Numerical comparison of decomposition algorithms for non-convex sum-utility problems Peiran Song Jan. 11, 2013 This technical report is a supporting document to the paper G. Scutari, F. Francisco, P. Song, D. P. Palomar and J. -S. Pang, “Decomposition by partial linearization: parallel optimization of multi-agent systems” In the following we will use the same notation as introduced in the above paper. In this report we provide a detailed comparison of the following algorithms SJBR[1], SCALE (SCALE one step)[2], WMMSE[3], and MDP[4] under different settings and scenarios. We start focusing on frequency-selective channels, see Sec. 1; then we consider MIMO flat-fading channels, see Sec. 2. 1 Sum-Rate Maximization over SISO ICs We compare the performance of SJBR[1], SCALE (SCALE one step)[2], WMMSE[3], and MDP[4] algorithms, in terms of convergence speed and achievable sum-rate. 1.1 Numerical simulation setup We simulated SISO frequency channels with N = 64 subcarriers; the channels are generated as FIR filters of order L = 10, whose taps are i.i.d. Gaussian random variables with zero mean and variance 1/d3ij , where dij is the distance between the transmitter j and the receiver i. For the sake of simplicity, we set dij = dji and dii = djj for all i and j 6= i. We compare the aforementioned algorithms in both low interference (d , dij /dii = 3) and high interference (d = 1) scenarios. We assume that all the users have the same power budget P , noise variance σ 2 , and SN R = P/σ 2 = 3dB. All the algorithms are initialized by choosing the uniform power allocation, and are terminated when (the absolute value) of the sum-rate error in two consecutive rounds becomes smaller than a given accuracy criterion. Here we consider two different termination accuracies, namely, 10−3 and 10−6 . In all the algorithms under consideration there is a bisection loop; the accuracy in the bisection loops is set to be one magnitude higher than the termination accuracy (i.e. 10−4 and 10−7 , respectively). For the proposed algorithm, the SJBR algorithm, we use the step size rule (Rule#1 [1, eq. (19)]) γ n = γ n−1 1 − γ n−1 , n = 1, 2, · · · (1) where is set to 10−2 . The average is taken over 100 independent channel realizations. 1.2 Figures In this subsection, we show the performance of the aforementioned algorithms for different network sizes, i.e. Number of users equals to 5, 10, 15, 30, 50, 75, 100. 1 1.2.1 Termination accuracy 10−3 • d = 3 (Low interference scenario) Convergence Speed (linear scale) Convergence Speed (log scale) 4 90 80 70 Iterations 10 1400 MDP SJBR WMMSE SCALE SCALE (one step) 2 10 Sum Rate (nats/channel use) MDP SJBR WMMSE SCALE SCALE (one step) 3 Iterations Achievable Sum Rate 100 10 60 50 40 30 1 10 20 1200 1000 MDP SJBR WMMSE SCALE SCALE (one step) 800 600 400 200 10 0 10 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users Number of Users 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users • d = 1 (High interfernce scenario) Convergence Speed (log scale) 4 Achievable Sum Rate Convergence Speed (linear scale) 400 200 MDP SJBR WMMSE SCALE SCALE (one step) MDP SJBR WMMSE SCALE SCALE (one step) 180 160 140 3 Iteratons Iterations 10 Sum Rate (nats/channel use) 10 120 100 80 2 10 60 40 350 300 250 200 MDP SJBR WMMSE SCALE SCALE (one step) 150 100 20 1 10 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 1.2.2 50 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users Number of Users Termination accuracy 10−6 • d = 3 (Low interference scenario) Convergence Speed (log scale) Convergence Speed (linear scale) 1400 350 1200 300 2 Iterations Iterations 10 1 250 200 150 MDP SJBR WMMSE SCALE SCALE (one step) 10 MDP SJBR WMMSE SCALE SCALE (one step) 100 50 0 10 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Achievable Sum Rate 