rB − C > 0 B r C rAB A B A B A B rAB i 0.5ni ni r= r 0.5 ! ni i 0.5 0.25 0.125 r = 1/2 r = 1/8 r r r r G G G G G r r r β α gi i ĝi i ϵ gi = α + βĝi + ϵ z z β gi gi r=β= (gi , ĝi ) (gi ) r r r ĝi gi Gi rG = (Gi ) (gi ) r r r r M X X λ N N + λN r r r r N + λN r M >> N N + λN (M − N )/(M − 1) M >> 1 r r r r r r r r r t (gi (t), ĝi (t)) (gi (t)) r(t) = r r r r(t)B − C r r(t)B − C r(t) r(t) B C tA r(tA ) tA tA tC X X B tA C r(tA ) X X r(tA )B −C X X tT tA tT X X X tA tA X X r(tA ) r(tA ) r(tT ) tT tA tA tT X r r= (gi (tT ), ĝi (tA )) (gi (tT ), gi (tA )) tA tT r X r r r r= (gi (tT ), Gi (tA )) (gi (tT ), gi (tA )) Gi i tA tT ĝi Gi gA gT gA gT r r rB C r r B r rB C C r r B−C −C B fX 0 X gXi (t) X X t t gXi (t) = 1 gXi (t) = 0 fY Y gY i (t) i gY i (t) = 1 X Y Y t t gY i (t) = 0 Y X Y π X λX X λX Y λY Y B C B C λY tA X Y X Y ∆gi = wi 1 [ w (wi , gi ) + (wi ∆gi )] i gi gi ∆gi = g′i gi′ 1" w i # (wi , gi′ ) + (∆gi ) gi (tT ) i ∆gi ∆gi g ∆gi = 1 [ w (wi , gi (tT ))] + (∆gi ) i wi wi = 2 (V − Ci gXi (tA ) + BĝXi (tA )) + ϵ tA wi X X ∆g Xi = 2 [−C w V (gXi (tA ), gXi (tT )) + B (ĝXi (tA ), gXi (tT ))] + (∆gXi ) ϵ ∆g Xi = 2 [(rB − C) w (gXi (tA ), gXi (tT ))] + (∆gXi ) r (gXi (tT ), ĝXi (tA )) (gXi (tT ), gXi (tA )) r= X r (∆gXi ) X Y Y X Y Y wi (wi , gY i (tT )) = 0 ∆g Y i = (∆gY i ) Y X Y Y X ∆g Xi > ∆g Y i ⇐⇒ X λ X = λY Y 2 [(rB − C) w (gXi (tA ), gXi (tT ))] > (∆gY i ) − (∆gXi ) Y fX = fY (∆gY i ) = (∆gXi ) ∆g Xi > ∆g Y i ⇐⇒ 2 [(rB − C) w (gXi (tA ), gXi (tT ))] > 0 (gXi (tA ), gXi (tT )) > 0 X Y ∆g Xi > ∆g Y i ⇐⇒ rB − C > 0 rB − C < 0 rB − C > 0 r πλX r r πλX r r= πλX βĝ (t ),g (t ) (gXi (tT ), ĝi (tA )) = Xi A Xi T (gXi (tT ), gXi (tA )) βgXi (tA ),gXi (tT ) βĝXi (tA ),gXi (tT ) = (ĝXi (tA )|gXi (tT ) = 1) − (ĝXi (tA )|gXi (tT ) = 0) = πλX βgXi (tA ),gXi (tT ) = (gXi (tA )|gXi (tT ) = 1) − (gXi (tA )|gXi (tT ) = 0) = 1 − (1 − fX )πλX r= πλX 1 − (1 − fX )πλX r π λX r N fX X fY Y tA X B (GXi (tA ))B GXi (tA ) tA C π N X λX Y λY tA X Y ∆gi = 1 [ w (wi , gi (tT ))] + (∆gi ) wi = 2 (V − Ci gXi (tA ) + BGXi (tA )) + ϵ ∆g Xi = 2 [−C w ∆g Xi = (gXi (tA ), gi (tT )) + B 2 [(rG B − C) w (GXi (tA ), gXi (tT ))] + (∆gXi ) (gXi (tA ), Xi (tT ))] + (∆gXi ) rG rG = (gXi (tT ), GXi (tA )) (gXi (tT ), gXi (tA )) r Y ∆g Y i = (∆gY i ) X Y X Y 2 [(rG B − C) w ∆g Xi > ∆g Y i ⇐⇒ (gXi (tA ), gXi (tT ))] > (∆gY i ) − (∆gXi ) X Y (GXi (tT ), GXi (tA )) > 0 tA X Y ∆g Xi > ∆g Y i ⇐⇒ rG B − C > 0 rG B−C < 0 rG B − C > 0 r tA r tT rG πλX N rG = 1 + (N − 1)r N N π λX X X r rG rG = 1 + (N − 1)(πλX /(1 − πλX (1 − fX ))) N π λX 1 4
© Copyright 2026 Paperzz