Absolute Extrema In beginning calculus, the domain of a function y = f(x) was defined by an interval such as 0 < x < 4. To check for absolute extrema required the endpoints and the critical points into the function. For a three dimensional function, the domain is a region of the xy plane. To determine the absolute extrema, the boundaries of the domain are substituted into the function and the extrema determined. Suppose we want to find the absolute extrema of the function z = x2 - y2 - x y - x + 8 y + 1 over the domain enclosed by the semicircle y = In[20]:= 16 - x2 and the line y = 1. First, examine the graph of the function over this domain. z@x_, y_D := x2 - y2 - x y - x + 8 y + 1; ü Initial Graph A contour plot and a surface for the same function over the rectangular domain -4 § x § 4, 0 § y § 4 is shown below. In[21]:= Grid@88 ContourPlot@z@x, yD, 8x, - 4, 4<, 8y, 0, 4<, ColorFunction Ø "TemperatureMap", Contours Ø 25, ImageSize Ø 300D, Plot3D@z@x, yD, 8x, - 4, 4<, 8y, 0, 4<, BoxRatios Ø 82, 1, 3<, ColorFunction Ø "TemperatureMap", MeshFunctions -> 8Ò3 &<, Mesh Ø 25, ImageSize Ø 300D<<D Out[21]= ü Refine the Graph Using the RegionFunction option, we can restrict the domain to a portion of the circle. 2 absoluteextrema.nb In[22]:= GridB:: ContourPlotBz@x, yD, 8x, - 4, 4<, 8y, 0, 4<, ColorFunction Ø "TemperatureMap", Contours Ø 25, ImageSize Ø 300, RegionFunction Ø FunctionB8x, y, z<, y ¥ 1 && y § 16 - x2 FF, Plot3DBz@x, yD, 8x, - 4, 4<, 8y, 0, 4<, BoxRatios Ø 82, 1, 3<, ColorFunction Ø "TemperatureMap", MeshFunctions -> 8Ò3 &<, Mesh Ø 25, ImageSize Ø 300, RegionFunction Ø FunctionB8x, y, z<, y ¥ 1 && y § 16 - x2 FF>>F Out[22]= Critical Points To find the location and type of the critical points, set the first derivatives equal to zero and use the second derivative test. In[23]:= Out[23]= p1 = Solve@8D@z@x, yD, xD ã 0, D@z@x, yD, yD ã 0<, 8x, y<D 88x Ø 2, y Ø 3<< 2 The second derivative test uses zxx zyy - Izxy M . Plugging our critical point into this formula In[24]:= Out[24]= D@z@x, yD, x, xD * D@z@x, yD, y, yD - HD@z@x, yD, x, yDL2 ê. 8x, y< -> p1 -5 absoluteextrema.nb gives a negative result so p1 is a saddle point. Plugging p1 into the original function determines the z value. In[25]:= Out[25]= localpt = 8x, y, z@x, yD< ê. p1 882, 3, 12<< Check the Boundaries To check for absolute extrema, substitute each part of the boundary into the original equation. ü Along the First Boundary In[26]:= y1@x_D := 1; b1@x_D := z@x, y1@xDD; PlotBb1@xD, :x, - 15 , 15 >F 30 25 20 Out[28]= 15 10 -4 In[29]:= Out[29]= In[30]:= Out[30]= In[31]:= Out[31]= -2 2 4 critpt1 = Solve@b1 '@xD ã 0, xD 88x Ø 1<< firstset = ::- 15 , 1, 15 , critpt1@@1, 1, 2DD, 15 > 15 > tab1 = Table@8firstset@@iDD êê N, y1@firstset@@iDDD, z@firstset@@iDD, 1D êê N<, 8i, 1, Length@firstsetD<D 88- 3.87298, 1, 30.746<, 81., 1, 7.<, 83.87298, 1, 15.254<< ü Along the second bondary Next, use the boundary y = 16 - x2 . 3 4 absoluteextrema.nb In[32]:= y2@x_D := 16 - x2 ; b2@x_D := z@x, y2@xDD; PlotBb2@xD, :x, - 15 , 15 >, AxesOrigin Ø 80, 0<F 35 30 25 20 Out[34]= 15 10 5 -4 In[35]:= Out[35]= In[36]:= Out[36]= In[37]:= Out[37]= -2 2 4 critpt2 = NSolve@b2 '@xD ã 0, xD 88x Ø 3.80685<, 8x Ø - 3.29755<, 8x Ø 1.97477<< secondset = 8critpt2@@2, 1, 2DD, critpt2@@3, 1, 2DD, critpt2@@1, 1, 2DD< 8- 3.29755, 1.97477, 3.80685< tab2 = Table@8secondset@@iDD, y2@secondset@@iDDD, z@secondset@@iDD, y2@secondset@@iDDDD<, 8i, 1, Length@secondsetD<D 88- 3.29755, 2.2641, 35.624<, 81.97477, 3.47855, 11.7837<, 83.80685, 1.22795, 15.3264<< Put the results together Putting the local point and the two set of boundary points together, we have the following table. In[38]:= TableFormBJoin@localpt, tab1, tab2D, TableHeadings Ø ::"saddle point", "corner", "along y=1", "corner", 16 - x2 ", "along y= "along y= 16 - x2 ", "along y= 16 - x2 ">, 8x, y, z<>F Out[38]//TableForm= saddle point corner along y=1 corner x 2 - 3.87298 1. 3.87298 y 3 1 1 1 z 12 30.746 7. 15.254 along y= 16 - x2 - 3.29755 2.2641 35.624 along y= 16 - x 2 1.97477 3.47855 11.7837 along y= 16 - x2 3.80685 1.22795 15.3264 From this table, we can pick out that the absolute maximum point is at H-3.29755, 2.2641, 35.624L and the absolute minimum point is at H1, 1, 7L.
© Copyright 2026 Paperzz