400 Sum Rate (nats/channel use) 3 10 800 600 MDP SJBR WMMSE SCALE SCALE (one step) 400 200 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 1000 Number of Users 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users • d = 1 (High interference scenario) Convergence Speed (log scale) Convergence Speed (linear scale) 500 3 400 MDP SJBR WMMSE SCALE SCALE (one step) Iterations 400 Iterations 10 2 10 MDP SJBR WMMSE SCALE SCALE (one step) 1 10 Achievable Sum Rate 600 Sum Rate (nats/channel use) 4 10 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 300 200 100 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 2 350 300 250 200 MDP SJBR WMMSE SCALE SCALE (one step) 150 100 50 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 1.2.3 Conclusions The ’Sum-rate vs Number of Users’ figures show that all the algorithms reach the similar averaged sum-rate in all scenarios and under different termination criteria. But the ’Iterations vs Number of Users’ figures clearly show that the proposed algorithm, the SJBR, is much faster than all the others. The iteration gap between SJBR and all the other algorithms, ranges from three times to one order of magnitude. Moreover, the higher the termination accuracy the larger the gap. Note that SJBR, WMMSE, SCALE and SCALE one step are simultaneous-based schemes, while MDP is a sequential algorithm. 1.2.4 A further test on iterations number The figures above suggest that the iterations needed for SJBR algorithm to converge do not increase significantly as the number of users increases. To further test this property, we simulated in the next plots where the Number of Users are chosen from 5 up to 200. Termination accuracy 10−3 • d = 3 (Low interference scenario) Convergence Speed 80 Achievable Sum Rate 2500 70 Sum Rate (nats/channel use) SJBR WMMSE SCALE (one step) Iterations 60 50 40 30 20 10 0 20 40 60 80 100 120 140 160 180 SJBR WMMSE SCALE (one step) 2000 1500 1000 500 0 200 20 40 60 Number of Users 80 100 120 140 160 180 200 160 180 200 160 180 200 Number of Users • d = 1 ( High interference scenario) Convergence Speed Achievable Sum Rate 220 450 SJBR WMMSE SCALE (one step) 180 400 Sum Rate (nats/channel use) 200 Iterations 160 140 120 100 80 60 350 300 250 200 150 100 40 20 SJBR WMMSE SCALE (one step) 20 40 60 80 100 120 140 160 180 50 200 20 40 60 Number of Users 80 100 120 140 Number of Users Termination accuracy 10−6 • d = 3 (Low interference scenario) Convergence Speed Achievable Sum Rate 2500 450 400 Sum Rate (nats/channel use) SJBR WMMSE SCALE (one step) 350 Iterations 300 250 200 150 100 SJBR WMMSE SCALE (one step) 2000 1500 1000 500 50 0 20 40 60 80 100 120 140 160 180 200 Number of Users 0 20 40 60 80 100 120 Number of Users 3 140 • d = 1 (High interference scenario) Convergence Speed Achievable Sum Rate 700 450 SJBR WMMSE SCALE (one step) 400 Sum Rate (nats/channel use) 600 Iterations 500 400 300 200 100 0 350 300 250 200 SJBR WMMSE SCALE (one step) 150 100 20 40 60 80 100 120 140 160 180 200 50 20 40 Number of Users 60 80 100 120 140 160 180 200 Number of Users The above figures show that indeed the iterations number of SJBR algorithm does not increase significantly when the network size increases. 2 Sum-Rate Maximization over MIMO ICs We focus now on a MIMO scenario and compare the performance of the MIMO SJBR[1], WMMSE[5], and MDP[6]. The setup we simulated is described next. 2.1 Numerical simulation setup We simulated uncorrelated fading channel model, where the coefficients are Gaussian distributed with zero mean and variance 1/d3ij (dij = dji and dii = djj for all i and j 6= i). All the transmitters/receivers are equipped with 4 antennas. We compare the MIMO algorithms in three scenarios: the normalized distance d , dij /dii = 3, d = 2, and d = 1. In the simulations, we assume