Girraween High School_Mathematics Extcnsionl_Trial HSC_2008
Girraween High SchootMathematics Extensionl_Trial HSC_2008
Total marks - 84
Question 2 (12 marks). Start on a SEPARATE page.
Attempt Questions 1 -7 All questions are of equal value. Find the term independent of x in the expansion of
Question 1 (12 marks). Start on a SEPARATE page.
(2X
3
.;
r
2
. x
SlTI-
Marks
Find the acute angle between the lines 2x + y
= 17
and 3x - y
=3 .
(b)
Evaluate: lim
x~o
2
If I(x) = 2sin-
(b)
2
2x
, find
The point P(17,36) divides the line joining A(2,1) and B(5,8) externally
(i)
in the ratio m : n. Find m and n.
2
the domain and range of
2
(ii)
(c)
2x 3
Solve for x: --:::: I
x-2
(iii)
2
(d)
Differentiate y
tan -
3
2
AD and CD are tangents to a circle. B is a
on the circle such
that LCBA and LCDA are equal and are both double LBCA. Prove
that BC is a diameter of the circle.
3
x
3
Use the substitution u = cosx to evaluate fcos 3 xs in x dx
3
o
D
·2
·3
~
•
(Iinllw<cn High School_Mathematics Extensionl_Trial HSC_2008
Girraween High School_Mathematics Extensionl_Trial HSC-.:2008
Question 3 (12 marks). Start on a SEP ARATE page.
Question 4 (12 marks). Start on a SEPARATE page.
(a) Leon walks on level ground, in a northerly direction, away from an electricity
(a) tower. When he arrive at a point A, the angle of elevation to the top of the
•
Prove the following by the Principle of mathematical induction.
52" - I is divisible by 24 for n ~ I .
3
tower is 23 ° . Luke walks on level ground on a bearing of 032°T from the same
tower, until he reaches point B, and notices that the angle of elevation is 17°.
The distance between A and B is SSm. Let h be the height of the tower and
(b) assume that the tower base C, is perpendicular to the ground.
P(2ap, ap') is a variable point on the parabola x' '" 4ay . M is the foot
of the perpendicular from P to the x -axis. Q is the point on MP such
that MP = PQ . Find the equation of the locus of Q.
NOT TO
SCALE
Electricity
Tower (h)
N
(c) For the function y
C
.S
(i) (i) Copy the diagram above onto your booklet and clearly mark
(iii) Find expressions for AC and BC in terms of h.
2
Hence,or otherwise, find the height h ofthe tower to the nearest metre.
(b) "'-+
x -9
Write down the equations of horizontal and vertical
2
asymptotes. on it all the information given.
(ii) (ii) Find any stationary points and determine their nature.
2
(iii) Sketch the graph showing the above features.
2
3
Find how many arrangements can be made by taking all the letters
of the word
(c) (i) MATHEMATICS
(ii) In how many ofthem do the vowels occur together?
3
An archer finds that in the long run, he scores a bull' s eye on 3 out of 5
occasions. He fires 8 rounds at a target. Assuming that each trial is an
independent event, find the probability of
(i) exactly 5 bull's eyes.
(ii) at least 7 bull's eyes.
3
3
·4·
·5
~
·,
Girraween High School_Mathematics Extension I_Trial HSC_2008
Girr.ween High SchootM.thematics Extensionl_Trial HSC_ZOOS
Question 6 (12 marks). Start on a SEPARATE page,
Question 5 (12 marks)
(b)
.J3 cos x
(i)
Express 3 sin x
(ii)
Hence find the general solution to 3sinx -
in theform A sin(x
2
a)
==.J3
(a)
2
Find the roots of the equation x' -15x + 4 == 0,
that two of its
roots are reciprocals,
3
N is the number ofKagaroos in a certain population at time t years,
(b)
The population size N satisfies the equation
dN
-
:=
dt that N == 500 + Ae
kt
where A is a constaut, is a solution
of the equation.
