Vanier College Department of Mathematics Sec V Mathematics 201-015-50 Worksheet: Exponential Function 1. Draw the graph of each of the following exponential functions, and analyze each of them completely. (1) f (x) = 3 · 2x − 6 x 1 (3) f (x) = −2 · +8 2 −x+1 (5) f (x) = −2 +8 −x+1 1 (7) f (x) = −2 · −3 2 2. Solve the following equations. √ (1) 2x · 32 = 8 2x−1 1 (3) · 9x+3 = 271−x 3 (5) x2 3 · 1 27 x x−2 =9 (2) f (x) = −3x + 27 (4) x 1 f (x) = 5 · − 45 3 (6) −2x−1 1 −6 f (x) = 2 · 3 −x 1 (8) f (x) = 3 · −6 4 (2) (0.5)x−3 · √ 3 4 = 8x x−5 4x+2 2 9 1−3x (4) · (1.5) = 3 4 −x(x+5) 1 (6) = 42x+3 2 3. Find the equation of the exponential function of the form y = a·cx that contains the given points. (1) (1, 6) and (3, 24) (2) (2, −9) and (3, −27) (3) (−2, 18) and (−4, 162) (4) 2 (−1, − ) and (2, −50) 5 (5) (−1, 2) and (−3, 36) (6) (−1, −6) and (−2, −24) 4. 10 000 $ are invested in an account tha yields 6% interest per year. How much will the account be worth in 20 years if the interest is compounded (1) annually? (2) semi-annually? (3) monthly? (4) daily? 5. A population of bacteria doubles every hour. If there are 100 bacteria initially, (1) how many are there after 5 hours? (2) in how many hours will there be 102 400 bacteria? 6. The population of a city has been growing at a rate of 4% per year. If it has a population of 100 000 today, what was its population 10 years ago? 7. A sheet, hung out to dry, loses moisture in the wind at a rate of about 60% per hour. How much moisture will remain after 5 hours? ANSWERS (2) 1. (1) Dom(f ) = R R(f ) = ] − 6, +∞[ Zeros: 1 Y-intercept: −3 Variation: f (x) % if x ∈ R f (x) & if x ∈ ∅ Extremums: Max: None, Min: None Sign: f (x) ≥ 0 if x ∈ [1, +∞[ f (x) ≤ 0 if x ∈] − ∞, 1] Dom(f ) = R R(f ) = ] − ∞, 27[ Zeros: 3 Y-intercept: 24 Variation: f (x) % if x ∈ ∅ f (x) & if x ∈ R Extremums: Max: None, Min: None Sign: f (x) ≥ 0 if x ∈] − ∞, 3] f (x) ≤ 0 if x ∈ [3, +∞[ (3) (4) Dom(f ) = R R(f ) = ] − ∞, 8[ Zeros: −2 Y-intercept: 6 Variation: f (x) % if x ∈ R f (x) & if x ∈ ∅ Extremums: Max: None, Min: None Sign: f (x) ≥ 0 if x ∈ [−2, +∞[ f (x) ≤ 0 if x ∈] − ∞, −2] Dom(f ) = R R(f ) = ] − 45, +∞[ Zeros: −2 Y-intercept: −40 Variation: f (x) % if x ∈ ∅ f (x) & if x ∈ R Extremums: Max: None, Min: None Sign: f (x) ≥ 0 if x ∈] − ∞, −2] f (x) ≤ 0 if x ∈ [−2, +∞[ (5) (6) Dom(f ) = R R(f ) = ] − ∞, 8[ Zeros: −2 Y-intercept: 6 Variation: f (x) % if x ∈ R f (x) & if x ∈ ∅ Extremums: Max: None, Min: None Sign: f (x) ≥ 0 if x ∈ [−2, +∞[ f (x) ≤ 0 if x ∈] − ∞, −2] Dom(f ) = R R(f ) =] − 6, +∞[ Zeros: 0 Y-intercept: 0 Variation: f (x) % if x ∈ R f (x) & if x ∈ ∅ Extremums: Max: None, Min: None Sign: f (x) ≥ 0 if x ∈ [0, +∞[ f (x) ≤ 0 if x ∈] − ∞, 0] (7) (8) Dom(f ) = R R(f ) = ] − ∞, −3] Zeros: None Y-intercept: −4 Variation: f (x) % if x ∈ ∅ f (x) & if x ∈ R Extremums: Max: None, Min: None Sign: f (x) ≥ 0 if x ∈ ∅ f (x) ≤ 0 if x ∈ R Dom(f ) = R R(f ) = ] − 6, +∞[ Zeros: 21 Y-intercept: −3 Variation: f (x) % if x ∈ R f (x) & if x ∈ ∅ Extremums: Max: None, Min: None Sign: f (x) ≥ 0 if x ∈ [ 12 , +∞[ f (x) ≤ 0 if x ∈] − ∞, 12 ] 7 2 11 (2) x = 12 4 (3) x = − 3 1 (4) x = 6 2. (1) x = − (5) x = 1 or x = 4 (6) x = −3 or x = 2 3. (1) f (x) = 3 · 2x (2) f (x) = −3x x 1 (3) f (x) = 2 · 3 (4) f (x) = −2 · 5x x 1 2 (5) f (x) = · 3 3 x 1 3 (6) f (x) = − · 2 4 4. (1) 32071.35$ (2) 32620.38$ (3) 33102.04$ (4) 33197.89$ 5. (1) 3200 bacteria (2) 10 hours 6. 67 556 7. 1 % of moisture left.
© Copyright 2026 Paperzz