that all the users have the same power budget P , noise covariance matrix Rni = σ 2 I, and SN R = P/σ 2 = 3dB. All the algorithms are initialized by choosing a uniform power allocation among the antennas, and are terminated when (the absolute value) of the sum-rate error in two consecutive rounds becomes smaller than a given accuracy. Similarly to the SISO case, we consider two different termination accuracies namely 10−3 , 10−6 . The accuracy in the bisection loops is one magnitude higher than the termination accuracy (i.e. 10−4 and 10−7 , respectively). In SJBR algorithm we use the step size rule (1) with = 10−5 . The average is taken over 100 independent channel realizations. 2.2 Figures The figures in this subsection show the performance of the aforementioned MIMO algorithms in seven network sizes (Number of users equals to 5, 10, 15, 30, 50, 75, 100), under different normalized distances and accuracies. 2.2.1 Termination accuracy 10−3 • d = 3 (Low interference scenario) Convergence Speed (log scale) Convergence Speed (linear scale) 140 40 MDP SJBR WMMSE 35 2 10 Iterations Iterations 30 1 10 25 20 15 10 5 0 10 Achievable Sum Rate 45 MDP SJBR WMMSE 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 4 Sum Rate (nats/channels use) 3 10 120 MDP SJBR WMMSE 100 80 60 40 20 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users • d = 2 (Medium interference scenario) Convergence Speed (log scale) 3 Convergence Speed (linear scale) Achievable Sum Rate 50 65 45 MDP SJBR WMMSE 40 35 2 Iterations Iterations 10 30 25 20 1 10 15 10 MDP SJBR WMMSE 5 0 10 60 Sum Rate (nats/channel use) 10 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 55 50 45 40 35 30 MDP SJBR WMMSE 25 20 15 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users Number of Users • d = 1 (High interference scenario) Convergence Speed (log scale) 4 Convergence Speed (linear scale) Achievable Sum Rate 200 22 180 MDP SJBR WMMSE MDP SJBR WMMSE 160 140 3 Iterations Iterations 10 120 100 80 2 10 60 40 21 Sum Rate (nats/channel use) 10 20 1 10 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 19 18 17 16 15 MDP SJBR WMMSE 14 13 12 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 2.2.2 20 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users Number of Users Termination accuracy 10−6 • d = 3 (Low interference scenario) Convergence Speed (linear scale) Convergence Speed (log scale) 3 10 140 180 MDP SJBR WMMSE MDP SJBR WMMSE 160 Iterations 140 Iterations Achievable Sum Rate 200 2 10 120 100 80 60 1 10 40 Sum Rate (nats/channel use) 4 10 120 100 80 60 40 MDP SJBR WMMSE 20 20 0 10 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users Number of Users • d = 2 (Medium interference scenario) Convergence Speed (log scale) Convergence Speed (linear scale) MDP SJBR WMMSE 65 180 MDP SJBR WMMSE 160 140 3 Iterations Iterations 10 120 100 80 2 10 60 40 20 1 10 Achievable Sum Rate 200 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 0 60 Sum Rate (nats/channel use) 4 10 55 MDP SJBR WMMSE 50 45 40 35 30 25 20 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 5 15 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users • d = 1 (High interference scenario) Convergence Speed (log scale) 4 Convergence Speed (linear scale) Achievable Sum Rate 500 MDP SJBR WMMSE 22 MDP SJBR WMMSE 450 400 21 Sum Rate (nats/channel use) 10 Iterations Iterations 350 3 10 300 250 200 150 100 50 2 10 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 19 18 17 16 15 MDP SJBR WMMSE 14 13 12 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 2.2.3 20 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Nuser of Users Nuser of Users Conclusions The figures show that all the algorithms reach almost the same averaged sum-rate in all simulated scenarios. As in the SISO case, in the MIMO setting, the proposed algorithm, SJBR, is faster than all the others; depending on the specific scenario (and termination accuarcy) the iteration gap ranges from few iterations to one order of magnitude. We recall here that SJBR and WMMSE are simultaneous-based schemes, whereas MDP is a sequential algorithm. 