(ii)
(iii)
x in
Initially, there are 3500 Kangaroos but after 3 years there are
2
2
vmls ofa
The
v
2
only 3300 left. Find the value of A aud the exact value of k ,
to, find au expression for
terms of t.
-keN - 500), for some constant k, (c)
(i)
If dx == x + 6 and x == -5 when
dt
64 -16x
moving in a straight line is given by
2
8x where the displacement from a fixed point
a
is
x metres.
(i)
FifI au expression for the acceleration aud show that the motion
2
is simple harmonic,
2
Find when the number of Kangaroos begin to fall below 2300.
2
Between which two points is the particle oscillating?
2
Sketch the
2
(iii)
Find the period and amplitude of the motion.
2
(iv)
Find the maximum speed of the particle.
of the population size against time.
t
-7
- 6
...... Girraween High School_Mathematics Extensionl_Trial HSC_200S
'Ih,."rrll Illg.1t Sd,ool ~MlIlltomaticg Extellsionl_Trial HSC_200S
Question 6 (12 marks). Start on a SEPARATE page.
Question 5 (12 marks)
(i)
2
Express 3sinx-,/3 cosx in the fonn Asin(x-a)
(a)
(ii)
(b)
Hence fmd the general solution to 3sinx -,/3 cos X""
,/3
2
roots are reciprocals.
3
1'1 is the number ofKagaroos in a certain population at time t years.
(b)
The population size 1'1 satisfies the equation
(c)
(i)
Verify that 1'1
500 + Ae -" where A is a constant, is a solution
of the equation.
Oi)
If dx = x + 6 and x
dt
-5 when
to, find an expression for
x in
tenns of t.
dN = -keN _ 500), for some constant k.
dt
-
Find the roots of the equation x l -15x + 4 =0, given that two of its
2
The speed v m I s of a particle moving in a straight line is given by
v' = 64 -16x - 8/ where the displacement from a fixed point 0 is
2
Initially, there are 3500 Kangaroos but after 3 years there are
x metres.
(i)
only 3300 left. Find the value of A and the exact value of k .
2
(iii)
Find when the number of Kangaroos begin to fall below 2300.
2
(iv)
Sketch the graph of the population size against time.
2
Fi~d
an expression for the acceleration and show that the motion
is simple hannonic.
2
(ii)
Between which two points is the particle oscillating?
2
(iii)
Find the period and amplitude of the motion.
2
(iv)
Find the maximum speed of the particle.
~
~
\;2)
Girraween High SchooUJathematics Extensionl_Trial HSC _2008
,
N
~
Question 7 (12 marks), Start on a SEP ARATE page.
-\"'l .1
\Ii
\II
~
"
Ie:
---'
I=:\~
C'l
y.
I;::.
N
I
<0
2
y
y
-
~
"'-\-
"2u
~
<..J
"
,.~
~
'i
"(:',
-..s
-1-"
"-J
'-t->
:;
o~
V
;J
:$
-l.:t' -\"r
~
-\'Il .....
'
I'<\~
~
;\
"<':I
~
0'
'1"'..-,
T'
'V
.,I
r
"
;
\. ~
::J
~
''t
~
...,1,(:
J5
~
~
,..,rt
x
~
4
,0
"-J
e
,6
'"
v
~
('i)
'->
--l
~
-1
r m
--;0
'-0
<>1
_(~}ana+l=O
.
tJl
+
Al
~
~I
r
'"
AI
3
c(
,,!
'<:;
\
-101 ~
b
's:J
o
~
x
"""
..s:.
1
"~
l'"'
~\-%
rJ
Q
o
1
.~
~
JJ
~
a is a suitable angle of projection, prove that
~6
><
\l\
,I
A'l0
~
~~f.,
~
;J
.e;
-5
x
'\
"
J
a-D
N
'-l)
V)
o
"'cl
'7~
-<:4
L
®
0)
I
'"J,
'"
r.J
,.-,
tIl
c..-J
~-I.l
J:.
