiol. 3S: 4352; 1982.
82L102. Lion Y., Kuwabara M., Ricsz E Spin-trapping and ESR
studies of the direct photolysis of aromatic amino acids, dipeptides and polypeptides in aqueous solutions-Ill. Tryptophan and
related compounds. Photochem. Photobiol. 35: 53-62; 1982.
82LI03. Lion Y., Decuyper J., Van de Vomt A. Photolysis of chiorpromazinc: Hydroxyl radical detection using 2-methyl-2-nitrosopropane as a spin trap. J. Photochem..2O: 169-174; 1982.
82MAOI. Makino K., Mossoba M. M., Riesz P. Chemical effects
of ultrasound on aqueous solutions. Evidence for "OH and 'H
by spin trapping. J. Am. Chem. Soc. 104: 3537-3539; 1982.
82MA02, Maquire J. H., Kegogg I11 E. W., Packer L. Protection
against free radical formation by protein bound iron. Toxicology
Len. 14: 27-34; 1982.
"82MA03. Makino K., Riesz P. Electron spin resonance of spin
trapped radicals in gamma-irradiated polycrystalline dipeptides.
Chromatographic separation of radicals. Can, J. Chem. 60: 14801485~ 1982.
82MA04. Makino K., Riesz P. E.S.R. of spin-trapped radicals in
gamma-imtdiated polycrystaUine amino acids. Chromatographic
separation of radicals. Int. J. Radiat. Biol. 41: 615-624; 1982.
"82MA05. Mason R. P., Chignell C. E Free radicals in pharmacology and toxicology--Selected topics, pharmacol. Roy. 33:
189-21 I; 1982.
"82MA06. Maillard P., Giannotti C. Utilsation des pitges a radi¢aux en rue de mettre en evidence des interm~diaires dans la
photolyse de complexes contenant une liaison Co(III)-C. Can.
J. Chem. 60: 1402-1413; 1982.
"82MA07. Mason R. P., Hanelson W. G., Kalyanaraman B;, Mottiny C., Peterson E J., Holtzman J. L. Free radical metabolites
of chemical carcinogens. In: Free Radicals, Lipid Peroxidation
and Cancer (D. C. H. McBrien and T. F. Slater, eds.), pp. 377400, Academic Press, London 0982).
'82MC01. McCay P. B., King M. M., Poyer I. L., Lai E. K. An
update on antioxidant theory: Spin trapping of trichloromethyl
radicals in vivo. in: Vitamin E: Biochemical, hematological and
clinical aspects. Annals New York Academy of Sciences, Vol.
393, (B. Lubin and L. J. Machlin, eds.), pp. 23-31; 1982.
82MO01. Mottley C., Mason R. P., ChigneU C. E, Sivarajah K.,
Eling T. E. The formation of sulfur trioxide radical anion during
Spin adduce parameters
lb.~ prostaglandin hydroperoxidase.catal)'zedoxidation of bisulrite(hydrated sulfurdioxide).J. Biol. Chem. 257: 5050-5055;
1982.
82MO02. Mossoba M. M., Makino K., Riesz P. Photoionization
of aromatic amino acids in aqueous solutions.A spin-trapping
and electron spin resonance'study.J. Phys. Chem. 86: 34783483; 1982.
82MO03. Moriya F., Makino K., Suzuki N., Rokushika S., Hatano
H. Studieson spin-trappedradicalsin gamma-irradiatedaqueous
solutions of L-alanylglycine and L-alanyl-L-alanine by high.per.
formance liquidchromatography and ESR spectroscopy.J. Am.
Chem. Sac. 104: 830-836; 1982.
82MO04. Mossoba M. M., Rosenthal I., Riesz P. Electron spin
resonance of spin-trapped radicalsof amines and polyamines.
Hydroxyl radical reactions in aqueous solutions and gammaradiolysisin the solidstate.Can. J. Chem. 60: 1493-1500; 1982.
82NI01. Niki E., Tsuchiya J., Tanimura R., Kamiya Y. Regeneration of Vitamin E from alpha-chromanoxyl radicalby glutathione and vitamin C. Chemistry Left. 789-792; 1982.
82OE01. Oehler U. M., Janzen E. G. Simulation of isotropicelectron spin resonance spectra: a transportable basic program. Can.
J. Chem. 60: 1542-1548; 1982.
82PR01. Pryor W. A., Govindan C. K., Church D. F. Mechanism
of ozonolysis of acetylenes:Evidence for a free-radicalpathway
for the decomposition of intermediates.J. Am. Chem. Sac. 104:
"7563-7566; 1982.
82REOI. Rehorek D., Winkler W., Wagoner R., Hennig H. Ueber
die Photoreduktion van Tetrabutylammoniumdichromat. Z. Chem.
22: 112-113; 1982.
82RE02. Rehorek D., Jansen E. G., Stronks H..I. Spin-Trapping
van Hydoxylradikalen bet der Photolyse van Octacyanomolybdat(V) in Wasser. Z. Chem. 22: 64; 1982.
82RE03. Rehorek D., Puaux ~I. P. Ueber die Bildung van Radikalen
bet der Photolyse van Uranylsalzen in aliphatischen Carbonsaeuren. Radiochem. Radioanal. Letters $2: 29-36; 1982.
• 82RE04. Rehorek D., Harming H. Spin trapping in photochemistry of coordination compounds. Can. J. Chem. 60: 1565-1573;
1982.
• g2Rl01. Riesz P., Rosenthal 1. Photochemistry of protein and nucleic acid constituents: Electron spin resonance and spin-trapping
with 2-methyl-2-nitrosopropane.Can. J. Chem. 60: 1474-1479;
1982.
82RO01. Rodriguez L. O., Hecht S. M. lron(lll)-bleomycin.Biochemical and spectralpropertiesin the presence of radicalscavengers.Biochem. Biophys. Rex. Commun. 104: 1470-1476; 1982.
82RO02. Rosen G. M., Rauckman E. ,I. Carbon tctrachloride-induced peroxidation: A spin trapping study. Toxieol. Left. I0:
337-344; 1982.
82ROO3. Rosen G. M., Kloss M. W., Rauekman E. J. Initiation of
in vitro lipid peroxidation by N-hydroxynorcocaine and norcocaine nitroxide. Mol. Pharmacol. 22: 529-531; 1982.
82RO04. Rosenthal !., Mossoba M. M., Riesz P. Photoinduced
reactions of dibenzoyl peroxide as studied by EPR and spintrapping.J. Magn. Reson. 47: 200-208; 1982.
$2RO05. Rosenthal I.,Mossoba M. M., Riesz P. Spin-trappingwith
2-methyl-2-nitrosopropane:photochemistryof carbonyl-containing compounds. Methyl radical formation from dimethyl sulfoxide. Can. J. Chem. 60: 1486-1492; 1982.
82SA01. Saez G., Thornalley P. J., Hill H. A. O., Hems R., BannisterJ. V. The production of free radicalsduring the autoxidalton of cysleine and their effect on isolated rat hepatocytes.
Biochim. Biophys. Acta 719: 24:-31; 1982.
8]SEOI. Searle A. J. E, Tomasi A. Hydroxyl free radical production in iron-cysteine solutions and protection by zinc../. Inorg.
Biochem. l?: 161-166; 1982.
g2SIOI. Sinha B. K., Molten A. G. Oxidati,:e metabolism of hydralazine. Evidence for nitrogen centered radicals formation.
Biockem. Biophys. Res. Commun.' |05: IO44-1051; 1982.
82SPOI. Spalletta R. A., Bennhard W. A. Spin-trappingfiree radicals
by solvating X-irradiated crystalline pydmidines. Radial. Res.
89: 11-24; 1982.
82SY01. Symons M. C. R., Albano E., Slater T. F., Tomasi A.
295
Radiolysis of tctrachloromcihane. J. Cll,,m. Sac. Faraday Trans,
I 78: 2205-2214; 1982.
82TE01. Tero-Kubota S., Ikegami Y., Kurokawa T., Sasaki R.,
Sugioka K., Nakano M. Generation of freeradicalsand initiation
of radicalreactionsin nitrones-Fe='-phosphatebuffer systems.
Biochem. B~.ophys.Re.r.Commun. 108: I025-I031; 1982.
82THOI. Thornalley P. J., Sarchct A. W., HillH. A. O., Bannister
J. V., Bannister W. H. The inhibitionof manganese superoxide
dismutase by cacodylate. Inorg. Chim. Acta 67: 7S-78; 1982.
82WAOI. Watanabe T., Yoshida M., Fujiwara S., Abe K., Onoc
A., Hirota M., IgarashiS. Spin trappingof hydroxyl radicalin
the tropospherefor determinationby electronspin resonance and
gas chromatography/mass spectrometry.Anal. Chem. 54: 247.02474; 1982.
82WA02. Walter T. H., Bancroft E. E., Mclntire G. L., Davis E.
R., Gierasch L. M., Blount H. N., Stronks H. J., Janzen E. G.
Spin trappingin heterogeneouselectrontransferprocesses.Can.
J. Chem. 60: 1621-1623; 1982.
83AZ01. Azizova O. A., Osipov A. N., Zubarev V. E., Yakhyaev
A.V., Savoy V. M., Kagan V. E., Vladimirov Y. A. Spin trapping
study on the nature of radicalsgenerated by X-radiolysisand
peroxidation of linolenic acid. $tudia Biophys. 96: 149-154;
1983.
83gAOl. BannisterJ. V., Thornalley P. J. The production of hydroxyl radicalsby adriamycin in red blood cells.FEB5 Lea. 157:
170-172; 1983.
83BA02. Barber M. i., Rosen G. M., Siegel L. M., Rauckman E.
; J. Evidence for formation of superoxide and formate radicalsin
Methanobacterium formicicum. J. Bacterial. 153: 1282-1286;
1983.
