About an even as the sum or the difference of two primes Jamel Ghannouchi To cite this version: Jamel Ghannouchi. About an even as the sum or the difference of two primes. Bulletin of Mathematical Sciences and Applications (www.bmsa.us), 2013, 2 (3), pp.44-52. <hal-00862954v3> HAL Id: hal-00862954 https://hal.archives-ouvertes.fr/hal-00862954v3 Submitted on 20 Oct 2014 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. About an even as the sum or the difference of two primes Jamel Ghanouchi Abstract (MSC=11) The present algebraic development begins simply by an exposition of the data of the problem. Our calculus is supported by a reasoning which must lead to an impossibility. We define the primal radius : For all x an integer greater or equal to 3, we define a primal number r for which x−r and x+r are prime numbers. We see then that Goldbach conjecture would be verified because 2x = (x + r) + (x − r). We prove the existence of r for all x ≥ 3. We prove also the existence, for all x′ an integer, of a primal radius r ′ for which x′ +r ′ and r ′ −x′ are prime numbers strictly greater than 2. De Polignac conjecture would be quickly verified because 2x′ = (x′ +r ′ )−(r ′ −x′ ). Introduction Goldbach and de Polignac conjectures seem actually impossible to be solved. Everyone has remarked the similarity between them. One stipulates that each even is the sum of two primes when the other stipulates that it is always the difference of two primes and that there is an infinity of such couples. In fact, we have used that similarity to solve those very old problems, we have considered in this research the conjectures as two faces of the same problem. For this, we have defined a notion : the primal radius. It allowed finally to prove the conjectures. The Goldbach conjecture Goldbach conjecture, fruit of personal works and correspondences between the mathematicians of the XVIII century (Leonard Euler, who was born exactly 300 years before 2007, was one of them), stipulates that an even number is always equal to the sum of two prime numbers. Let us suppose there exists an integer x ; x ≥ 3, for which, for all p1 ≥ 3, p2 ≥ 3 prime numbers b 6= 0. We can pose for p1 and p2 distinct prime numbers verifying p1 > x > p2 . 