2.2.4 A further test on iterations number We plot here similar curves as before, but increasing the network size till 200 users. All algorithms reach the same sum rate (and thus the Sum Rate figures are omitted). The curves show that the convergence speed of the proposed algorithm, the SJBR, does not increase significantly with respect to the number of users. Termination accuracy 10−3 d=3 (Low interference scenario) d=2 (Medium interference scenario) 100 90 100 90 SJBR WMMSE 80 80 70 70 60 60 60 40 Iterations 70 50 50 40 50 40 30 30 30 20 20 20 10 10 0 20 40 60 80 100 120 140 160 180 0 200 SJBR WMMSE 90 SJBR WMMSE 80 Iterations Iterations d=1 (High interference scenario) 100 10 20 40 60 Number of Users 80 100 120 140 160 180 0 200 20 40 60 Number of Users 80 100 120 140 160 180 200 Number of Users Termination accuracy 10−6 d=3 (Low interference scenario) d=2 (Medium interference scenario) 200 180 200 SJBR WMMSE 180 SJBR WMMSE 180 160 140 140 140 120 120 120 100 80 Iterations 160 Iterations 160 Iterations d=1 (High interference scenario) 200 100 80 100 80 60 60 60 40 40 40 20 20 20 0 20 40 60 80 100 120 Number of Users 140 160 180 200 0 20 40 60 80 100 120 Number of Users 6 140 160 180 200 0 SJBR WMMSE 20 40 60 80 100 120 Number of Users 140 160 180 200 2.3 Choices of step-size rules and parameters for SJBR in MIMO ICs The convergence of SJBR algorithm with a diminishing step size is guaranteed, if the step-size rule satisfies the conditions in Theorem 3 [1]. Many step-size rules satisfy such conditions. A natural question is then to understand how the performance of the SJBR are affected by the choice of the step-size rule, which is the goal of this section. More specifically, here we compare the performance of SJBR algorithm using the following feasible diminishing step-size rules • Step-size rule 1: γ n = γ n−1 1 − γ n−1 , ∈ (0, 1) , n = 1, 2, · · · • Step-size rule 2: γ n = γ n−1 + α , α, β ∈ (0, 1) , α ≤ β, n = 1, 2, · · · 1 + βn • Step-size rule 3: γ n = γ n−1 + α log (n) √ , α, β ∈ (0, 1) , α ≤ β, n = 1, 2, · · · 1+β n Termination accuracy 10−3 2.3.1 d=1 (Low interference scenario) d=1 (High interference scenario) d=2 (Medium interference scenario) 15 100 35 Step−size rule 1 Step−size rule 2 Step−size rule 3 Step−size rule 1 Step−size rule 2 Step−size rule 3 30 Step−size rule 1 Step−size rule 2 Step−size rule 3 90 80 25 70 Iterations Iterations Iterations 10 20 15 5 60 50 40 30 10 20 5 10 0 10 20 30 40 50 60 70 80 90 0 100 Number of Users 10 20 30 40 50 60 70 80 90 0 100 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users Number of Users When the termination accuracy is low, these three step-size rules lead to very similar performance (at least of the given choice of the free parameters, namely: = 10−5 , α = 10−6 , β = 3 × 10−3 ). Termination accuracy 10−6 2.3.2 d=3 (Low interference scenario) d=2 (Medium interference scenario) 20 180 160 14 140 12 120 Iterations 16 10 8 700 Step−size rule 1 Step−size rule 2 Step−size rule 3 500 100 80 6 60 4 40 2 20 Step−size rule 1 Step−size rule 2 Step−size rule 3 600 Iterations 18 Iterations d=1 (High interference scenario) 200 Step−size rule 1 Step−size rule 2 Step−size rule 3 400 300 200 100 0 10 20 30 40 50 60 Number of Users 70 80 90 100 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Number of Users 0 10 20 30 40 50 60 70 80 90 100 Number of Users In “High interference” scenario (see the figure corresponding to d = 1), the situation is different: rule 3 seems to need an ad-hoc tuning, which should depend on the network size. Rules 1 and 2 instead keep working quite good. The performance of SJBR becomes more sensitive to the step size choices when the termination accuracy increases, especially in the high interference scenario. 