83BA03. BannisterW. H., BannisterJ. V., Searle A. J. F., Thornalley,P. J. The reaction of superoxide radicalswith metal picolinatecomplexes. Inorg. Chim. Acta 78: 139-142; 1983.
83BU01. Buetmer G. R., Doherty T. P., PattersonL. K. The kinetics of the reactionof superoxide radical with Fe(lll)complexes of EDTA, DETAPAC and HEDTA. FEBS Left. I$11: 143146; 1983.
83CA01. Carmichael A. L, Mossoba M. M., Riesz P. Photogeneration of superoxidc by adriamycin and daunomycin. An electron spin resonance and spin trapping study. FEBS Late. 164:
401-405; 1983.
83CA02. Castelhano A. L., Perkins M. I., Griller D. Spin trapping
of hydroxyl in water: Decay kineticsfor the "OH and COt':adduces to 5,5-dimethyl-l-pyrroline-N-oxide.Can. 'J. Chem. 61:
298-299; 1983.
83CO01. Cook M. D., Ng L. L., Roberts B. P. Spin.trappingof
alpha-azidoalkylradicals.Tetrahedron Left. 24: 3761-3764; 1983.
83DAOI. Davies M. I., Gilbert B. C., Not,man R. O. C. Electron
spin rcsonance studies.Part 64. The Hydroxyl radical-induced
decarboxylationof methionine and some relatedcompounds. J.
Chem. Sac. Perkin Trans. II 731-738; 1983.
83DA02. Davis G., Thornalley P. J. Free radical production from
the aerobic oxidationof reduced pyridine nucleotidescatalysed
by phenazine derivatives.Biochim. Biophys. Acta ?24: 456-464;
1983.
83DEOI. Decuyper J., Pierre J., Van de Vorst, A. Activated oxygen
species produced by photoexcited furocoumarin derivatives. Arch.
Int. Physiol. Biochim. 91: 471-476; 1983.
83DOOi. Docampo R., Moreno S. N. J., Mason R. P. Generation
of free radical metabolizes and superoxide anion by the calcium
indicators arsenazo I!1, antipyrylazo !11, and Murexide in rat
liver microsomes. J. Biol. Chem. 2511: 14920-14925; 1983.
83DOO2. Docampo R., Casellas A. M., Madeira E. D., Cardoni
R. L., Moreno S. N. 3., Mason R. P. Oxygen-derived radicals
from Trypanosoma cruzi.stimulated human ncutrophils. FEBS
Lea. 155: 25-30; 1983.
g3FEOI. Felix C. C., Reszka K., Scaly R. C. Free radicals from
photorcduction of hematopo~hyrin in aqueous solution. PhoIochem. Pkotobiol. 37: 141-147; 1983.
g3FLOI. Floyd R. A. Hydroxyl free-radical spin-adduct in rat brain
synaptosomes observations on the reduction of the nitroxide.
Biochim. Biophys. Acta "/56: 204-216; 1983.
296
G.R. BUETrNER
83FL02. Floyd R. A., Lewis C, A. Hydroxyl free radical formation
from hydrogcn peroxide by ferrous jron-nuclcotide complexes.
Biochemistry 22: 2645-2649; 1983.
.
83FL03. Floyd R, A. Direct demonstration that ferrous ion complexes of di- and triphosphute nucleotides catalyse hydroxyl free
radical formation from hydrogen peroxide. Arch. Biochem. Bin.
phys. 225: 263-270; 1983.
83GR01. Gruceffa P. Spin labeling of protein sulfhydryl groups by
spin trapping a sulfur radical: Application to Bovine serum albumin and myosin. Arch. Biochem. Biophy.~'. 225: 802-808; 1983.
83GR02. Grimes H. D., Perkins K. K., Boss W. F. Ozone degrades
into hydroxyl radical under physiological conditions--A spin
trapping study. Plant Physiol. 72: 1016-1020; 1983.
83GU01. Gutierrez P. L., Gee M. V., Bachur N. R. Kinetics of
anthraeycline antibiotic free radical formation and reductive glycosidnse activity. Arch. Biochem. Biophys. 223: 68-75; 1983.
83HA01. Hawley D. A., Kleinhans F. W., Biesccker J. L. Determination of alternate pathway complement kinetics by electron
spin resonance spectroscopy. Am. J. Clin. PatRol. 79: 673-677;
1983.
83H101. Hill H. A. O., Thornalley P. J. The effect of spin traps on
phcnylhydruzine-induced hacmolysis. Biochim. Biophys. Acta
"/62: 44-51; 1983.
83HU01. Hume D. A., Gordon S., Thornallcy P. J., Bannister J.
V. The production of oxygen.centered radicals by Bascillus-calmette-guerin.activatcd macrophages. An electron paramagnetic
resonance study of the response to phorbol myristate acetate.
Biochim. Biophys. Acta 763: 245-250; 1983.
831T01. ha O., Mutsuda M. Kinetic study for spin-trapping reactions of thiyl radicals with nitroso compounds. J. Am. Chem.
Sac. 108: 1937-1940; 1983.
83KA01. Kalyanaraman B., Mottley C., Mason R. P. A direct electron spin resonance and spin-trapping investigation of peroxyl
free radical formation by hematin/hydroperoxide systems. J.
Biol. Chem. 2~;8: 3855-3858; 1983.
83KU01. Kubow S., Dubose Jr. C. M., Janzen E. G., Carlson J.
R., Bray T. M. The spin trapping of enzymatically and chemically catalyzed free radicals from indole compounds. Biochem.
Biophys. Rex. Commun. 114: 168-174; 1983.
83Li01. Lion Y., Denis G., Mossoba M. M., Riesz P. E.S.R. of
spin-trapped radicals in gamma-irradiated polycrystalline DLalanine. A quantitative determination of radical yield. Int. J.
Radiat. Biol. 43: 71-83; 1983.
83MA01. Makino K., Mossoba M. M., Riesz P. Chemi~:al effects
of ultrasound on aqueous solution. Formation of hydroxyl radicals and hydrogen atoms. J. Phys. Chem. 117:1369-1377; 1983.
83MA02. Maldotti A., Bartocci C., Amadelli R., Carassiti V. An
ESR spin trapping investigation on the photoreduction of chlo.
rohemin in mixed solvents. Inorg. Chim. Acta'74: 275-278;
1983.
83MA03. Makino K., Mossoba M. M., Riesz P. ESR and spintrapping study of gamma-irradiated aqueous hydantoin solutions.
Keto..enol equilibrium and post-radiolysis growth. Radiation Rex.
95: 519-529; 1983.
83MA04. Makino K., Mossoba M. M., Riesz P. Electron spin resonance of spin-trapped radicals in gamma irradiated aqueous
uracil solutions. Chromatographic separation of radicals. J. Phys.
Chem. liT: 1074-1080; 1983.
83MA05. Makino K., Mossoba M. M., Riesz P. Formation of "OH
and "H in aqueous solutions by ultrasound using clinical equipmeat. Radiation Rex. 96: 416-421; 1983.
83MC01. McRae D. G., Thompson J. E. Senescence-dependent
changes in sup~roxide anio~ production by illuminated chloro.
plasts from bean leaves. P~nta |S|: 185-193; 1983.
83MO01. Motohashi N., Mort I. Superoxide-dependent formation
of hydroxyl radical catalyzed by transferrin. FEBS Lett. 157:
197,199; 1 9 8 3 . .
83N101. Niki E., Yokoi S., Tsuchiya J., Kamiya Y. Spin trapping
of peroxy radicals by phenyI.N-(tert.butyi)nitrone and methyl..... N-dtu'ylnitrone. J. Am. Chem. Soc..1OS: 1498-1503; 1983.
: 83.NO01. Nohl H . , Jordan W. OH" -generation by adriamycin
. semiquinonemsi H20~; an explanation for .the caniiotoxicity of
anthracycline antibiotics. Biochem. Biophys. Res. Commun. 114:
197-205; 1983.
83OR01. Ortiz de Montellano P. R., Augusta O., Viola E, Kunze
K.L. Carbon radicals in tile metabolism of alkyl hydrazines. J.
Biol. Chem. 258: 8623-8629; 1983.
83PR01. Pryor W. A. Prier D. G., Church D. E Electron-spin
resonance study of mainstream and sidestream cigarette smoke:
Nature of the free radicals in gas-phase smoke and in cigarette
tar. Environ. Health Perspective 47: 345-355; 1983.
83PR02. Pryor W. A., Prier D. G., Church D. E Detection of free
radicals from low-temperature ozone-olofin reactions by ESR
spin trapping: Evidence that the radical precursor is a trioxide.
J. Am. Chem. Sac. 105: 2883-2888; 1983.
83RE01. Reszka K., Chignell C. F. Spectroscopic studies of cutaneous photosensitizing agents-IV. The photolysis of benoxaprofen, an anti-inflammatory drug with phototoxic properties. Phowchem. Photobiol. 38:281-291; 1983.
83SI01. Sinha B. K. Enzymatic activation of hydrazine derivatives. A spin-trapping study. J. Biol. Chem. 258: 796-801;
1983.
83Sl02. Sinha B.. K., Patterson M. A. Free radical metabolism of
hydralazine. Binding and degradation of nucleic acids. Biochem.
Pharmacol. 32: 3279-3284; 1983.
83TH01. Thomalley P. J., Trotta R. J., Stern A. Free radical involvement in the oxidative phenomena induced by tart-butyl hydroperoxide in crthyrocytes. Biochim.. Biophys. Acta 759: 1622~ 1983.
83TH02. Thornalley P. J., Stern A., Bannister J. V. A Mechanism
for primaquine mediated oxidation of NADPH in red blood cells.
Biochem. Pharmacol. 32: 3571-3575; 1983.
