Part1:DividingFractionsUsingVisualRepresentations Todividefractions,rememberthatdivisioncanberepresentedbyrepeatedsubtraction,justlike multiplicationcanberepresentedbyrepeatedaddition. Here’ssometerminologythatwillbeusedthroughoutthislesson. Section1.1.DividingWholeNumbersbyFractionsUsingObjectsandNumberLines Modeldividingawholenumberbyafractionusingbothobjectsandnumberlines. Foreachproblem,writeawordproblemthatdescribesthesituation. A.3 ÷ #$ = Wordproblem: ' C.4 ÷ = * B.4 ÷ = ( Wordproblem: D.3 ÷ = + , Wordproblem: ' Wordproblem: 1 Section1.2.DividingFractionsbyFractionsWhenThereisNORemainder Modeldividingamixednumber(awholenumberplusafraction)byafractionusingobjectsandnumberlines. + ' E.3 ÷ = * * ' , ( ( F.2 ÷ = + * G.1 ÷ = ' , + ( * / H.3 ÷ = Section1.3.DividingFractionsbyFractionsWhenThereISaRemainder Dividethesefractionsusingnumberlinesandfractionbarstomodeltheproblems. + + I.2 ÷ = * ' + + , ' J.3 ÷ = + ' K.3 ÷ = ' * + * ' , L.2 ÷ = 2 Part2:DescribingDivisionwithFractions Section2.1.DescribingDividingFractions Inyourownwords,describehowvisualrepresentations(objectsandnumberlines)canbeusedtomodel divisionwithfractions.Inyourdescription,answerthequestion,“Howdoesdivisionbyfractionswork?” Makesuresomeoneelsecouldreadyourdescriptionandbeabletomodeldivisionwithfractions. Section2.2.ButIsn’ttheQuotientAlwaysSmallerWhenWe’reDividing? Whatisthequotientwhenyoudivide10by2?______ Whenyoudivide5by10?______ Arethesequotientslargerorsmallerthanthedividendsanddivisors? Canyouthinkofanexamplewhenyoudivideonewholenumberbyanotherandgetaquotientthatislarger thanthedividendordivisor? LookatthequotientsforproblemsAthroughL.Whatdoyounotice? Writeanexplanationforyourobservation. 3 Section2.3:WritingandSolvingaWordProblemThatUsesDividingwithFractions Thinkaboutsomethingyou’veseenordonethatinvolvesdividingsomethingintoparts,whereboththe dividendandthedivisorarefractions. A.Writeawordproblemtodescribethesituation. B.Writethedivisionproblemusingfractions. C.Drawobjectstomodelthesituation. D.Writethedivisionproblemagainwiththequotient. 4 Part3:SolvingDivisionProblemsWhentheDivisor isLargerThantheDividend Section3.1.DivisorLargerThanDividend InalloftheproblemsinParts1and2,thedividendhasbeenlargerthanthedivisor.However,thedivisorcan * alsobelargerthanthedividend,suchas3 ÷ 10,whichcanbewrittenas . +2 Wordproblemswithfractionsthatcanbemodeledwithadivisionprobleminwhichthedivisorislargerthan thedividendareshownbelow. 1 You’regoingtoshare½poundofchocolatewith3friends,soeach ÷3 2 persongetsanequalsizeportion.Howmuchwilleachofyouget? 3 1 Howwideisarectangularstripoflandwithlengthof1#$milesand ÷1 4 2 anareaof3/4squaremile?(Remember,A=LW,orW=A/L) 2 3 ÷ Howmany3/4-cupservingsarein2/3ofacupofyogurt? 3 4 Modelingthefirstproblemiseasy!Thinkaboutwhenyoudivide12by3,or12 ÷ 3.Youcanrepeatedly subtractgroupsof3,resultingin4groupsofsize3(quotitiveorrepeatedsubtraction:youknowhowmany areineachgroupandyou’vegottofindhowmanygroups).Oryoucandivide12into3groups,eachofsize4 (partitiveorequalsharing:youknowthenumberofgroupsbutneedtofindhowmanypartsareineach group).Previously,wedidthefirstthing:repeatedlysubtractinggroupsofthesamesizetofindouthowmany groups.Let’strysomeproblemswherewedivideintoequalsizegroups.Usebothfractionbarsandnumber linestomodeltheseproblems. + N. ÷ 3 = M.