'"-,,>
j
;
(do not prove this)
-\~
v
o
"-()
"-I--
~
~
of the particle at any time t is given by
and
c-l
-I"'
..l
1\
level ground which is at a distance of r m from the origin, The
I
Vtsina2
'21
;\~
A projectile is fired with initial speed V m; s to strike a target on the
~l\r
>'
~
"-J
11
-p
Vtcosa
>(
rl
,.
approximation to the root correct to one decimal place.
(3!
-Q\
' >1\
cosx -!og,x has a root between
i.3 and 1.4. Using halving the interval method, find a better
x
x
0)
Q..
Given that the function I(x)
(")
)(
c::,
3
area is 500 em'.
-\..q
.~\
-I",
10 em'; s. Find the rate of increase of its radius when the surface
~
P::So
\1\
J
<'\
~i
"-I
A spherical bubble is expanding so that its volume is increasing at
w
..
~~
to
+
;i.
~
x
\
""
JJ
- j :;..
"
'":3
~
o'"
;j.
""\") ;
'3
II
;;f,
~
2
Prove that there are two angles of projection if r < ~
g
2
Show that the two angles of projection are complementary,
<Y)
,I
(Hint: consider the product of the roots of the equation in
2
)
;;;:
1"
oJ
End of paper
~I
'--J
';:::
b"
·8·
"
r-
t..J
"::J
\11
-:50
----",-
o
r)
""
r
II
r.J
I
~
f
---
\
:;
<')
II
SO
e:,
~
-lJ
'=I
s:.
::::
-S
<")
OJ
a:
o
s;
s:.
<;::
'q-
$:
::? ~\: :::\ ol
f ~ ~)s::
rl
II)
~\~
,:
1"-
: \M,
V-I
.
5 '2.1l _ \ ~
4- P vfI.-'-<'-
'2
I~Cf
"" fMC
!
LDCf\
M
c13r;-
L
=.
IYL /::, CDA
2."- (
c;
2--:>- -+- 'L),
")L
t 'Ll' '"
t
:x \ 2.
IDo'i0>
.,
o
ro )c-i:l
(
-1'"'-'.5""
Ou:IJ'."Ab I ~ h(j-
= 30·
fS-fvv.-,;.
''((.decl \-
y\
' .•_
p...c
it. t<>
£WI
·--0
1~1' .ir~
1i>'
P!J
2-(\<+\)
- \
G
1. t
,'lLi<.t')
1'- 5"
\
J
--to ffb4
Itl (1
551.",,(j
Q
w
h1.1¥ 'l..b1· + h f-,w>~7J"
t.w> 13
_ 2.h ~ b 1 ~h
c
f--
'L
~&~,
,:J CoS J
{ii! \:Cltv\.
13
0
&J
=- .BL
-1\
./
raJ i.wh'(j
,:Jl.-~:-
3L
'2S-1 ~'2-t
l
31lY\
"fCj.J~ lei -frv-c
AJJ,,-"" --/... 1~cJr
UtI)
0t"'"-'I)''lJl
0['"-9)
_
fV\
(1)JL
r
_"-x~
f = pEt
-:rI
c:D
')<:J
(J
(} '" 15P
~ i,J:t;:~
\I
'Ij
lJ
-+-<- +
\l+!
.'. bj -1l>L p.,( ""'''-'9 1e.. \.)~
~~.~. c..J. I vJ-.u- J:70Y) J -~
-f')'
trll-
flY
--h""" L
(J:
aJ.l
1\. 2
-In-<-'
r>~r.
:t-~:)L"-
Ij
_:Jc"-y."1.1L
~
4- Q
'I) I
;x....-'1
¥
\s
't1 ~ \
£.
a6 J ..