83TO01. Tomasi A., Billing S., Garner A., Slater T. E, Albano
E. The metabolism of halothane by hepatocytes: A comparison
bctwcen free radical spin trapping and lipid peroxidation in relation to cell damagc. Chem..Biol. Interactions 46: 353-368;
1983.
83TO02. Tomasi A., Albano E., Vannini V., Dianzani M. U. Spin
trapping of a free radical reactive intermediate during isoniazid
metabolism in isolated hepatocytes. IRC5 Mad. Sci. 11: 851852', 1983.
83TO03. Tomasi A., Albano E., Dianzani M. U., Slater T. E,
Vannini V. Metabolic activation of 1,2-dibromoethane to a free
radical intermediate by rat liver microsomes and isolated hepatocytes. FEBS Lett. 160: 191-194; 1983.
*84AB01. Abe K., Suezawa H., Hirota M., ishii T. Mass spectrometic determination of spin adducts of hydroxyl and aryl free
radicals. J. Chem. Sac. Perkin Trans. II 29-34; 1984.
84AUOI. Augusta O., Faljoni-Alario A., Leite L. C. C., Nobrega
F. G. DNA stand scission by the carbon radical derived from 2phenylethylhydrazine metabolism. Carcinogenisis $: 781-784;
1984.
84BAOI. Baldwin D. A., Jenny E. R., Aisen P. The effect of human
serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxidc and hydrogen peroxide. J. Biol. Chem.
2[;9: 13391-13394; 1984.
84BO01. Borg D. C., Schaich K. M., Forman A. Autoxidative
cytotoxicity: Is there metal indel~ndent.formation of hydroxyl
radicals? Are thet~ "crypto-hydroxyl" radicals? In: Ozy.genRadicals in Chemistry and Biology (W. Bars, M. Saran, and D. Tait,
ads.), pp. 123-129, Walter de Gruyter and Company, Berlin
(1984).
84BO02. Borg D. C., Schaich K. M. Cytotoxicity from coupled
redox cycling of autoxidizing xenobiotics and metals. Israel J.
Chem. 24: 38-53; 1984.
84BOO3. Bowyer I. R., Camilleri P., Stapleton A. Superoxide formation in pea chloroplasts by a dioxathiadiaza-2,5-pentalene derivative, a new lipophilic Photosystem I acceptor. FEBS Lett.
172: 239-244; 1984.
84BUOl. Buettner G. R., Doheny T. P., Bannister T. D. Hydrogen
peroxide and hydroxyl radical formatiGn by methylene blue in
the presence of ascorbic acid. Radiat. Environ. Biophys. 23:
235-243; 1984.
84BU02. Buetlner G. R. Thiyi free radical production with hema-
Spin adduet parameters
toporphyrin derivative, cystcine and light: A spin-trapping study.
FEBS Leer. 177: 295-299; 1984.
84CA01. Carmichael A. J., Makino K., Riesz P. Quantitative aspects of ESR and spin trapping of hydroxyl radicals and hydrogen
atoms in gamma-irradiated aqueous solutions. Radial. Res. I00:
222-234; 1984.
84DE01. Decuyper J., Piettc J., Lopez M., Mervillc M.-P., Van tic
Verst, A. Induction of breaks in deoxyribonucleic acid by photoexcited promazinc derivatives. Biochem. Pharmacol. 33: 40254031; 1984.
84EV01. Evans J. C., Jackson S. K., Rowlands C. C., Barratt M.
D. ENDOR and ESR studies of spin-trapped radicals in autoxidized unsaturated fatty acid methyl esters. Biochim. Biophys.
Acts 792: 239-242; 1984.
84FA01. Faraggi M., Carmichael A., Riesz E OH radical formation
by photolysis of aqueous porphyrin solutions. A spin trapping
and e.s.r, study. Int. J. Radiat. Biol. 46: 703-713; 1984.
84FI01. Fischer V., Harrelson Jr. W. (3., Chignell C. E, Mason R.
P. Spectroscopic studies of cutaneous photosensitizing agents.
V. Spin trapping and direct electron spin resonance investigations
of the photoreduction of gentian(crystal) violet. Photobiochem.
Photobiophys. 7: I II-119; 1984.
g4FLOI. Floyd R. A., Lewis C. A., Wang P. K. High pressure
liquid chromatography-electrochemical detection of oxygen free
radicals. In: Methods of Enzymology: Oxygen Radicals in Biological Systems Vol. 105, (L. Packer, ed.), pp. 231-237, Academic Press, New York (1984).
84FL02. Floyd R. A., Zs.-Nagy I. Formation of long-lived hydroxyl
free radical adducts of praline and hydroxyproline in a Fenton
system. Biochim. Biophys. Acta 790: 94--97', 1984.
84FU01. Fujii K., Maria M., Kikuchi H., Ishihata S., Okida M.,
Floor F. In viva spin-trap study on anaerobic dchalogenation of
halothane. Life Sci. 35: 463-468; 1984.
84(3101. (3irotti A. W., Thomas J. P. Superoxide and hydrogen
peroxide-dependent lipid pcroxidation in intact and Triton-dispersed crythrocytc membranes. Biochem. Biophys. Res. Commun. liB: 474-480; 1984.
"84(3R01. Green M. J., Hill 14. A. O. Chcmistry'of dioxygen. In:
Methods of Enzymology: Oxygen Radicals in Biological Systems
Vol. 105, (L. Packer, cd.), pp. 3-22, Academic Press, New
York (1984).
g4HA01. 14alpern A. Spin trapping of radicals in trillated methanol.
Chem. Phys. Letters 103: 523-526; 1984.
84HA02. 14arman L. S., Mottley C., Mason R. E Free radical
metabolites of L-cyst¢ine oxidation. J. Biol. Chem. 259: 56065611; 1984.
g41(301, lguchi N., Moriya E, Makino K., Rokushika S., Hatano
H. Studies on gamma-irradiated aqueous solutions of amino acids
with functional groups by the spin-trap high performance liquid
chromatography-electron spin resonance method. Can..I. Chem.
62: 1722-1730; 1984.
g41T01, ha O., Matsuda M. Flash photolysis study for substituent
and solvent effects on spin-trapping rates of phcnylthiyl radicals
with nitrones. Bull. Chem. Sac. Jpn. $7: 1745-1749; 1984.
*84JA01. Janzen E. G. Spin Trapping. in: Methods of Enzymology:
Oxygen Radicals in Biological Systems Vol. 105, (L. Packer,
ed.), pp. 18g-198, Academic Press, New York (1984).
84JA02. Janzen E. G., Coulter (3. A. Spin trapping in 'SDS Micellos. J. Am. Chem. Sac. 106: 1962-1968; 1984.
g4JA03. Janzen E. G. Electron spin resonance study of the hypeffine
splitting constants of naturally abundant carbon.13 and nitrogun-15 in diphenylmethyl tort-butyl aminoxyl(nitroxide). Solvent and temperature effects. Can. J. Chem. 62: 1653-1657;
+ 1984.
84JA04. Janzen E. G., Oehler U. M. Proton and nitrogen.14 ENDOR spectra of aminoxyl spin adducts from PBN. Chemistry
Leu. 1233-1236; 1984.
84JO01. Josephy P. D., Rehorek D~, Janzen E. G. Electron spin
resonance spin trapping of thiyl radicals from the decomposition
of thionitrites. Yetrahedron Lee. 25: 1685-1688; 1984.
84KA01. Kalyanaraman B., Mottley C., Mason R. P. On the use
of organic extraction in the spin-trapping technique as applied
297
to biological systems. J. Biochem. Biophys. Methods 9:27-31;
1984.
B4KA02. Kalyanaraman B., Scaly R. C., Sinha B. K. An electron
spin resonance study of the reduction of peroxides by :mthracycline semiquinones. Biochim. Biophys. Acts 799: 270-275,
1984.
"84KA03. Kalyanaraman B,, Sivarajah K. The electron spin resonanc¢ study of free radicals formed during the arachidonie acid
cascade and eooxidation of xcnobiotics by prostaglandin synthase. In: Free Radicals in Biology, Vol. VI, (W. A. Pryor, cal.)
pp. 140-198, Academic Press, New York (1984).
84KUOI. Kubow S., Janzen E. (3., Bray T. M. Spin-trapping of
free radicals formed during in vitro and in viva mci'abolism of
3-methylindole. J. Biol. Chem. 259: 4447-4451; 1984.
84LA01. Lambert R., Kroneck P. M. H., gouger P. Radical formation and peroxidative activity of phototoxic diphcnyl ethers.
Z. Naturforsch. 39c: 486-491; 1984.
*84MA01. Mason R. P. Spin trapping free radical mctabolites of
toxic chemicals. In: Spin Labeling in Pharmacology (J. L. 14oltz• man, ¢d.), pp. 87-129, Academic Press, New York (1984).
"84MA02. Makino K., Moriya F., 14atano 14. Application of the
spin.trap 14PLC-ESR method to radiation chemistry of amino
acids in aqueous solutions. Radial. Phys. Chem. 23: 217-228;
1984.
84MCOI. McCay P. B., Lai E. K., Payer J. L., DuBose C. M.,
Janzen E. (3. Oxygen- and carbon-cantered free radical formation
during carbon tetrachloridc metabolism. Observation of lipid rad; teals in viva and in vitro. J. Biol. Chem. 259: 2135-2143; 1984.
84MEOI. Mcrvillc M. P., Dccuypcr J., Lopez M., Piett¢ J., Van
de Verst, A. Phototoxic potentialities of tartrazine: Screening
tests. Photochem. Photobiol. 40: 221-226; 1984.
84MO01. Mossoba M. M., Roscnthal I., Carmichacl A. J., Riesz
E Photochemistry of porphyrins as studied by spin trapping and
electron spin resonance. Photochem. photobiol. 39: 731-734;
1984.