#$ ÷ 3 = , Wordproblem: Wordproblem: 5 * O. ÷ 2 = , ' P. ÷ 3 = * Wordproblem: Wordproblem: Section3.2:DivisorLargerThanDividendWhenBothareFractions + * + + R. ÷ = Q. ÷ = ' , , ' Wordproblem: Wordproblem: 6 ' ( S. ÷ = * / ' * * , T. ÷ = Wordproblem: Wordproblem: Section3.3.AretheQuotientsLargerorSmallerThantheDividendsandDivisors? ArethequotientsinthetheproblemsinPart3largerorsmallerthanthedividendsanddivisors? Writeanexplanationforyourobservation. 7 Part4:DividingFractionsUsingProcedures Section4.1.DividingFractionsUsingtheStandardAlgorithm Itistedioustousedrawingsandnumberlinestodividefractions.Also,asfractionsgetmorecomplexlikethe onesshownbelow,fractionbarsornumberlineswon’twork.Weneedtofigureoutproceduresfordividing fractions.YouneedtounderstandtheseproceduresandhowtheyworkinAlgebrawhenyousimplify expressionsandperformoperationswithmorecomplexfractionsliketheonesbelow. (2x 2 + 5x + 3) ÷ (x + 1) = 2x + 5x + 3 x +1 2 4a + 12a + 9 9a − 25 ÷ 4a 2 + 8a + 3 6a 2 + 13a + 5 2 2 25 y + 1 + 12 4 5 8y + 4 − 18 36 Followinstructionsinthetoprowofthetableonthenextpagetofindtheanswerstothedivisionproblems usingtheStandardAlgorithm.Checktoseeifyouranswersarethesameastheanswersyougotforproblems AthroughLinPart1. Section4.2.DiscoveringaShortcutforDividingFractions Lookattheoriginalproblemsinthefirstcolumnofthetableandtheproblemsasrewrittenincolumn4. Canyouseearelationshipbetweenthesetwoequivalentrepresentationsoftheproblem?Describethe relationshipbetweentheproblemsincolumn1andtheequivalentrepresentationsincolumn4. Writeashortdescriptionforashortcutyoucanusetodividefractions. 8 Column1 Column2 Original Rewritewith problems theproblem improper fractions A.3 ÷ #$ = + 3 1 1 2 3 1 ÷ = 1 2 Column3 Multiplybya fractionthat equals1to simplifythe complexfraction 3 2 ⎛ 21 ⎞ 1(1) ⎜⎝ 2 ⎟⎠ = 1 = 1 Column4 Column5 Column6 Writethe Writethe Writethe multiplication answer answeras problem amixed (withoutthe number denominator=1) 3⎛ 2⎞ ⎜ ⎟ 1 ⎝ 1⎠ = 6 = 6 1 = = = = = = D.4 ÷ = = = = + ' * * = = = ' , ( ( = = = G.1 ÷ = + * ' , = = = + ( * / = = = = = = = = = = = = = = = = = = = B.3 ÷ = , ' C.4 ÷ = * ' ( E.3 ÷ = F.2 ÷ = H.3 ÷ = + + * ' + + , ' + ' ' * + * ' , I.2 ÷ = J.3 ÷ = K.3 ÷ = L.2 ÷ = Rewrite using alternate division notation 9 Column1 Column2 Original Rewritewith problems theproblem improper fractions Rewrite using alternate division notation M.#$ ÷ 3 = + N. ÷ 3 = , * O. ÷ 2 = , ' P. ÷ 3 = * + * ' , + + , ' ' ( * / ' * * , Q. ÷ = R. ÷ = S. ÷ = T. ÷ = Column3 Multiplybya fractionthat equals1to simplifythe complexfraction Column4 Column5 Column6 Writethe Writethe Writethe multiplication answer answeras problem amixed (withoutthe number denominator=1) = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 10 Part5:AnotherWaytoThinkAboutDivisionwithFractions Here’sanotherwaytohelpyouthinkaboutdividingfractions.Which,ifany,ofthesequestionshavea differentanswer? • Howmany3saretherein6? • Howmanygroupsof3tensaretherein6tens? • Howmanygroupsof3fivesaretherein6fives? • Howmanygroupsof3tenthsaretherein6tenths? • Howmanygroupsof3@saretherein6@s? • Howmanygroupsof3gronksaretherein6gronks? • Howmanygroupsof3anythingsaretherein6anythings(aslongasbothrefertothesameunit)? Thepointofthesequestionsisthattheunitsoftheproblemdonotmatter.Iftheunitsarethesameobjects, they“disappear”byformingafractionthatequals1whenyoudivide.Thismeansthatif6/10isdividedby 3/10,3/10goesinto6/10thesamenumberoftimesas3goesinto6,or3/12goesinto6/12,or3/20goesinto 6/20,or3/29goesinto6/29. UsethestandardalgorithmfromSection4todivide6/29by3/29. Describewhathappened. Thissuggestsanewalgorithmfordividingwithfractions:Todividetwofractions,findacommondenominator sothedenominatorsformafractionthatequals1,andthendividethenumerators.Let’slookatsomeofthe problemsweworkedearlierthatyousolved.Rewriteequivalentfractionsthathavecommondenominators. Then,knowingthedenominatorsformafractionthatequals1whendividing,dividethenumerators. + ' U.3 ÷ = * * W.3 ÷ #$ = ' , ( ( V.2 ÷ = X.4 ÷ = ' * # Y. ÷ 2 = Z.