2.3.3 Parameter choices of Step size rule 1 γ n = γ n−1 1 − γ n−1 , ∈ (0, 1) , n = 1, 2, · · · Since Rule 1 worked quite well in all the scenarios that we simulated (and it has only one tuning parameter), it seems to be a good winner candidate. It is then interesting to further study the behavior of the SJBR algorithm based on this rule. In particular, we are interested to understand how sensitive the performance of SJBR is with 7 respect to the free parameter in (1). In the following we report the numerical results for the following choices of : 10−3 , 10−4 , 10−5 , 10−6 . The following tables show the iterations number and the achievable sum-rate of the SJBR algorithm. Termination accuracy 10−3 • d = 3 (Low interference scenario) # of users = 5 # of users = 10 # of users = 15 # of users = 30 # of users = 50 # of users = 75 # of users = 100 = 10−6 iteration sum-rate 3.05 18.28 3.98 32.88 4.15 44.54 4.97 70.74 5.1 93.84 5.17 113.85 5.49 128.29 = 10−5 iteration sum-rate 3.05 18.28 3.98 32.88 4.14 44.54 4.97 70.74 5.1 93.84 5.17 113.85 5.49 128.29 = 10−4 iteration sum-rate 3.05 18.28 3.98 32.88 4.13 44.54 4.96 70.73 5.12 93.84 5.21 113.85 5.51 128.92 = 10−3 iteration sum-rate 3.06 18.28 4 32.88 4.17 44.54 5.01 70.74 5.13 93.84 5.24 113.85 5.52 128.92 = 10−5 iteration sum-rate 5.75 15.81 9.39 25.19 11.87 31.31 13.76 42.59 12.61 50.84 12.22 57.24 12 61.68 = 10−4 iteration sum-rate 5.78 15.81 9.4 25.19 11.83 31.31 13.76 42.59 12.57 50.84 12.26 57.24 12.03 61.68 = 10−3 iteration sum-rate 5.84 15.81 9.48 25.19 11.93 31.31 13.75 42.59 12.64 50.84 12.22 57.24 11.95 61.68 = 10−5 iteration sum-rate 32.88 12.75 48.65 16.79 47.82 17.88 45.75 19.49 46.93 20.56 49.22 21.39 49.72 21.83 = 10−4 iteration sum-rate 32.53 12.75 48.23 16.79 48.97 17.87 46.68 19.49 52.85 20.56 47.66 21.38 49.33 21.82 = 10−3 iteration sum-rate 32.98 12.75 49.3 16.79 50.07 17.88 47.29 19.49 53.71 20.56 48.78 21.39 50.86 21.83 = 10−5 iteration sum-rate 5.42 18.28 6.96 32.88 7.73 44.54 8.97 70.74 9.45 93.84 9.59 113.85 9.76 128.93 = 10−4 iteration sum-rate 5.42 18.28 6.96 32.88 7.73 44.54 8.96 70.74 9.4 93.84 9.55 113.85 9.74 128.93 = 10−3 iteration sum-rate 5.39 18.28 6.96 32.88 7.72 44.54 8.97 70.74 9.44 93.84 9.63 113.85 9.81 128.93 • d = 2 (Medium interference scenario) # of users = 5 # of users = 10 # of users = 15 # of users = 30 # of users = 50 # of users = 75 # of users = 100 = 10−6 iteration sum-rate 5.75 15.81 9.37 25.19 11.9 31.31 13.75 42.59 12.65 50.84 12.23 57.24 11.99 61.68 • d = 1 (High interference scenario) # of users = 5 # of users = 10 # of users = 15 # of users = 30 # of users = 50 # of users = 75 # of users = 100 = 10−6 iteration sum-rate 32.66 12.75 48.54 16.79 49.28 17.88 46.61 19.49 52.78 29.56 48.27 21.39 50.51 21.83 Termination accuracy 10−6 • d = 3 (Low interference scenario) # of users = 5 # of users = 10 # of users = 15 # of users = 30 # of users = 50 # of users = 75 # of users = 100 = 10−6 iteration sum-rate 5.4 18.28 6.79 32.88 7.69 44.54 8.94 70.74 9.43 93.84 9.58 113.85 9.78 128.93 8 • d = 2 (Medium interference scenario) # of users = 5 # of users = 10 # of users = 15 # of users = 30 # of users = 50 # of users = 75 # of users = 100 = 10−6 iteration sum-rate 13.52 15.81 25.77 25.19 32.13 31.31 41.63 42.59 34.98 50.84 30.46 57.24 28.69 61.68 = 10−5 iteration sum-rate 14.13 15.81 24.31 25.19 35.66 31.31 40.8 42.59 34.29 50.84 30.02 57.24 28.45 61.68 = 10−4 iteration sum-rate 13.47 15.81 25.9 25.19 32.09 31.31 41.65 42.59 35.06 50.84 30.38 57.24 28.77 61.68 = 10−3 iteration sum-rate 13.62 15.81 26.21 25.19 