84MO02. Moreno S. N. J., Mason R. P., Docampo R. Di~'tinct
reduction of nitrofurans and mctronidazolc to frec radical metabolites by tritrichomonas foetus hydrogenosomal and cytosolic
enzymes. J. Biol. Chem. 259: 8252-8259; 1984.
84MO03. Morcno S. N. J., Mason R. P., Docampo R. Reduction
of nitrofurtimox and nitrofurantoin to free radical mctabolites by
rat liver mitochondria. J. Biol. Chem. 2S9: 6298-6305; 1984.
84MO04. Mossoba M. M., Makino K., Ricsz P.; Perkins Jr. R. C.
Long-range proton hyperfine coupling in alicyclic nitroxide radicals by resolution-enhanced electron paramagnetic resonance.
J. Phys. Chem. 88: 4717-4723; 1984.
g4MO05. Moriya F., Makino K., Iquchi N., Suzuki N., Rokushika
S., Hatano 14. Studies on spin-trapped radicals in gamma-irradinted aqueous solutions of cis-4-chloro-L-proline and cis-4-hydroxy-L-proline by high-performance litluid chromatography and
ESR spectroscopy. J. Phys. Chem. 811:2373-2377; 1984.
g4MO06. Moriya F., lguchi N., Makino K., Rokushika S., 14atano
H. Studies on gamma-irradiated aqueous solutions of tripeptides
composed of glycine and L-alanine by the spin-trap high-performance liquid chromatography-electron spin resonance method.
Can. J. Chem. 62: 2206-2216; 1984.
84MO07. Moreno S. N. i., Mason R. P., Docampo R. Car° and
Mg:'-enhanced reduction of arscnazo ili to its anion free radical
metabolite and generation of superoxidc anion by an outer mitochondrial membrane azorcductase. J. Biol. Chem. 259: 1460914616; 1984.
84MU01. Muindi J.R. E, Sinha B. K., Gianni L., Myers C. E.
Hydroxyl radical production and DNA damage induced by an.
thrcyclinc-iron complex. FEBS Leer. 172: 226-230; 1984.
84NO01. Nohl ~.1., Jordan W. The biochemical role of ubiquinone
and ubiquinone-derivatives in the generation of hydroxyl-radicals
from hydrogen-peroxide. In: Oxygen Radicals in Chemistry and
Biology, (W. Bars, M. Satan. and D. Tail, eds.), pp. 155-163,
Walter de (3ruyter and Co., Berlin (1984).
g4PlOI. Piette L. H., Baxley L. H., Graver T. A., Harwood P. J.
A comparative kinetic study of the initiation of lipid peroxidltioa
with OH radicals and ferrous iron. in: Oxygen Radicals in Chem.
298
G.R. BULrrrNER
larry and Biology, (W. Burs, M. Saran, and D. Tale, ads.), pp.
135-145, Walter de Gruyterand Company, l~erlin(1984).
84PO01. Pollakis G., GoormaghtighE., Deimelle M., Lion Y.,
Ruysscha0rt J.-M. Adriamycinand derivatives interaction with
the mitochondrialmembrane: O2 consumptionand free radicals
formation. Res. Commun, Chem. Path. Pharmacol. 44: 445459; 1984.
84PR01. PryorW. A., TamuraM., ChurchD. F. ESR spin-trapping
studyof the radicalsproduced in NOx/olefin reaction.~:A mechanism for the productionof the apparently long-livedradicals in
gas phase cigarette smoke. J. Am. Chem. Sac. 106: 5{373-5079;
1984.
84RE01. Rehorek D., Janzen E. G. On the formation of arseno
aminoxyls (nitroxides) by spin trapping of arseno radicals. Po.
lyhedron 3: 631-634; 1984.
84RE02. Rehorek D., DuBose C. M., Janzen E. G. Spin trapping
of chlorine atoms produced by photolysis of hexacbloroplatinate(IV) in solution, lnorg. Chim. Acta 83: LT-Lg; 1984.
84RE03. Reszka K., Hall R. D., Chignell C. F. Quenching of
the excited state of 2-phenylbenzoxazoleby azide ion. Fluorescence and ESR study. Photochem. Photobiol. 40: 707-713;
1984,
84RE04. Rehorek D., Janzen E. G. Spin-trapping van Azidradikalen mittels Nitrosoverbindungen.Z, CheM. 24: 68; 1984.
84RE05. Rehorek D., Janzen E, G, Spin trapping of radicals generated by ultrasonicdecompositionof organotin compounds. J.
Organometal. Chem. 268: 135-139; 1984.
84RE06. RehorekD, Janzen E, G. On the spin trapping of cyanatyl'
('NCO) radicals by nitrosodurene. Can. J. Chem. 62: 15981599; 1984.
84RE07. RehorekD., Janzen E. G. Spin-trappingvan radikalen bei
der ZersetzungaromatischerDiazoniumsalzemittelsUltraschall.
J, Pratt. Chem. 326: 935-940; 1984,
84RE08, RehorekD., DuBoseC. M., |anzen E. G. Spin-trapping
van Radikalen bei der Photolyse van trans-[Co(I,2.diamino.
ethan)2CI2]CIin waessriger Locsung. Z. Chem. 24: 188; 1984.
84RE09. Rehorek D., Janzen E. G, Ueber den Nachweis van Radikalen bei der Sonolyse van [Co(NH3)sN3]CI2. Z. CheM. 24:
228-229; 1984.
84REI0. Rehorek D, Janzen E. G. Spin-Trappingvan Bromatomen
miuels PbenyI-N-tert-butylnitron.Z. CheM. 24: 441-442; 1984.
.84RO01. Rosen G. M., Freeman B. A. Detection of superoxide
generated by endothelialcells. Proc. Natl. Acad. Sc'i. USA 81:
7269-7273; 1984.
84RO02. Ross D., Albano E., Nilsson U., Moldeus P. Thiyl radicals--fonnation during peroxidase-catalyzed metabolism of
acetaminophenin the presense of thiols. Biochem. Biophys. Res.
Cornmun. IIS: 109-115; 1984.
"84RO03. RosenG. M., RauckmgnE. J. Spin trapping superoxide
and hydroxylradicals. In: Methods in Enzymology: Oxygen Radicals in Biological Systems, Vol. 105 (L. Packer, ed.), pp. 198209, Academic Press, (1984).
84RO04. RosenG. M., RauckmanE. J., WilsonR. L., Jr., Tschanz
C. Productionof superoxide during the metabolism of nitraze.
pare. Xenobiotica I& 785-794; 1984.
84S101. Sinha B. K., Trash M. A., KennedyK. A., MimnaughE.
G. Enzymaticactivation and binding of adriamycin to nuclear
DNA. Cancer Res. 44: 2892-2896; 1984.
84S102. SinhaB. K. Metabolicactivationofprocarbazine.Evidence
for carbon-centered free-radical intermediates. Biochem. Phar.
rascal. $3: 2777-2781; 1984.
• ISUOI. SugiokaK:, Nakano~[., TsuchiyaJ.,Nakano M., Sugioka
Y., Tero-Kubota S., lkegami Y. Clear evidence for the partici.
parian of "OHin lambdaDNA bn~akageinducedby the enzymatic
t'eductionof adriamycinin the presenceof iron-AOP. Importance
of'local "OH Concentrationfor DN/ stanjltcleavage.Biochem.
.lnry Int. 9: 237-242; 1984.
/.
~TEOI ;: TeW-gubotaS.; IkegamiY., Stl~oka K., NakanoM. Spin
.i trapping on the generation mechanismof active oxygenradicals
: i . in.the enzymatictu/uction of quinoid antitumoragents. Chem.
i~:/.vm/i/~n. 1583-'1586; 1984. " " "
" "'
"
• 84TH01'~ Thontalley P. L; Trotta R. L, Stem A. Free radical pro-
duction from the reaction of t-butyl hydroperoxidewith iron
complexes. In: Oxygen Radicals in Chemistry and Biology, (W.
Burs, M. Saran, a.nd D. Talt, eds.), pp. 215-218, Walter de
Gruyter and Company, Berlin (1984).
84TH02. ThornalleyP. J., Stern A. The productionof freeradicals
during the autoxidationof monosaccharides by bufferions.Car.
bohydr. Res. 134: 191-204; 1984.
84TH03. Thornalley E J, The haemolyticreactions of I-acetyl-2phenylhydrazineand hydrazine: A spin trapping study. CheM..
Blol, Interactions 50: 339-349; 1984.
84TH04. ThornalleyP., WolffS., Crabbe J., Stern A. The autoxidation of glyceraldehydeand other simple monosaccharidesunder physiologicalconditionscatalyzedby buffer ions. Biochim.
Blophys, Acla 797: 276-287;.1984,
84TH05. Thornally P. J., d'Arcy Doherty M., Smith M, T., Bannister J. V., CohenG. M. The formationof active oxygenspecies
following activationof I-naphthol, 1,2 and 1,4-naphthoquinone
by rat liver microsomes.Chem,-Biol. Interactions 48: 195-206;
1984.
84TH06. ThornalleyP. J,, Wolff S. P., Crabbe M. J. C., Stern A.
The oxidation of oxyhaemoglobinby glyceraldehydeand other
simple monosaccharides.Biochem, J. 217: 615-622; 1984,
• 84"1"O01. Tomasi A., Albano E., Bini A., Botti B., Sister T. F,,
• VanniniV. Free radical intermediatesunder hypoxic conditions
in the metabolismOf halogenatedcarcinogens. Toxicol. Pathology 12: 240-246; 1984.
84UE01. Ueno I., KohnoM., HaraikawaK., Hirono I. Interaction
between quercetin and superoxide radicals. Reduction of the
quercetin mutagenicity.J. Pharm. Dyn. 7: 798-803; 1984.