$ ÷ 3 = , + + + + AA.3 ÷ = AB.2 ÷ = , ' * ' + * ' ( AC. ÷ = AD. ÷ = ' , * / ' * + ' AE. ÷ = AF.3 ÷ = * , * ( Inyourownwords,writeadescriptiontotellwhythismethodworkstodividefractions. * 11 Part6:SolvingWordProblemsUsingFractionswithDivision Weneedtodividefractionsbyfractionsinmanysituations,asshowninthefollowingproblems.Foreach problem,drawadiagramornumberlinesshowinghowyoucanuserepeatedsubtractiontomodeldividing fractions.Remembertouseastraightedgeanddrawnumberlinescarefully.Then,setupthedivisionproblem tofindtheanswer.Writeanswersasmixednumbersifquotientisnotawholenumber. Forproblems1-5,usethestandardalgorithmtodividefractionsandfindtheanswertotheproblem. + + 1) Alawnmowertankholds gallonofgas.Ian’s5-galloncontainerhas3 gallonsinit.Howmanytimeswill ' ' hebeabletofillthelawnmower? 2) Tarikiscuttingstringers,theboardsinhousewallsthatrunhorizontallybetweenstudstoaddstability. + Eachstringeris14”or1 ft.HowmanystringerscanTarikcutoutofeach8ft.stud? 3 3) Amal’smotherisplanninghisbirthdaypartyandwantstoservepizza.Eachpizzaiscutinto8equalsize * pieces.Ifeachchildeatsthreepieces,or ofapizza,howmanychildrencanbefedwith4pizzas? 4 + 4) Mariahas256yardoffabric.Shewantstomakeplacemats.Eachplacematneeds yard.Howmany * placematscanMariamake? + ' 5) Jaronhas5 gallonsofpaintandneedstopaint8chairs.Eachchairneeds gallonofpaint.Howmany ' * chairscouldJaronpaint?Willhehaveenoughforthe8chairs? Forproblems6-9,usetheshortcutyoudiscoveredinPart4tofindtheanswer. * 6) Angelodrawscaricatures.Eachcaricaturetakesanaverageof18minutes,or ofanhour.IfAngelo +2 + rentsaboothatthefairfor5 hours,howmanycaricatureswillhebeabletodraw? ' 7) Annhas22/3yardofribbon.Sheneeds4pieces,allthesamelength.Howlongshouldshecuteachpiece ofribbon? * + 8) Manuelismakingbannersforaclient.Eachbanneris2 feetlong.Thereare21 feetofpaperlefton , ' thebannerroll.Howmanybannerscanhemake? 9) JudyisinGreatBritainandwantstohelpherfriendmakepancakesforafundraisingevent.Judy’sfavorite ' recipecallsfor cupofbuttermilkforeachbatchofpancakes.ButtermilkintheUKcomesin * + 1litercontainers.Alitercontainsapproximately4 cups.Howmanybatchesofpancakescantheymake , iftheyhave2litersofbuttermilk? 10) WriteyourownwordproblemforProblemEinPart1. 11) WriteyourownwordproblemforProblemGinPart1. 12) WriteyourownwordproblemforProblemJinPart1. 12 Math Vocabulary Notebook: Fraction Bars 6/10/14, 5:22 PM Fraction Bars 1 1 2 1 2 1 3 1 3 1 4 1 4 1 5 1 4 1 5 1 6 1 5 1 6 1 8 1 9 1 10 1 10 1 12 1 8 1 10 1 12 1 9 1 10 1 12 1 12 1 5 1 6 1 8 1 9 1 4 1 5 1 6 1 8 1 9 1 12 1 3 1 8 1 9 1 10 1 12 http://www.theteacherscafe.com/Math/vocabulary_notebook/Fraction_Strips.php 1 6 1 8 1 9 1 10 1 12 1 6 1 8 1 9 1 10 1 12 1 10 1 12 1 12 1 8 1 9 1 9 1 10 1 10 1 12 1 12 Page 1 of 2 Math Vocabulary Notebook: Fraction Bars 6/10/14, 5:22 PM © TheTeachersCafe.com http://www.theteacherscafe.com/Math/vocabulary_notebook/Fraction_Strips.php Page 2 of 2 Fraction Strips
© Copyright 2026 Paperzz