TEXTURE ANALYSIS LIVER Fibrosis L. Tran, T. Rohou, PA Éliat, Y. Gandon, JD de Certaines Rennes University Hospital COST B21 - Slovenia, Bled March 2007, 29th-31st Method and Data Analysis on MRonImages Liver Fibrosis Texture Analysis Liver ofMR Images Texture MaZda software - version 4.5 MaZda software - version 4.5 2D and 3D MRI-TA 2D MRI-TA and 3D MRI-TA Database Database 21 patients (7 F0 / 3 F1 / 1 F2 / 2 F3 / 8 F4) 3T MRI from Rennes University Hospital T1w 3T THRIVE MRI from Rennes University Hospital 3D 21 patients Regions 3D of T1winterest THRIVE 2D-TA 5 selected slices from each series of images 1 ROI drawn on each slice (= 5 ROIs per patient) ROIs size : >100 pixels 3D-TA 2 VOIs per patient VOIs size: about 255 voxels 1 Objectives Classification of Fibrosis Grading Healthy (F0) vs Diseased (F1+F2+F3+F4) F0 vs (F3+F4) F0 vs (F1+F2) (F1+F2) vs (F3+F4) F0 vs (F1+F2) vs (F3+F4) 2 Healthy (F0) vs Diseased (F1+F2+F3+F4) 2D-TA 3D-TA Misclassified (%) Fisher Misclassified (%) PA MI MI+PA+F Fisher PA MI MI+PA+F Standardization No Yes No Yes No Yes No Yes Standardization No Yes No Yes No Yes No Yes Raw+kNN 46 35 46 39 24 30 28 35 Raw+kNN 48 40 38 36 33 31 24 31 LDA+kNN 20 20 30 30 38 38 20 20 LDA+kNN 21 21 36 36 33 33 7 7 PCA+kNN 49 35 48 39 24 30 25 35 PCA+kNN 48 43 40 36 31 29 34 31 Misclassified (%) Misclassified (%) Fisher PA MI Fisher MI+PA+F PA MI MI+PA+F Dataset Train Test Train Test Train Test Train Test Dataset Train Test Train Test Train Test Train Test NDA-1 17 54 9 49 14 37 11 57 NDA-1 0 58 3 50 7 50 0 58 NDA-2 4 51 1 37 6 60 1 37 NDA-2 0 58 3 58 3 50 0 58 3 Healthy (F0) vs Diseased (F1+F2+F3+F4) *features 1 Perc.90% 2 135dr_RLNonUni 3 Mean 4 Perc.99% 5 Perc.50% 6 S(4,0)DifEntrp 7 S(4,-4)Correlat 8 S(0,3)InvDfMom 9 S(0,1)SumAverg 10 S(0,3)Contrast 11 S(2,2)SumOfSqs 12 S(4,4)Entropy 13 Teta4 14 GrKurtosis 15 S(2,0)SumAverg 16 S(5,-5)SumOfSqs 17 S(0,5)SumOfSqs 18 S(5,0)SumVarnc 19 S(0,5)InvDfMom 20 S(0,5)Contrast 21 Vertl_ShrtREmp 22 Vertl_Fraction 23 Vertl_LngREmph 24 S(0,3)SumOfSqs 25 S(0,4)SumOfSqs 26 S(2,-2)Correlat 27 S(3,0)InvDfMom 28 S(2,-2)Contrast 29 Teta2 30 S(3,-3)InvDfMom 2D-TA MI+PA+F/LDA Misclassified : 20% 3D-TA MI+PA+F/LDA Misclassified : 7% Mostly COM parameters selected Better results with 3D-TA than 2D-TA *features 1 S(4,-4,0)DifEntrp 2 S(0,3,0)SumEntrp 3 S(3,3,0)DifVarnc 4 S(4,4,0)SumVarnc 5 S(4,-4,0)Correlat 6 S(4,-4,0)Contrast 7 S(4,4,0)DifEntrp 8 S(4,4,0)DifVarnc 