84UE02, UenoI., gohno M., YoshihiraK,, Hirono I. Quantitative
determinationof the superoxide radicals in the xanthineoxidase
reaction by measurement of the elect~on spin resortance signal
of the superoxide radical spin adduce of 5,5.dimethyi-l-pyrroline-l-oxide. J. Pharm. Dyn. 7: 563-569; 1984.
84WE01. WeitzmanS. A., GraceffaP. Asbestoscatalyzeshyclroxyl
and superoxideradicalgenerationfromhydrogenperoxide.Arch.
Biochem. Biophys. 228: 373-376; 1984.
84WO01. WolffS. P,, Crabbe M. J. C., Thronalley P. J. The autoxidationof glyceraldehydeand other simple monosaccharides.
E.~perientia 40: 244-246; 1984.
84YA01. YamadaT., Niki E., Yokoi S., TsuchiyaJ., Yamamoto
Y., KamiyaY. Oxidation of lipids. XI. Spin trapping and identificationof peroxy and alkoxyradicalsof methyllinoleate.Chem.
Phys. Lipids M: 189-196; 1984.
84ZS01. Zs.-Nagy I., Floyd R. A. Hydroxylfree radical reactions
with amino acids and proteins studied by electron spin resonance
spectroscopy and spin-trapping. Biochim. Biophys. Acta 780:
238-250; 1984,
85AL01. Albano E., Tomasi A., Vannini V., Diazani M. U. Detection of free radical intermediatesduring isoniazidand iproniazid metabolism by isolated rat hepatocytes. Biochem. Pharmacol, 34: 381-382; 1985.
• 85AL02. Albano E., Tomasi A., Cheeseman K. H., Vannini V.,
Dianzani M. U. Use of isolated hepatocytesfor the detection of
free radical interrmediatesof halogenatedhydrocarbons. In: Free
Radicals in Liver Injury, (G. Poll, K. H. Cheeseman, M. U.
Dianzani, and T. F. Sister, eds.), pp. 7-16, IRL Press Limited,
Oxford (1985).
85AN01. AntholineW. E., Sarna T., Seitly R. C., Kalyanaraman
B., Shields G. D., Petering D. H. Free radicals from the photodecompositionof bleomycin.Phowchem. Phowbiol. 41: 393399; 1985.
85AU01. Augusta O., DuPlessis L. R., Weingrill C. L. V. Spin
trapping of methyl radical in the oxidative metabolismof i,2dimethyihyd~ ';he.Biochem. Biophys. Res. Commun. |24J:853858; 1985.
858A01. Baumann H., Timpe H.-J., Zubarev V. E., Fat N. V.,
Mel'nikow M. J. ESR-spin-trappingbei bivalenten Photoinitiatorsystemen, bestehend aus alpha-Phenyl-benzoinund Aryloniumverbindungen.Z. Chem. ~ : 181; 1985.
858A02. BaumannH., aerial U., TimpeH.J., ZubaravV. E., Fok
N.V., Mel'nikow M. J. Ist der Spin.Trap bei photoinduzierten
Spin adduce parameters
Elektronentransferreaktionen eine "inerle" Sonde?Z. Chem. 2S:
182-1831 1985.
858A03. Baumann H., Tampa H.-J., Zubatev V. E., Fok N. V.,
Mel'nikov M. Y., Rnskasovskij Y. W. Untersuchungen zur SpinTrapping.Kinetik in System van Radikalen unterschiedlicher
Reaktivitaet.Die Photolyse van alphn-Phenylbenzoin in Gegcnwt~rt van Benzyliden.tert-butylamin-N.oxid.J. Prakt. Chemie.
327: 749-758; 1985.
*858A04. Bannister J. V., Bannister W. H. Production of oxygencentered radicals by neutrophils lend mnerophages as studied by
electron spin resonance (ESR). Environ. Health Pcrspect, 64:
37~431 198'L
858E01. Ben-Hur E., Curmichael A., Riesz E, Rosenthal 1. Photochemical generation of superoxide radical and the cytotoxicity
of phthalocyanines. Int. J. Radial. Biol. 48: 837-846; 1985.
85BO01, BowycrJ, R., Camilleri P, Spin-trap studyof the reactions
of ferredoxin with reduced oxygen species in pea chloroplasts.
Biochim. Biophys. Acza 808: 235-242; 1985.
858002. Boyd J. A., Eling T. E. Metabolism of aromatic amines
by prostaglandin H synthase. Environ. Health Perspective 64:
45-511 1985.
85BR01. Bray T. M., Kubow S. Involvement of free radicals in the
mechanism of 3-methylindole-induced metabolic activation in
chemically induced lung disease. Enviro'n. Health Perspective
64:61-671 1985.
85BU0 I. Buettner G. R. Spin trapping of hydroxyl radical. In: CRC
Handbook of Methods far .Oxygen Radical Research, (R.A.
Greenwald, ed.), pp. 151-155, CRC Press,' Boca Raton (1985).
858U02. Buettner G. R., Need M. J. Hydrogen peroxide and hydroxyl free radical production by hematoporphyrin derivative,
ascorbate and light. Cancer Lett. 25: 297-304; 1985.
85CAOI. Carmichael A. J., Mossoba M. M., Riesz P., Rosenthal
I..Food dye-sensitized photoreactions in aqueous media. Pho.
tobi6chem. Photobiophys. IO: 13-211 1985.
85CA02. Carmichael A., Riesz P, Photoinduced reactions of anthraquinone antitumor agents 'with peptides and nucleic acid bases:
- An electron spin resonance and spin trapping study. Arch. Biochem.
Biophys. 237: 433-444; 1985.
85CA03. Carmichael A. J., Samuni A., Riesz P. Photogeneration
of superoxide and decarboxylated peptide radicals by carboquone, mitomycin C and streptonigrin. An electron spin resonance and spin trapping study. Photochem. Photobiol. 41: 635642; 1985.
*85CH01. Cheeseman K. H., Albano E. F., Tomasi A., SlaterT.
F. 13iochemicalstudieson the metabolic activationof halogenated
alkancs. Environ. Health Perspective M'. 85-1011 1985.
'85CH02. Chignell C. F.., Motten A. G., Buettner G. R. Photoindared free radicals from chlorpromazine and related phenothiazines: Relationship to phenothiazine-induced photosensitization. Environ. Health Perspective 64: 103-110; 1985.
'85CH03. Church D. E, Pryor W. A. Free-radical chemistry of
cigarette smoke and its toxicological implications. Environ. Health
Perspective 64: I I 1-126; 1985.
85CO01. Covello P. S., Thompson J. E. Spin trapping evidence for
formation of the sulfite radical anion during chloroplast-mediated
oxidation of bisulfite ion. Biochim. Biophys. Acta 843: 150-154;
1985.
85DO01. Dugue B., Meunier B. How can iron salts mediate the
degradation of nucleos(t)ides by elliptinium acetate via free radicals? Biochem. Biophys. Res. Commun. 133:15-221 1985.
85EL01. Eling T. E., Mason R. P., Sivarajah K. The formation of
aminopyrene cation radical by the peroxidase activity of pros, taglandin H synthase and subsequent reactions of the radical../.
Biol. Chem. 260: 1601-1607; 1985.
85EVOI. Evans J. C., Jackson S, K., Rowlands C. C., Barratl M.
D. ENDOR, triple resonance and ESR studies of spin-trapped
radicals in autoxidized linoleic acid and its deuterated derivatives. Biochim. Biophys. Acta S35:421-4251 1995.
g5EV02. Evans J. C., Jackson S. K., Rowlands C. C., Barrett M.
D. An electron spin resonance study of radicals from chloramineT-I. Spin trapping of radicals produced in acid media. Tetrahedron 41: 3191-3194; 19"85.
299
85EV03. Evans J, C,, Jackson S, K., Rowlands C. C,, Barnett M,
D, An electron spin resonance study of radicals from chloramlneT--2. Spin trapping of photolysis products of ehloramine-T at
alkaline pH. Tetrahedron41: 5195-5200; 1985. See also erratum
in: Tetrohedron 42: 2387; 1986.
85F101, Fischer V., West P. R., Nelson S. D,, Harrison P, J,, Mason
R.P. Formation of 4-aminopF,cnoxyl free radical from the acetaminophen metabolite N-acetylop-benzoquinone amine. J. Biol.
Chem. 260:11446-11450; 1985.
"85GR01. Green M. J., Hill H. A. O., Taw D. (3. Applications of
spin-trapping to biological systems. Biochem, Sac. Trans, 13:
600-603; 1985,
85HA01. Haipem A. Spin trapping of radicals in tritiated benzene.
Chem. Phys.'Lett. !19: 331-334', 1985.
85HA02. Hulpcrn A., Knieper J. Spin trapping of radicals in gas.
phase cigarette smoke. Z. Nmur/orsch. 40b: 850-852; 1985.
85HA03. Hammel K. E., Tien M., Kalyanaraman B., Kirk T. K.
Mechanism of oxidative C°-CBcleavage of a lignin model darner
by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 260:
.8348-8353; 1985.
*85JAOI. Janzen E. G., Stronks H. J., DuBose C. M., Payer J.
L., McCay P. B. Chemistry and biology of spin.trapping radicals
associated with halocarbon metabolism in vitro and in viva. En.
viron. Health Perspective 64: 151-170; 1985.
85KA01. Kalyanaraman B., Junzen E. G., Mason R. P. Spin trapping of the azidyl radical in azide/catalase/H~O2 and various
azide/peroxidase/H2Oz peroxidizing systems. J. Biol. Chem. 260:
4003-4006; 1985.
85KA02. Kalyanaraman B., Sinha B. K. Free radical-mediated activation of hydrazine derivatives. Environ. Health Perspective
64:179-1841 1985.