(j)
+I
~) -flu'fCJ.J.~
loU 'Lt
~.
GJllHN\..
~ '2.
, A
w~r<-
nz-\
cJ...:u'Jt"\:>k
_,..-j\.-J>
h teml..3°
I3 <-
( b(j
=1.+L'l.YP--H)
l i IL ~k.J)
1."
z.b&' ~-V.
=h-lemb1
~(
fr.w.
Qu.es\--r.y;
6'1"
itP"1~b,-th,'(t'T3
;~
l
X
t"o P ·rL. t
CDs .JL"
"'" h1..(I-t,,,;Lf,l-t .J.,...,~'13
"--
(}+ p ;-\)
2.S
'1..
S
)'MJ=j
5
=
i;lu.,.ih'oi\ 3 {\ 1- ~JJ
I
:;J i
.
<J - :>:'-.-"-
J
.
I
I
-1-- .....~ -
~-~~\
fL0-~ ~
Of'-
=.
ct
~
~-<tf'l
2.
aq'
i ..... u(lYGl/~
CD
= 2. "'-f'- -----CJ
::x
2-CLf -
'6
o-'1
"t 0. i.Irif..
'1
CW1l
OL"-
(f)
dw...
. ~
r~
~ ~
'X
=0
@
l'l~l '"
I
d
0
=-0 ')(
= 0
0
--~
0-'
c,hL
= -t CL"- p~
2.~X2.~'L.
4-,,0 =9
,,-- \
~~--{J..,.~'--'i VI..
)
'" P, ll>I'YlxWJ.
(.\ J' 1\'\ 1l C. J,,(
r::ri..aJc;· '(j
P-':Zu,JM ~~!c :
... :.J.
to
a.J(\ ~l-cJ
(lL'--- q
'0 = t
{Pre
~o
=±3
{li'Jl¥\
[PJ Ie
3
i\LosJ.
V3
=)\. J iycJ..
JDI~' Q
w-<-~
(;Jt
_
j::\
{pj Jl
of-
S i (t J. 2.V;
8oJ-
CU)
2.
fi
S
iYL
tJirc
CD
/V-l,n'y,'L-,[ {- LoJ"'<lJ = I'L
f\"!.. ( L ; f\ =2-13
~ (0
(j)
l 7<'-1..\,/)
L:;L- f)
SI'Y\ [~,.-
-----®
~'(j
t{i(;:>J)~
:. 3$lYl)'
6,,,')L
-CD
o.-t--A
CO a--l ff)
[",H<,)[""d..) ~.u-.....h
~
+r.
vJ
)
G\ ~d (5oiu:l:rw> W
~L-Jl..
Co
J\.'l'+t\lYt
(,
If
T
+ nil +t:i) ".!L
b
~5DO+ A~';-t
1)(;) 1'\
t
fJ
I
_=~'-4-f..,
o.\
h
>-
lJ'u
(b) &"l..
p"'tIe., '7 b4 _
---=:........---
11o}< -
r
",-0
,:lr '" _1_6
_ P,
v-I:
...!....
'l5?L""-+ Ib'JL "'t ~O
Lx-V
3
-Id
lS"( ,L~+ v' 'if) 0
t- ;;> 2'2- 1.1 uuw..s
chi
dk
::..-kf\e....
Bu1
1l
N..,..".,..b... 1- /(11 "}"-,.," (,.J ill b e.o \Y\
t-'
bcklU 2.3 0 " w~ @
1\ e:ll: = 1'\-5'>"
;,lc"'..... 2-:>' - '( -, '"
t ~ IOd (:Rt")+C
+=0,
~"-
0,--+4)
?C~-~
~
'i.. ~
o
(-;:;.-1..)
-4
of
,J.."
90.4 h
2....