2x = p1 + p2 + 2b b depends of p1 and p2 . Then x= p1 + p2 +b 2 1 And for all x, p1 , p2 , exists y whose expression is y= p1 − p2 +b 2 We pose x1 x2 x 3 x4 = p1 + 2b = p2 − 2b = p2 + 2b = p1 − 2b 2 2 2 2 x = p1 +p + b = p1 +x + 2b = x1 +p = x1 +x +b 2 2 2 2 p1 +x3 x1 +x3 x4 +x3 x4 +x2 = 2 = 2 − b = 2 + b = 2 + 3b 2 2 2 2 ⇒ y = p1 −p + b = p1 −x = x1 −p = x1 −x −b 2 2 2 2 p1 −x3 x1 −x3 x4 −x3 2 = 2 + 2b = 2 + b = 2 + 3b = x4 −x +b 2 x1 + x2 = p 1 + p 2 LEMMA 1 The following formula 2 2 2 2 x = p1 +p + b = p1 +x + 2b = x1 +p = x1 +x +b 2 2 2 2 p +x x +x x +x x +x 1 3 1 3 4 3 4 2 = = − b = + b = + 3b 2 2 2 2 p1 −x2 x1 −p2 x1 −x2 2 y = p1 −p + b = = = −b 2 2 2 2 p1 −x3 x1 −x3 x4 −x3 x4 −x2 = + 2b = + b = + 3b = +b 2 2 2 2 x1 + x2 = p 1 + p 2 imply that ∃p1 , p2 prime numbers which verify b=0 . In fact, our hypothesis (b 6= 0 for all p1 , p2 ) can not imply b = 0 without any condition. If the calculus leads to b = 0, the hypothesis is false because the formal calculus can not lead to b = 0. Proof of lemma 1 If x is a prime number, 2x = x + x is the sum of two primes, then p1 − p2 6= 0 we will suppose firstly that (x1 − x2 )(x1 + x3 ) 6= 0 let ( x1 −x2 p1 −p2 p1 −p2 x1 −x2 = = p1 −p2 +4b p1 −p2 x1 −x2 −4b x1 −x2 = 1 + p14b −p2 = 1 − x14b −x2 we pose ( k = p12b −p2 k′ = − (p1 −p2b2 +4b) if kk′ = 0 ⇒ b = 0 2 we will suppose kk′ 6= 0 But ∀x, y, ∃φ verifying x = φy x + y = (φ + 1)y = x1 6= 0 x − y = (φ − 1)y = p2 6= 0 and ∀k, k ′ , ∃α verifying k = αk ′ ⇒k= −2b 2b =α p1 − p2 x1 − x2 ⇒ x1 − x2 = −α(p1 − p2 ) ⇒ x1 − x2 − p1 + p2 = 4b = −(α + 1)(p1 − p2 ) −(α + 1) (p1 − p2 ) 4 p1 + p2 α + 1 p1 + p2 +b= − (p1 − p2 ) ⇒x= 2 2 4 p1 − p2 p1 − p2 α + 1 ⇒y= +b= − (p1 + p2 ) 2 2 4 ⇒b= or x= (1 − α)p1 + (3 + α)p2 φ = p2 4 φ−1 and y= let ( (1 − α)(p1 − p2 ) 1 = p2 4 φ−1 x1 +x3 p1 +p2 p1 +p2 x1 +x3 = = p1 +p2 +4b p1 +p2 x1 +x2 −4b x1 +x3 = 1 + p14b +p2 = 1 − x14b +x3 we pose ( m = p12b +p2 m′ = − x12b +x3 mm′ 6= 0 and ∀m, m′ , ∃β verifying m = βm′ ⇒m= −2b 2b =β p1 + p2 x1 + x3 ⇒ x1 + x3 = −β(p1 + p2 ) ⇒ x1 + x3 − p1 − p2 = 4b = −(β + 1)(p1 + p2 ) −(β + 1) (p1 + p2 ) 4 p1 + p2 (β + 1) p1 + p2 +b= − (p1 + p2 ) ⇒x= 2 2 4 ⇒b= 3 ⇒y= p1 − p2 (β + 1) p1 − p2 +b= − (p1 + p2 ) 2 2 4 thus x= 1−β 1−β φ p1 + p2 = p2 4 4 φ−1 y= β+3 1 1−β p1 − p2 = p2 4 4 φ−1 we resume x= 1−β 1−β