85Ki01. Kirk T. K., Mozuch M. D., Tien M. Free hydroxyl radical
is not involved in an important reaction of iignin degradation by
Phanerochaete chrysoporium burds. Biochem. J. 226: 455-460;
1985.
85KU0 I. Kubow S., Bray T. M., Janzen E. G. Spin trapping studies
on the effects of vitamin E and glutathione on free radical production induced by 3-methylindole. Biochem. Pharmacol. 34:
1117-11191 1985.
*85MA01. Mason R. P., Josephy P. D. Free radical mechanism of
nitroreductase. In: Toxicity of Nitroaromatic Compounds, (D.E.
Rickerl, ed.), pp. 121-140, Hemisphere Publishing Corp.,
Washington (1985).
*g5MA02. Makino K., Moriya F., Hatano H. Separation of free
radicals by high-performance liquidchromatography with electron spin resonance detection.J. Chromatography 332:71-1061
1985.
85MA03. Matsugo S., Kayamori N., Hatano Y,, Ohta T., Konishi
T. Degradation mediated OH radical generation from synthetic
cyclic peroxides: ESR studies. FEB~ Leer. 154: 25-29; 1985.
85ME01. de Mello Filho A. C., Meneghini R. Protection of maremalian cells by o-phenanthroline from lethal and DNA-damaging
effects produced by active oxygen species. Biochim. Biophys.
Acta hi?: 82-89; 1985.
85MI01. Miyazawa T., Chiba T., Kaneda T. Oxygen-centered radical formation in liverhomogenates and microsomes upon the
addition of lipidhydroperoxides. Agric. Biol. Chem. 49: 24912492; 1985.
85MI02. Miyazawa T., Chiba T., Kaneda I". Spin trapping of oxygen.centered lipidradicalsin liverof oxidized oil-dosed rats.
Agric. Biol. Chem. 49:3081-30531 1985.
85MI03. Mikuni T., Tatsuta M., Kamachi M. Production of hydroxyl-free radical by reaction of hydrogen peroxide with Nmethyl-A"-nitmsoquanidine. CancerRes. 4S: 6442-6445; 1985.
85M!04. Mikani N., Takahashi N., Yamada H., Miyamoto J. Separaiion and identification of short-lived free radicals formed by
hotolysis of the pyrethroid insecticide fenvalerate. Pestle. Sci.
6:IO1-1121 1985.
85MO01. Motten A. O., Buettncr G. g., Chignell C. F. Spectroscopic studies of cutaneous photosensitizing agents-Vlll. A spin
trapping study of light induced free radicals from chlorpronmzine
and p.,'omm~ine.Photochem. Photobio142: 9-15; 1985.
~
300
13. R, BUEI"rNER
83MO02. Mossoba M. M., Gutierrez P. L. Diaziquono as a potential
agent for photoirradiation therapy: Formation of the semiquinone
and hydroxyl radicals by visible light. Biochem. Biophys. Res.
Commun, 132: 443-452; 1985.
85MO03. Morgan D. D., Mendenhail C. L., Bobst A. M., Roustcr
S.D. Incorporation of the spin trap DMPO into cultured fetal
mouse liver cells. Photochem, Photobiol. 42: 93-94; 1985.
85NO01. Noda A., Noda H., Ohno K., Sonde T., Misaka A., Kanazuwa Y., Isobe R., Hiram M. Spin trapping of a free radical
intermediate formed during microsomal metabolism of hydrazinc. Biochem. Biophys. Res, Commun. 133: 1086-1091; 1985.
83OK01. Okazaki M., Sakata S., Kanaka R., Shiga T. Application
of spin trapping to probe the radical pair model of magneticfield-dependent photoroduction of naphthoquinone in SDS mi.
cellar solution. J. Am. Chem. Sac. 107: 7214-7216; 1985.
85PR01. Pritsos C. A., Constantinides P. P., Tritton T. R., Helm.
brook D. C., Sanorelli A. C. Use of high-performance liquid
chromatography to detect hydroxyl and superoxide radicals generated from mitomycin C. Anal. Biochem. 150: 294-299; 1985.
85RE0 I. Rehorek D., Janzen E. G. Uebcr die Photolyse van Quecksilber(ll)-eyanid in waessriger Locsung. Z. Chem. 25: 69-70;
1985.
85RE02. Rehorek D., Janzen E. G. Ueber die Reaktion van Chlorani[ mit Cyanidioncn--eine ESR.Studie. J. Prakt. Chem. 32'/:
705-717; 1985.
85RE03. Rehorek D., Janzen E. G. Ueber die Reaktion van CyanidIonen mit O-zentrienen Radikalen. Z. Chem. 25:451-452; 1983.
83RE04, Rehorek D., Janzen E. G. Ueber die Reaktion van Per.
oxodisulfat mit Azidionen. Z. Chem. 2S: I00-101; 1985.
*85RE05. Rehorek D. Spin trapping of radicals in reactions of inorganic and coordination compounds. Proceedings of the IOth
Conference on Coordination Chemistry, pp. 329-332; 1985.
"85RI01. Riesz P., Berdahl D., Christman C. L. Free radical generation by ultrasound in aqueous and nonaqueous solutions. En.
viron. Health Perspective 64: 233-252; 1985.
"85RO01. Rosen G. M., Finkelstein E. Use of spin traps in biological systems. Adv, Free Rad. Biol. Mud. I: 345-375; 1985.
"85RO02. Ross D., Maid,us P. Generation of reactive species and
fate of thiols during peroxidase-catalyzed metabolic activation
of aromatic amines and phenols. Environ. Health Perspective
64: 233-257; 1985.
85RO03. Ross D., Cotgreave I., Mold6us P. The interaction of
reduced glutathione with active oxygen species generated by
xanthine-oxidase-catalyzed metabolism of xanthine. Biochim.
Biophys. Acta 841: 278-282; 1985.
B5ROO4. Ross D., Norbeck K., Maid,us P. The generation and
subsequent fate of glutathionyl radicals in biological systems. J.
Biol. Chem. 260: 15028-15032; 1985.
85TAOI. Takahashi N., Mikami N., Yamada H., Miyamoto J. Photodegradation of the herbicide bmmobutide in water. J. Pesticide. Sci. 10:247-256; 1985.
gSTHOI. Thoroalley P. J., Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress.
Kinetics and mech.anism of its reaction with superoxide and hydroxyl radicals. Biochim. Biophys. Acta 827: 36-44; 1985.
"85TH02. Thoroalley P. J., Bannister J. V. The spin trapping of
superoxide radicals. In: CRC Handbook of Methodsfor Oxygen
Radical Research, (R. A. Greenwald, ed.), pp. 133-136, CRC
Press, Boca Raton ( 1 9 8 5 ) .
85TH03. Thomas C. E., Morehouse L. A., Aust S. D. Ferritin and
superoxide-dependent lipid peroxidation. J. Biol. Chem. 260:
3275-3280; 1985.
"85TH04. Thoroalley P. J. Monosacchande autoxidation in health
"
and ~sease. Environ. Health Perspective M: 297-307; 1985.
85TH05. Thoroalley P. J., Stern A. The hydrolytic autoxidation of
: 1,4.mphthoquinone-2.pota~ium sulphonate: Implications for 1,4• nal~uineme-2-1xnssitem sulpbonate-induced oxidative stress
• in the ted blood cell. Ckcm..Biol. Interactions 56:55-71; 1985.
• 8$THO6..Thoroalley P. J.,'Vasak M. Possible role for roe~lolhi..... 9nein i n protection against' end!alien-induced oxidative suess.
• .~.i~ Kinetics:and mechanism of its re',orion with s~:peroxide and by• i. :~dmxyl radicals.. Biockim. Biophy L Acta 112"/: 36-44; 1985.
'
'
.
85TH07. Thoroalley P. J., Stern A. Red blood cell oxidative metabolism induced by hydroxypyruvaldehyde. Biochem. Pharmacol. 34:1157-I 164; 1985.
85TH08. Thomalley P. J., Dodd N. J. F. Free radical production
from normal and adriamycin-treatod rat cardiac sarcosomcs.
Biochem. Pharmacol. 34: 669-674; 1985.
85TO01. Tomasi A., Albano E., Biasi E, Slater T., Vannini V.,
Dianzani M. U. Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes
and in the rat in viva as detected by ESR-spin trapping technique.
Chem..Biol. lnteractious 55: 303-316; 1985.
86AL01. AIbano E., Tomasi A., Goria-Gatti L., Carini R., Vannini
V., Dianzani M. U. Free radical metabol!t_~ of ethanol. In: Free
Radicals, Cell Damage and Disease, (C',~iee-Evans, ed.), pp.
117-126, Richelieu Press; London (1986).
86AL02. Albano E., Tomasi A,, Goria.Gatti L., Poll G., Van/lini
V., Dianzani M. U. Free radical metabolism of alcohols by rat
liver microsomes. Free Rad. Res. Caroms. (1986).
86AU01. Augusta O., Weingrill C. L. V., Schreicr S., Amemiya
H. Hydroxyl radical formation as a result of the interaction between primaquine and reduced pyridine nucleotides. Arch.
Biochem. Biophys. 244: 147-155; 1986.
86AU02. Augusta O., Aires M. J. M., Colli W., Filardi L. S.,
-Brener Z. Primaquine can mediate hydroxyl radical generation
by Trypanosoma cruzi extracts. Biochem. Biophys. Res. Camman. 135: 1029-1034; 1986.
86BO01. Borg D. C., Schaich K. M. Pro-oxidant action of desferrioxamine: Fenton-like production of hydroxyl radicals by reduced ferrioxaminc. J. Free Rad. Biol. Mud. 2: 232-243; 1986.
86BR01. Britigan B. E., Rosen G. M., Chai Y., Cohen M. S. DO
haman neutrophils make hydroxyl radical? J. Biol. Chem. 261:
4426-443 I; 1986.