9 S(0,0,2)SumOfSqs 10 S(0,0,1)SumVarnc 11 Kurtosis3D 12 S(4,0,0)SumOfSqs 13 S(5,5,0)InvDfMom 14 S(0,0,4)Entropy 15 S(1,0,0)SumOfSqs 16 S(4,-4,0)Entropy 17 S(3,3,0)SumAverg 18 S(4,4,0)InvDfMom 19 S(4,0,0)InvDfMom 20 S(0,0,1)DifVarnc 21 S(0,0,1)SumOfSqs 22 S(0,1,0)SumOfSqs 23 S(0,0,5)InvDfMom 24 S(0,2,0)SumOfSqs 25 S(1,1,0)SumOfSqs 26 S(1,-1,0)Contrast 27 S(2,0,0)SumOfSqs 28 S(1,-1,0)DifVarnc 29 S(3,-3,0)SumOfSqs 30 S(1,-1,0)SumOfSqs 4 F0 vs (F3+F4) 2D-TA Misclassified (%) Fisher PA MI MI+PA+F Standardization No Yes No Yes No Yes No Yes Raw+kNN 51 41 34 38 24 24 27 18 LDA+kNN 44 44 33 33 54 53 15 15 PCA+kNN 48 41 34 38 22 24 27 19 3D-TA MI+PA+F/LDA 3D-TA Misclassified (%) Fisher PA MI MI+PA+F Standardization No Yes No Yes No Yes No Yes Raw+kNN 47 56 41 41 41 32 29 53 LDA+kNN 18 18 29 29 29 29 0 0 PCA+kNN 44 56 41 41 38 32 29 44 Misclassified : 0% *features 1 S(0,3,0)SumEntrp 2 S(3,3,0)DifVarnc 3 S(4,4,0)DifEntrp 4 S(3,3,0)Contrast 5 S(4,-4,0)DifEntrp 6 S(4,-4,0)Correlat 7 S(2,-2,0)SumVarnc 8 S(2,2,0)SumEntrp 9 S(4,-4,0)Contrast 10 S(4,4,0)DifVarnc 11 Skewness3D 12 S(3,3,0)SumEntrp 13 S(2,-2,0)SumEntrp 14 S(4,-4,0)Entropy 15 S(0,5,0)SumOfSqs 16 Kurtosis3D 17 S(1,0,0)SumOfSqs 18 S(4,4,0)SumVarnc 19 S(5,-5,0)SumEntrp 20 S(0,0,1)DifVarnc 21 S(0,0,1)SumOfSqs 22 S(0,1,0)SumOfSqs 23 S(0,0,5)InvDfMom 24 S(1,-1,0)Contrast 25 S(0,2,0)SumOfSqs 26 S(1,-1,0)SumOfSqs 27 S(4,-4,0)InvDfMom 28 S(1,-1,0)DifVarnc 29 S(5,-5,0)DifEntrp 30 S(1,-1,0)InvDfMom 5 F0 vs (F1+F2) 2D-TA 2D-TA MI+PA+F/LDA Misclassified (%) Fisher PA MI MI+PA+F Standardization No Yes No Yes No Yes No Yes Raw+kNN 35 42 27 36 18 40 38 53 LDA+kNN 38 38 29 29 22 22 5 5 PCA+kNN 36 42 29 36 22 40 44 49 3D-TA Misclassified (%) Fisher Misclassified : 5% PA MI MI+PA+F Standardization No Yes No Yes No Yes No Yes Raw+kNN 55 23 45 27 27 50 41 36 LDA+kNN 18 18 28 27 27 27 NA NA PCA+kNN 55 23 45 27 27 50 41 36 *features 1 S(2,-2)SumVarnc 2 S(0,2)InvDfMom 3 S(0,5)SumOfSqs 4 S(4,4)SumOfSqs 5 S(2,-2)SumEntrp 6 WavEnHL_s-3 7 S(2,2)Correlat 8 S(4,0)Entropy 9 S(0,1)InvDfMom 10 S(0,3)Correlat 11 S(0,3)SumOfSqs 12 S(4,0)SumAverg 13 S(5,5)DifEntrp 14 Perc.10% 15 S(0,4)InvDfMom 16 S(4,-4)DifVarnc 17 S(5,-5)SumEntrp 18 Mean 19 WavEnHH_s-3 20 WavEnLL_s-2 21 S(3,-3)InvDfMom 22 S(2,0)Contrast 23 S(2,0)Correlat 24 S(2,0)DifVarnc 25 S(1,-1)DifVarnc 26 S(1,-1)Contrast 27 WavEnLL_s-3 28 S(0,4)SumOfSqs 29 GrMean 30 WavEnHH_s-1 6 (F1+F2) vs (F3+F4) 2D-TA 3D-TA Misclassified (%) Fisher Misclassified (%) PA MI MI+PA+F Fisher PA MI MI+PA+F Standardization No Yes No Yes No Yes No Yes Standardization No Yes No Yes No Yes No Yes Raw+kNN 33 14 37 19 37 16 26 16 Raw+kNN 25 25 18 32 25 18 21 21 LDA+kNN 24 24 24 24 23 23 9 9 LDA+kNN 18 18 4 4 7 7 NA NA PCA+kNN 31 16 37 17 34 16 24 16 PCA+kNN 32 25 21 32 25 18 21 21 3D-TA PA/LDA 2D-TA MI+PA+F/LDA Misclassified : 5% Misclassified : 4% 7 F0 vs (F1+F2) vs (F2+F3) 2D-TA Misclassified (%) Fisher PA MI 3D-TA MI+PA+F/LDA MI+PA+F Standardization No Yes No Yes No Yes No Yes Raw+kNN 58 45 64 53 51 36 51 42 LDA+kNN 43 43 53 53 42 41 33 32 PCA+kNN 58 46 63 53 59 34 59 41 3D-TA Misclassified (%) Fisher PA MI MI+PA+F Standardization No Yes No Yes No Yes No Yes Raw+kNN 62 60 69 62 60 50 60 50 LDA+kNN 36 36 36 38 55 50 5 5 PCA+kNN 62 62 69 64 60 50 60 50 Misclassified : 5% *features 1 S(0,0,2)SumOfSqs 2 S(4,4,0)DifEntrp 3 S(3,3,0)DifVarnc 4 S(5,-5,0)Correlat 5 S(0,0,2)SumVarnc 6 S(4,-4,0)DifEntrp 7 S(3,3,0)Contrast 8 S(4,4,0)AngScMom 9 S(0,3,0)SumEntrp 10 S(4,-4,0)Correlat 11 S(1,-1,0)Entropy 12 S(0,0,1)SumOfSqs 13 S(0,5,0)InvDfMom 14 Kurtosis3D 15 S(5,5,0)Correlat 16 S(5,0,0)SumAverg 17 Skewness3D 18 S(4,-4,0)SumEntrp 19 S(0,0,4)Entropy 20 S(3,3,0)SumAverg 21 S(5,-5,0)AngScMom 22 S(5,-5,0)Entropy 23 S(0,1,0)AngScMom 24 S(0,1,0)Entropy 25 Perc.10%3D 26 S(1,0,0)SumOfSqs 27 S(2,-2,0)Entropy 28 Perc.90%3D 29 S(2,-2,0)AngScMom 30 S(0,0,5)InvDfMom 8 Synthesis : better classification results Misclassification with MI+PA+F/ LDA Classes 2D-TA 3D-TA F0 vs Diseased 20% 7% F0 vs (F3+F4) 15% 0% F0 vs (F1+F2) 5% NA (F1+F2) vs (F3+F4) 9% NA F0 vs (F1+F2) vs (F3+F4) 33% 5% 3D-TA returns better results than 2D-TA Best method for fibrosis grading classification : Selection of parameters : MI+PA+F Analysis and classification : LDA+kNN 9 Conclusions MRI-TA is able to discriminate fibrosis grading Selection of parameters Mostly from coocurrence matrix (COM) 30 parameters from MI+PA+F usually gives better classification results LDA + kNN Gives the best classification No influence with or without standardization of features (more robust than PCA or Raw analysis?) NB: about 50% of misclassified with NDA+ANN in test dataset 2D-TA versus 3D-TA 3D-TA results better than 2D-TA Less ROIs in 3D than in 2D NB: impossible to perform 3D-TA, MI+PA+F/LDA in F0 vs (F1+F2) and (F1+F2) vs (F3+F4) (-> negatives values, integer, and values close to 0) 10
© Copyright 2026 Paperzz