32.52 31.31 42.4 42.59 35.58 50.84 30.76 57.24 29.05 61.68 = 10−5 iteration sum-rate 114.77 12.77 170.25 16.86 152.59 17.94 119.63 19.57 115.21 20.65 114.44 21.47 114.3 21.91 = 10−4 iteration sum-rate 114.65 12.77 175.07 16.86 160.16 17.94 130.8 19.57 127.96 20.65 117.65 21.47 112.92 21.92 = 10−3 iteration sum-rate 121.85 12.77 197.93 16.86 177.79 17.94 140.63 19.57 136.82 20.65 124.28 21.47 118.51 21.92 • d = 1 (High interference scenario) # of users = 5 # of users = 10 # of users = 15 # of users = 30 # of users = 50 # of users = 75 # of users = 100 = 10−6 iteration sum-rate 113.68 12.77 172.83 16.86 158.48 17.94 129.89 19.57 127.74 20.65 116.94 21.47 110.17 21.91 From the above experiment results, we observe that the performance of SJBR algorithm is not too sensitive to the choice of the parameter , which makes the proposed algorithm very appealing in practical scenarios. Description of the results for the WMMSE algorithm and SJBR algorithm in two scenarios, namely the interference broadcasting channel (IBC) and the peer-to-peer interference channel (IC). Both scenarios as well as the WMMSE are simulated using the matlab codes provided by Wei-Cheng Liao. 3 Scenario 1 (IBC) 3.1 Environment Setting • Multicell cellular systems composed of 7 cell with 1 BS and K randomly generated MTs per cell, where BS = Base Station and MT = Mobile Terminal. • number of transmit antennas = number of receive antennas = 4 • SNR , Pt /σ 2 for all the links, where Pt =transmit power and σ 2 = 1 is the variance of the AWGN noise. • Termination accuracy on the sum-rate= 1e − 2 (nats/s/Hz) • tolerance of the bisection loop= 1e − 5 • parameters of SJBR: – step-size rule: γ n = γ n−1 1 − γ n−1 , with γ 0 = 1 and = 1e − 3 – τ =0 • the initial point is generated randomly and set the same for both algorithms, i.e. V(0) for WMMSE and H Q(0) = V(0) V(0) for SJBR 9 3.2 Results We report next the following results for the two algorithms: i) average cpu-time required to reach convergence (within the prescribed accuracy) vs. # of MTs in the system; ii) average # of iteration to reach convergence vs. # of MTs in the system; and iii) average sum-rate vs. # of MTs in the system. The average is taken over 1490 independent channel/users realizations. The above results are given for three different values of the SNR, namely: SNR = 0dB, SNR = 3dB, and SNR = 10dB. • SNR = 0dB Average cpu−time vs. # of active MTs (SNR=0dB) Average # of iterations vs. # of active MTs (SNR=0B) 3 130 WMMSE SJBR 2.5 1.5 110 Sum rate (nats/s/Hz) 2 150 100 1 50 0.5 WMMSE SJBR 120 200 # of iteration cpu time per user (s) Average sum−rate vs. # of active MTs (SNR=0dB) 250 WMMSE SJBR 100 90 80 70 60 50 40 0 0 100 200 300 400 0 500 0 100 # of Mobile Terminals 200 300 400 30 500 0 100 # of Mobile Terminals 200 300 400 500 # of Mobile Terminals • SNR = 3dB Average cpu−time vs. # of active MTs (SNR=3dB) Average # of iterations vs. # of active MTs (SNR=3B) 3.5 140 WMMSE SJBR WMMSE SJBR 120 Sum rate (nats/s/Hz) 250 2.5 # of iteration cpu time per user (s) 3 2 1.5 200 150 100 1 50 0.5 0 Average sum−rate vs. # of active MTs (SNR=3dB) 300 WMMSE SJBR 0 100 200 300 400 0 500 100 80 60 40 0 100 # of Mobile Terminals 200 300 400 20 500 0 100 # of Mobile Terminals 200 300 400 500 # of Mobile Terminals • SNR = 10dB Average cpu−time vs. # of active MTs (SNR=10dB) Average # of iterations vs. # of active MTs (SNR=10B) 4.5 Average sum−rate vs. # of active MTs (SNR=10dB) 400 WMMSE SJBR 4 160 WMMSE SJBR 350 WMMSE SJBR 140 3 2.5 2 Sum rate (nats/s/Hz) 300 # of iteration cpu time per user (s) 3.5 250 200 150 1.5 100 1 120 100 80 60 50 0.5 0 0 100 200 300 # of Mobile Terminals 400 500 0 0 100 200 300 # of Mobile Terminals 10 400 500 40 0 100 200 300 # of Mobile Terminals 400 500 4 Scenario 2 (IC) 4.1 Environment setting • Multicell