"
86BR02. Britigan B. E., Rosen G. M., Thompson B. Y., Chai Y.,
Cohen M. S. Stimulated human neutrophils limit iron-catalyzed
hydroxyl radical formation as detected by spin-trapping techniques. J. Biol. Chem. 261: 17026-17032; 1986.
86BUOi. Buettner G. R., Molten A. G., Hall R. D., Chignell C.
E Free radical production by chlorpromazine sulfoxide, and ESR
spin-trapping and flash photolysis study. Photochem. Photobioi.
44: 5~10; 1986.
86CA01. Canada A. T., Workman R. F.,'Mansbach Ii C. M., Rosen
G.M. Biochemical changes in the intestine associated with anoxia and reoxygenalion: In viva and in vitro studies. J. Free Rad.
Biol. Mud. 2: 327-334; 1986.
864:O01. Conner H. D., Thurman R. G., Ga]izi M. D., Mason R.
E The formation of a novel free radical melabolite from CCI, in
the perfused rat liver and in viva. J. Biol. Chem. 261: 45424548; 1986.
86(:002. Conner H. D., Fischer V., Mason R. P. A search for
oxygen-centered free radicals in the lipoxygena~e/linoleic acid
system. Biockem. Biophys. Res. Commun. 141: 614-621; 1986.
86DAOI. Davies M. l., Slater T. F. Electron spin resonance spin
trapping studies on the photolytic generation of halocarbon ;adicals. Chem..Biol. Interactions 58: 137-147; 1986.
g6DA02. Davies M. J., Slater T. E Studies o.n the photolytic breakdown of hydroperoxides and peroxidized fatty acids by using
electron spin resonance spectroscopy. Spin trapping of alkoxyl
and peroxyl radicals in organic solvents. Biochem. J. 240: 789795; 1986.
86DOOI. Dor~show J. H., Davies K. J. A. Redox cycling of anthracyclines by cardiac mitochondria. J. Biol. Chem. 261: 30683074; 1986.
86ELOI. Eling T. E., Curtis J. E, Harman L. S., Mason R. P.
Oxidation of glmzthione to its thiyl free radical metabolite by
prostiglandin H synthase. J. Biol. Chem. 26|: 5023-5028; 1986.
86EL02. Elliott B. M., Dodd N. J. F., Eicombe C. R. Increased
hydroxyl radical production in liver peroxisomal fractions from
rats t~eated with peroxisom¢ ixofiferatms. Carcinogenesis ?: 795799; 1986.
86HAOl. Hmnmel K. E., Kalyanaraman B., Kirk T , K . Subs~rate
free radicals are intermediates in ligninase catalysis. Prec. Natl.
head. Sci. USA 13: 3708-3712; 1986.
Spin adduct parameters
86HA02, Harmon L. S., Carver D. K., Schreiber J., Mason R. P.
One- and two-electron oxidation of reduced glutathione by peroxidascs. J. Biol. Chem. 261: 1642-1648; 1986.
86HI01. Hintz P., Kalyanaraman B. Metal 'ion-induced activation
8~Hofmolecular oxygen in pigmented polymers. Biochim. Biophys.
Acta 883: 41-45; 1986.
O01. Hocbeke M., Gandin E., Lion Y. Photoionizationof tryptophan: An electron spin resonancc investigation,Photochem.
Photobiol. 44: 543-546; 1986.
861W01. lwahashi H., Ikeda A., Negoro Y., Kido R. Detectionof
radical species in haematin-catalyzed retinoic acid 5,6-cpoxi.
dation by using h.p.l.c.-e.p.r, spectrometry. Bioehem. J. 236:
509-514; 1986.
"86JA01. Janzcn E. G., Oehler U. M., Haire D. L., Kotake Y.
ENDOR spectra of amino~yls. Conformationa[ study of alkyl
and aryl spin adducts of deutcrated o.phcnyI-N.tert-butylnitrone
(PBN) bused on proton and ~-~C hyperfine splittings. J. Am.
Chem. Soc. 108: 6858-6863; 1986.
86KE01. Kennedy C. H., Pryor W. A., Winston G. W., Church
D. E Hydroperoxid¢-induced radical production in liver mitochondria. Biochem. Biophys. Res. Commtm. 141: 1123-1129;
1986.
86KO01. Korytowski W., Kalyanaraman B., Mcnon 1. A., Sarna
T., Scaly R. C. Reaction of superoxide anions with melanins:
Electron spin resonance and spin trapping studies. Biochim. Bio.
phys. Acta 8112: 145-153; 1986.
86KU01. Kuwabara M., lnanami 0., Sate F. OH-induced free rad.
icals in purine nucleosides and their homopolymcrs: e.s.r, and
spin-trapping with 2-methyl-2-nitrosopropane. Int..I. Radial. Biol.
49: 829-844; 1986.
86LA01. Lai E. K., Crossley C., Sridhar R., Misra H. P., Janzcn
E.G., McCay P. B. In rive spin trapping of free radicals generated in brain, spleen, and liver during gamma radiation of mice.
Arch. Biochem. Biophys. 244: 156-160; 1986.
86MA01. Makino K., Imaishi H., Morinishi S., Takeuchi T., Fujita
Y. An ESR study on lipid peroxidation process. Formation of
hydrogen atoms and hydroxyl radicals. Biochem. Biophys. Res.
Commun. 141: 381-386; 1986.
86MA02. Mansbach II C. M., Rosen G. M., Rahn C. A., Strauss
K.E. Detectionof freeradicalsas a consequence of rat intestinal
cellulardnJg metabolism. Biochim. Biophys. Acta ~: I-9; 1986.
'86MA03. Mason R. P., FischerV. Free radicalsof acctaminophen:
Their subsequent reactionsand toxicologicalsignificance.Federation Prec. 4S: 2493-2499; 1986.
86MO01. Motohashi N., Mori 1. Thio[-induced hydroxyl radical
formation and scavenger effectof thiocarbamides on hydroxyl
radicals.J. Inorg. Biochem. 26: 205-212; 1986.
86MO02. Moreno S. N. J., SchreiberJ., Mason R. P. Nitrobenzyl
radical metabolites from microsomal reduction of nitrot~nzy[
chlorides.J. Biol. Chem. 261:7811-7815; 1986.
g6MO03. Mottley C., Conner H. D., Mason R. P. ['70]Oxygen
hyperfine structurefor the hydroxyl and supcroxide radicaladducts of the spin traps DMPO, PBN and 4-POBN. Biochem.
Biophys. Res. Commun. 141: 622-628; 1986.
86MO04. Mottlcy C., Mason R. P. An electron spin resonance study
of free radical intermediates in the oxidation of indole acetic acid
by horseradish peroxidase. J. Biol. Chem. 261: 16860-16864;
1986.
86NO01. Nohl H., Jordan W. The mitochondrialsiteof superoxide
formation.Biockem. Biophys. Res. Commun. 138:533-539; 1986.
86OZ01. Ozawa T., Hanaki A. Spin-trappingof superoxid© ion by
a water-soluble,nitroso-aromaticspin-trap.Biochem. Biopkys.
, Res. Commun. 136: 657-~64; 1986.
86P!01. Pierre J., Decuyper J., Van de Verst A. DNA alterations
photosensitized by tetracycline and some of its derivatives. J.
Invest. Dermatol. 116:653-658; 1986.
86P!02. Pilas B., Felix C. C., Sarna T., Kalyaneraman B. Photoiysis of pheomelanin precursors: An ESR-spin trapping study.
Photochem. Photobiol. 44: 689-696; 1986.
86PO01. Poll G., Chiaxpotto E., AIbano E., Blast E, Cecchini G.,
Dianzani M. U. Iron overload: Experimental approach using rat
hepatocytes in single cell suspension, in: Frontiers of Gas-
301
trointestial Research, Vol. 9, (P. Rosen, ed.), pp. 38-49, Karget, Basel (1986).
86RE01. Reszka K., Kolodziejczyk P., Lown J. W. Photosensitization by antitumor agents--3. Spectroscopic evidence for superoxide and hydroxyl radicalproductionby anthrapyrorole-sensitized oxidation of NADH. J. Free Rod. Biol. Med. 2: 267-
274; 1986.
86RE02. Reszka K,, Kolodziejczyk P., Lown J. W. Photosensitization by antitumor agents--2. Anthrapyrazole-photosensitized
oxidation of ascorbic acid and 3,4.dihydroxyphenylalaninc. J.
Free Rod. Biol. Mad. 2: 203-211, 1986.
86RE03. Reed G. A., Curtis J. E, Mottley C., Eling T. E., Mason
R. P. Epoxidation of ('*').7,8.dihydroxy-7,g-dihydrobcn°
zo[a]pyrcne during (bi)sulfite autoxidation: Activation of a procarcinogen by a cocarcinogen. Prec. Natl. Acad. Sci. USA 83:
7499-7502; 1986.
86SA01. Samuni A., Carmichael A. J., Russo A., Mitchell J. B.,
Riesz P. On the spin trapping and ESR detection of oxygen°
derived radicals generated inside cells. Prec. Natl. Acad. Sci.
• USA 83: 7593-7597; 1986.
86SC01. Schreiber J., Mason R. P., Eling T. E. Carbon-centered
free radical intermediates in the hematin- and ram seminal vesicle-catalyzed decomposition of fatty acid hydroperoxides. Arch.
Biochem. Biophy.t. 251: 17-24; 1986.
86SC02. Schreiber J., Eling T. E., Mason R. P. The oxidation of
arachidonic acid by the cyclooxygenase activity of purified pros. taglandin H synthase: Spin trapping of a carbon-centered free
radical intermediate. Arch. Biochem. Biophys. 249: 126-136;
1986.