CtSG
rlaP-J
b
~L
= - K.lN-5b~)
ell"
Dt.
rcu=~"'-
Gi)
t"-o
C. =
~ 35 00
f'1
I
d
(a)
~ ~I(....
be. cl J
'nl''''"
:r ' r~ ~ -4
.3v!?Jk~
k
P
..'.
500 -t
e
300 0
-f
d
~
11)
~ ~
<>L'l..-+ \ _ 4- J.
- k.\;
e...
L
ri
L
'L
-'j-'1:?L
or
iJ
+,
~
o.t4
'Y\~n
,-, ~
Sl.A-~J\-i tJ::i:
n0
~'
_(\.'l..('JI.._I.:.)
.=
Ob -I
eC[.ti'U
I
+ Ii, -
\1....
b 4-
'1llDtt
+ --11v>
<(
cy
1S
\'IV> ,...i..G..
Y'(j"" -, j+
(",roo~ liC6 bc..h.-ue'¥1 13 ta.)
J,\J
c]Jr
is
\ D [tyt3
r
...£ 11' rO
V
3
JJJ
c:w.J.
Jk
o.V
:rr- J7"'F
\0
r1
-Jf""
1Il'ir
-1l--<
~'-cL _
"'P P')O;J<-< w--...?
M'e
<II,,",
(b
1-3
c...-rre-J-
~) U) W~-Y\..1Ju- p"'J4!.c.b..I~
Shl \ceJ
(j)
V1;-
9'0
[\A
!-om'-"/" ~
J.\
_i--
0
(i)
hrWld-+\ -
1..
Is
1'\.J>
+z~d-- t.<JV.~
J.. ~
r .---{1J
G> J
VvL "in cJ..
";01
'L
"1c...J:A6Y)
v"'" j..,"fLi
+1-
u..h' llY\-J
i~
It
vV
\,.3'>
-F\?> 5"") ~ CGlI J§
-
I~
l"bl-
I- 3\7
sv.1dh-iuh-
-lo~
1-.),)
0- D'{
Ii 1-$ 6<.h<'' ......
1'3
~
-:>2
z}1
D
2... V~WJ>J
C.oJ..i.. KS(L<t..J.
1..V
o
(1+\-tW'"d-
> 'La'!
VL .> 0"1
'2..111...
\I~
L
o
v'-\-ey\l\ tl + \=
a
\-ewc it
)<
b:W\. oL
1-
~
\
X ~_J.._~
=
I
=()
ih
1'1.
2_
il;;> 0
+' =o---------£D
~
v [;,J r1..
/35
0jL_,_"J:i ffi
0
V6VNll
J..,.,,,-h,, J..
re.J.
F-f'WL
(IV
-\I<-a
0
1
CiO T.,.... c~,~,-
-to elk
~
81
~ 1.. oi
1-3.7 1 1'32S, t-3lu "",~I-
: --j\-J-
d!i.
4'!....
1')"0'0
~ l.. \I~ leVA .... ~
1-3\25
2_
J;1
"" .:prr1..
1-..3 2.S
teW' '- 01
11
iG..
>
., YL..£
CD
cJ
\/1... ~ 6't _1~Jc'"
'\\"1.
L010tY
b~-l
JVV=\i 01'\
(j)
~
-,
A"iL.-~ ~
M~lW:yt...'-t1<) ..JFJ...
-f\;. (.a-,J--r-L
I<.. ~"'JL'"-
-"!lX+I)
.jc
---
~
Qu)
It..'d ;
Jl'Us
J, "-- "t-.,[-I-\
DDD
~..[f
---~
ol-4-t--t-~~
L3 0 0
-<{ (1£+1)
,?L+b
-'I'
cD
('"
0(0 DL ~
'll
±~ p
ol+±+~ "'-0-(1)
cl ;t
@
<>
1'01'..(,40,,)
1::
3.':'1bO """ ,Sb o-t '"
A -= 3o D I'i1
Gil) 1'\ L
IC(JCl)+L
0
© Copyright 2025 Paperzz