cellular systems composed of 7 cells; in each cell there are K active pairs BS-MT randomly placed. • number of transmit antennas = number of receive antennas = 4 • SNR , Pt /σ 2 for all the links, where Pt =transmit power and σ 2 = 1 is the variance of the AWGN noise. • Termination accuracy on the sum-rate= 1e − 2 (nats/s/Hz) • tolerance of the bisection loop= 1e − 5 • parameters of SJBR: – step-size rule: γ n = γ n−1 1 − γ n−1 , with γ 0 = 1 and = 1e − 3 – τ =0 • the initial point is generated randomly and set the same for both algorithms, i.e. V(0) for WMMSE and H Q(0) = V(0) V(0) for SJBR 4.2 Results We report next the following results for the two algorithms: i) average cpu-time required to reach convergence (within the prescribed accuracy) vs. # of BS-MT pairs in the system; ii) average # of iteration to reach convergence vs. # of BS-MT pairs in the system; and iii) average sum-rate vs. # of BS-MT pairs in the system. The average is taken over 500 independent channel/users realizations. The above results are given for three different values of the SNR, namely: SNR = 0dB, SNR = 3dB, and SNR = 10dB. • SNR = 0dB Average cpu−time vs. # of active BS−MT paris (SNR=0dB) Average # of iterations vs. # of active BS−MT pairs (SNR=0B) 200 120 180 WMMSE SJBR WMMSE SJBR # of iteration 140 120 100 80 250 Sum rate (nats/s/Hz) 100 160 cpu time per user (s) Average sum−rate vs. # of active BS−MT pairs (SNR=0dB) 300 WMMSE SJBR 80 60 40 60 40 20 200 150 100 50 20 0 0 100 200 300 400 0 500 0 100 200 300 400 0 500 # of pairs # of pairs Average cpu−time vs. # of active BS−MT paris (SNR=3dB) Average # of iterations vs. # of active BS−MT pairs (SNR=3B) 0 100 200 300 400 500 # of pairs • SNR = 3dB 250 140 Average sum−rate vs. # of active BS−MT pairs (SNR=3dB) 350 WMMSE SJBR WMMSE SJBR WMMSE SJBR 120 300 Sum rate (nats/s/Hz) 100 # of iteration cpu time per user (s) 200 150 100 80 60 40 250 200 150 100 50 20 0 0 100 200 300 400 500 0 50 0 100 200 # of pairs 300 # of pairs 11 400 500 0 0 100 200 300 # of pairs 400 500 • SNR = 10dB Average cpu−time vs. # of active BS−MT paris (SNR=10dB) Average # of iterations vs. # of active BS−MT pairs (SNR=10B) Average sum−rate vs. # of active BS−MT pairs (SNR=10dB) 300 180 WMMSE SJBR 350 WMMSE SJBR 160 WMMSE SJBR 300 200 150 Sum rate (nats/s/Hz) 140 # of iteration cpu time per user (s) 250 120 100 80 100 60 50 250 200 150 100 40 0 0 100 200 300 400 500 20 0 100 200 # of pairs 300 # of pairs 400 500 50 0 100 200 300 400 # of pairs References [1] G. Scutari, F. Francisco, P. Song, D. P. Palomar and J. -S. Pang, “Decomposition by partial linearization: parallel optimization of multi-agent systems”, submitted to IEEE Trans on Signal Processing, 2013 [2] J. Papandriopoulos and J. S. Evans, “SCALE: a low-complexity distributed protocol for spectrum balancing in multiuser dsl networks”, IEEE Trans on Information Theory, vol. 55, no.8, pp. 3711-3724, Aug, 2009 [3] M. Hong and Z. -Q. Luo, “Signal processing and optimal resource allocation for the interference channel”, Elsevier e-Reference-Signal Processing, 2013. Available at http://arxiv.org/pdf/1206.5144v1.pdf. [4] C. Shi, R. A. Berry amd M. L. Honig, “Monotonic convergence of distributed interference pricing in wireless networks”, in Proc. IEEE international conference on Symposium on Information Theory (ISIT), vol. 3, pp. 1619-1623, July, 2009 [5] Q. Shi, M. Razaviyayn, Z. -Q. Luo and C. He, “An iteratively weighted MMSE approach to distributed sumutility maximization for a MIMO interfering broadcast channel”, IEEE Trans on Signal Processing, vol. 59, no. 9, pp. 4331-4340, Sept, 2011 [6] S.-J. Kim and G. B. Giannakis, “Optimal resource allocation for MIMO ad hoc cognitive radio networks”, IEEE Trans on Information Theory, vol. 57, no. 5, May 2011 12 500
© Copyright 2025 Paperzz