86SI0 I. Sinha B. K., Singh ¥., Krishna G. Formation of superoxide
and hydroxyl radicals from I-mcthyl-4-phenylpyridinium ion
(MPP'): Reductive activation by NADPH cytochromc P-450 reductase. Biochem. Biophys. Res. Commun. 135: 583-588; 1986.
86STOI. Stock B. H., Schrciber J., Guenat C., Mason R. P., Bend
J..R., Eling T. E. Evidence for a free radical mechanism of
styrene-glutathione conjugate formation catalyzed by prostaglandin H synthase and horseradish peroxidase. J. Biol. Chem.
261: 15915-15922; 1986.
• 86THOI. Thomallcy P. J. Theory and biological applications of
the electron spin resonance technique of spin trapping. Life Chem.
Reports 4:57-112; 1986.
86TH02. Thornallcy P. J., Bannister W. H., Bannister J. V. Reduction of oxygen by NADH/NADH dehydrogcnase in the presence of adriamycin. Free Rod. Res. Cumins. 2: 163-171; 1986.
86TUOI. Turner II1 M. J., Rosen G. M. Spin trapping ofsuperoxide
and hydroxyl radi~:als with substituted pyrroline I-oxides. J.
Med. Chem. 29: 2439-2444; 1986.
86YO01, You J.-L., Fong F. K. Superoxi~ photogeneration by
ch[oro~hyl[A in water/acetone.Electronspin resonance studies
of radicalintermediatesin chlorophyllA photoreductionin vitro.
Biochem. Biophys. Res. Commun. 139: I124-I 129; 1986.
•87AU01. Augusto O. Spin-trapping studies of xenobiotic-mediated toxicity. In: The Handbook of Bioinedicine of Free Radicals and Antioxidants, (J. Miquel, H. Weber, and A. Quintaniiha, ads.), in press, CRC Press, Boca Raton 0987).
87DAOI. Davies M. I., Fomi L. G., Shuter S. L. Electron spin
resonance and pulse radiolysis studies on the spin trapping of
sulphur-centered radicals. Chem.-Biol. Interactions 61: 177-188;
1987.
,87DA02. Davies M. J., Slater T. F. Studies on the metal ion and
lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy. Biochem. J. 2,45:167-173
(1987).
87HA01. Halpem A. Spin-trapping study of the radiolysis of CCI+.
J. Chem. Soc. Faraday Trans. I S3: 219-224, 1987.
87MIOI. Minotti G., Aust S. D. The requirement for ferric'in the
initiation of lipid peroxidation by ferrous and hydrogen peroxide.
J. Biol. Chem. 262: 1098-1104; 1987.
87OZ01. Ozawa T., Hanaki A. Spin-trapping of sulfite radical an"ion, Soj ~, by a water-s~luble, nitroso-ammatic spin:tr~p. Biochem.
Biophys. Res. Commun. 142: 410-416; 1987.
87SIOi. Sibille J.-C., Dot K., Aisen P. Hydroxyl radical formation
302
G.R. BUETrNER
and iron-binding proteins. Simul,-tion by the purple acid phosphatases. J. Biol. Chem. 262: 59-62; 1987.
87ST01. Stolze K., Mason R. P. Spin trapping artifacts in D~ISO.
Biochem. Biophys. Res. Commun. 143: 941-946', 1987.
87TR01. Trudeil J. R. Ethyl acetate extraction of spin-trapped
free radicals: A re-evaluation. Free Rod. Biol. Med. 3:133-136
(1987).
Acknowledgments--I would like to thank Drs. Albano, Augusto,
Aust, Bobst, Borg, Boss, Chigne[l,Church, Evans, Floyd, Halpcrn,
Hill,Janzcn, Kalyanaraman, Lion, Lown, Makino, Mason, Mctohashi,Motten, Niki, Nohl, Pierre,gehorek, Reszka, Riesz, Schuich,
Thornalley, Tomasi and Van de Vorst for theirsuggestions. I would
also liketo thank Drs. Bors and Saran of the GSF for making their
facilitiesavailableto me for thiswork,
APPENDIX--LIST OF ABBREVIATIONS
AA
Ac
AcN
Act
AcPhHZ
Acyl radical
AOML
Arachadonic acid
Acetate buffer
Acetonitrile
Acetone
1-acetyl-2-phenylhydrazine
'C(---~-O)R
Autoxidizing methyl linoleate
B Borate buffer
BLM • Bleomycin
'
BP* Benzophenone triplet
C9,0 Caronate buffer, pH 9.0
Cit Citrate
CH Bicarbonate buffer
C/M 2: I Chloroform and methanol in 2: I ratio, Folch
extraction. Typically the chloroform layer is
examined in the ESR for any spin adduct
signals.
CPE Controlled potential electrolysis
CPZ Chlorpromazine
CPZ-SO Chlorpromazine sulfoxide
D Deuterium or 2H
D~O Deuterium oxide
DBPO Di-tert-butylperoxalate
DDEP 3,5-bis(ethoxycarbonyl)-4-ethyl-2,6-di- •
methyl- 1,4-dihydmpyridine
Decarb The carboxyl group of the amino acid is
cleaved leaving a carbon-centered radical
that is trapped
DMHB Dime thoxyhydrobenzoin or l-(3,4-dimethoxyphe~tyl)-2-phenylethanediol
DMPO 5,5-Dimethylpyrrolidine-l-oxide or 5,5-dimethylpyrrolidine-N-oxide
DMPOX 5,5-Dimethyl-2-pyrrolidine-l-oxyi, an oxidation product of DMPO
DMSO Dimethyl sulfoxide
DODAC Dioctadecyldimethyl ammonium chloride
DOPA 3,5-dihydroxyphenylalanine
DOPRN C.(4.dodecyloxyphenyl).N-tert-butylnitrone
DTBN Di-tert-butyl r,itroxide, a decomposition /
product of MNP trapped by MNP
ENDOR Electron Nuclear Double Resonance
• EPPS N-2-hydroxyethylpiperazine propane sulfonic
acid
" ' EPR.Electron paramagnetic resonance
ESR Electron spin resonance
. " : ' . . EtOH ! Ethyl alcohol
i.
• "
Folch Extraction usingC/M 2:!. The chloroform
• :- ....... .::.i.. layer is then examined in the ESR
..:..,~,--:,G Gains...: .
"
.:~... •GA: Glacial acetic.acid
•:.:..::.~
...',..
:"
.':~"Gly,Glycine
.
.
:".
':,:...... . • ...
'
, - ..'
Glutathione
Glutathiyl free radical, sulfur-centered
2-bromo,2-chloro, I, I, I-trifluoroethane
Hanks balanced salt solution
N-2-hydoxyethylpiperazine-N'-2-ethanesuifonic acid
KHB7.6 Krebs-Henseleit bicarbonate buffer, pH 7.6
HP Hematoporphyrin
H P D Hematoporphyrin derivative
15-HPETE 15-Hydroperoxy-eicosatraenoie acid
H R P Horseradish peroxidase
KRP7.4 Krebs-Ringer phosphate buffer, pH 7.4
L' As carbon-centered radical
LO" l.ipid oxy radical, an alkoxy radical
LOO' Lipid hydroperoxy radical ,
LPC Egg lecithin phosphatidylcholine
M MOPS buffer, see MS
M C Methylene chloride
M e O H Methyl alcohol
M L Methyl linoleate
Methyl linoleate hydropcroxidc
MLOOH
N.methyI-N '-nitro-N-nitrosoquanidine
MNNG
M N P 2-methyl-2-nitrosopropane = t-NB = NtB
2-methyl-2-nitroso- I -propanol
MNPOL
M , P O 3,3,5,5-Tetramethylpyrroline-N-oxide
MPP" I-methyl-4-phenyl pyridinium ion
MS Morpholinopropane sulphonic acid buffer,
often referred to as MOPS
n-Bu n-Butyl
n-BuOH n-Butyl alcohol
ND Nitrosodurene, 2,3,5,6-tetramethyln, itrosobenzene
NtB MNP
p. Promazyl radical, i,e. iO-[3-(dimethylamino)-propyl]- I OH-phenothiazin-2-yl
P(7.0) Phosphate buffer, pH 7.0
PAT •Phenylazotriphenylmethane
PBN alpha-phenyI-N-tert-butyl nitrone
P B N O x Benzoyl tert-butyl nitroxide, and oxidation
product of PBN
PDT Phenyldiazonium tetrafluoroborate
PGS Prostaglandin synthetase
PHS Prostaglandin H Synthase
P M A Phorbol myristate acetate
P O B N a-(4-pyridyl-l-oxide) N-tart-butyl nitrone =
4-POBN
PP Pyrophosphatc buffer
PQ Paraquat (methyl viologen)
PrOH Pmpanol
..
2-PrOH lsopropyl alcohol
Primaquine
. PRQ
GSH
GS'
Halothane
HANKS
HEPES
Spin adductparameters
RO'
RPMI
RSV
RSVM
TAR
TBA
TBABBu~
TBAP
t-BB
TBHN
t-BuOH
TMAS
An alkoxyradical
RPMI cellmedium
Ram seminalvcsicals
Ram seminalvesicalmicrosomes
Sodium tartrate,
buffer
tetra-n-butylammonium
tetra-a-butylammonium tetra-n-butylboride
tetra-n-butylammonium perchlorate
tert-Butylbenzene
Di.tert-butylhyponitrite
tert-butylalcohol
Tetramethylammoniumsuperoxide
TME Tetramethylethylene
TMPO 2,5,5-trimethylpyrroline'l'°xide
t-NB t e r t . n i t r o s o b u t a n e = MNP
TPPS Tetraphenylporphyrin sulfonate
TR TRIS buffer
T Tesla
tin First order half-life of the spin adduct
W Water
W(ZO) Water at pH 10
W(P7.4) Water, phosphate buffer, pH 7.4
X.O. Xanthine oxidase
3O3