φ (1 − α)p1 + (3 + α)p2 = p1 + p2 = p2 4 4 4 φ−1 and y= 1−β β+3 1 (1 − α)(p1 − p2 ) = p1 − p2 = p2 4 4 4 φ−1 b= −(α + 1) −(β + 1) (p1 − p2 ) = (p1 + p2 ) 4 4 −2 − α − β β−α p1 = p2 ⇒ 4 4 β−α −2 − α − β ⇒ = p2 p1 but 4x − 4y + 4b = 2p1 + 2p2 + 4b − 2p1 + 2p2 − 4b + 4b = 4p2 + 4b = 4P2 And 4x + 4y − 4b = 2p1 + 2p2 + 4b + 2p1 − 2p2 + 4b − 4b = 4p1 + 4b = 4P1 Thus 4P1 = 4p1 + 4b = 4p1 − (α + 1)(p1 − p2 ) = (3 − α)p1 + (1 + α)p2 = 4p1 − (β + 1)(p1 + p2 ) = (3 − β)p1 − (1 + β)p2 = 1 (6 − α − β)p1 + (α − β)p2 ) 2 And 4P2 = 4p2 + 4b = 4p2 − (α + 1)(p1 − p2 ) = −(1 + α)p1 + (5 + α)p2 1 = 4p2 −(β +1)(p1 +p2 ) = −(1+β)p1 +(3−β)p2 = (−(2+α+β)p1 +(8+α−β)p2 ) 2 But p1 and p2 are primes. (β − α)p1 = (−α − β − 2)p2 α+1 )(P1 − P2 )) 4 5+α 1+α = (β − α)(( )P1 − ( )P2 ) 4 4 α+1 )(P1 − P2 )) = (−α − β − 2)(P2 − b) = (−α − β − 2)(P2 + ( 4 = (β − α)(P1 − b) = (β − α)(P1 + ( 4 = (−α − β − 2)(( 3−α 1+α )P1 + P2 ) 4 4 Thus ((β − α)(5 + α) + (α + β + 2)(1 + α))P1 = ((−α − β − 2)(3 − α) + (β − α)(1 + α))P2 And (β − α)P1 = (−α − β − 2)P2 + b(β − α + α + β + 2) = (−α − β − 2)P2 − (β + 1)( α+1 )(P1 − P2 ) 2 Hence (2β − 2α + (β + 1)(α + 1))P1 = (−2α − 2β − 4 + (β + 1)(α + 1))P2 Thus ((β − α)(3 + α) + (α + 1)2 )P1 = ((−α − β − 2)(1 − α) − (α + 1)2 )P2 = ((β + 1)(3 + α) + (α + 1)(α + 1 − 3 − α))P1 = (−(β + 1)(1 − α) − (α + 1)(α + 1 + 1 − α))P2 = ((β + 1)(3 + α) − 2α − 2)P1 = (−(β + 1)(1 − α) − 2α − 2)P2 Hence ((β + 1)(3 + α) − 2(α + 1))(p1 + p2 )P1 = (−(β + 1)(1 − α) − 2(α + 1))(p1 + p2 )P2 = ((α + 1)(p1 − p2 )(3 + α) − 2(α + 1)(p1 + p2 ))P1 = (−(α + 1)(p1 − p2 )(1 − α) − 2(α + 1)(p1 + p2 ))P2 = (α + 1)((−α + 1)p1 − (3α + 5)p2 )P1 = (α + 1)(−(α + 3)p1 − (1 + 3α)p2 )P2 If ((1 − α)p1 − (5 + 3α)p2 )P1 + ((α + 3)p1 + (1 + 3α)p2 )P2 = 0 = ((1 − α)p1 − (5 + 3α)p2 )(p1 + b) + ((α + 3)p1 + (1 + 3α)p2 )(p2 + b) = (1 − α)p21 + (1 + 3α)p22 − 2(α + 1)p1 p2 + 4b(p1 − p2 ) = 0 = −(1 + α)p21 + 2p21 + 2(1 + α)p22 + (α + 1)p22 − 2p22 − 2(α + 1)p1 p2 + 4b(p1 − p2 ) = (α + 1)(−p21 + 3p22 − 2p1 p2 ) + 2(p21 − p22 ) + 4b(p1 − p2 ) = (α + 1)(p2 − p1 )(3p2 + p1 ) + 2(p21 − p22 ) + 4b(p1 − p2 ) = 4b(3p2 + p1 ) + 2(p21 − p22 ) + 4b(p1 − p2 ) = 4b(2p1 + 2p2 ) + 2p21 − 2p22 = 0 It means 4b = p2 − p1 = −(α + 1)(p1 − p2 ) = −(β + 1)(p1 + p2 ) 5 ⇒ α = 0, But β= −2p2 p1 + p2 4k2 k′2 = (k + k′ )2 = k2 + k′2 + 2kk′ Thus (4k′2 − 1)k2 − 2k′ k − k′2 = 0 δ = k′2 + k′2 (4k′2 − 1) = 4k′4 k′ − 2k′ −k′ −k′ = = 4k′2 − 1 4k′2 − 1 2k′ + 1 k= 1 − 2k′ = 1 ⇒ k′ = 0 ⇒ k = 0 ⇒ 4b = p2 − p1 = 0 Impossible, we have supposed x1 − x2 6= 0. And as ((−α + 1)p1 − (3α + 5)p2 )P1 6= (−(α + 3)p1 − (1 + 3α)p2 )P2 We deduce that α + 1 = 0 ⇒ 4b = −(α + 1)(p1 − p2 ) = 0 P1 and P2 are p1 and p2 and 2x = p1 + p2 Thus α = β = −1. b can not be different of zero. If (x1 − x2 )(x1 + x3 ) = 0 ⇒ (x4 + x2 )(x4 − x3 ) 6= 0 let ( x4 +x2 p1 +p2 p1 +p2 x4 +x2 = = p1 +p2 −4b p1 +p2 x4 +x2 +4b x4 +x2 = 1 − p14b +p2 = 1 + x44b +x2 we pose ( let ( 2k + 1 = 1 − p14b +p2 2k′ + 1 = 1 + x44b +x2 x4 −x3 p1 −p2 p1 −p2 x4 −x3 = = p1 −p2 −4b p1 −p2 x4 −x3 +4b x4 −x3 = 1 − p14b −p2 = 1 + x44b −x3 we pose ( 2m + 1 = 1 − p14b −p2 2m′ + 1 = 1 + x44b −x3 if kk′ = 0 ⇒ b = 0 we will suppose kk′ 6= 0 But ∀x, y, ∃φ verifying x = φy x + y = (φ + 1)y = x1 6= 0 x − y = (φ − 1)y = p2 6= 0 6 and ∀k, k ′ , ∃α verifying k = αk ′ ⇒k= 2b −2b =α p1 + p2 x4 + x3 ⇒ x4 + x3 = −α(p1 + p2 ) ⇒ x4 + x3 − p1 − p2 = 4b = −(α + 1)(p1 + p2 ) −(α + 1) (p1 + p2 ) 4 p1 + p2 α + 1 p1 + p2 +b= − (p1 + p2 ) ⇒x= 2 2 4 p1 − p2 p1 − p2 α + 1 ⇒y= +b= − (p1 + p2 ) 2 2 4 ⇒b= or y= (1 − α)p1 − (3 + α)p2 1 = p2 4 φ−1 and x= let ( (1 − α)(p1 + p2 ) φ = p2 4 φ−1 x4 −x3 p1 −p2 p1 −p2 x4 −x3 = = p1 −p2 −4b p1 −p2 x4 −x3 +4b x4 −x3 ( m = − p12b −p2 m′ = x42b −x3 = 1 − p14b +p2 = 1 + x44b −x3 we pose mm′ 6= 0 and ∀m, m′ , ∃β verifying m = βm′ ⇒m=− 2b 2b =β p1 − p2 x4 − x3 ⇒ x4 − x3 = −β(p1 − p2 ) ⇒ x4 − x3 − p1 + p2 = 4b = −(β + 1)(p1 − p2 ) −(β + 1) (p1 − p2 ) 4 p1 − p2 (β + 1) p1 − p2 +b= − (p1 − p2 ) ⇒y= 2 2 4 p1 + p2 (β + 1) p1 + p2 +b= − (p1 − p2 ) ⇒x= 2 2 4 ⇒b= thus y= 1−β 1−β 1 p1 − p2 = p2 4 4 φ−1 x= β+3 φ 1−β p1 + p2 = p2 4 4 φ−1 7 we resume x= 1−α 1−α φ (1 − β)p1 + (3 + β)p2 = p1 + p2 = p2 4 4 4 φ−1 and y= 1−α α+3 1 (1 − β)(p1 − p2 ) = p1 − p2 = p2 4 4 4 φ−1 b= −(α + 1) −(β + 1) (p1 + p2 ) = (p1 − p2 ) 4 4 β −α 2+α+β ⇒ p1 = p2 4 4 2+α+β β−α = ⇒ p2 p1 but 4x − 4y + 4b = 2p1 + 2p2 + 4b − 2p1 + 2p2 − 4b + 4b = 4p2 + 4b = 4P2 And 4x + 4y − 4b = 2p1 + 2p2 + 4b + 2p1 − 2p2 + 4b − 4b = 4p1 + 4b = 4P1 Thus 4P1 = 4p1 + 4b = 4p1 − (α + 1)(p1 + p2 ) = (3 − α)p1 − (1 + α)p2 = 4p1 − (β + 1)(p1 − p2 ) = (3 − β)p1 + (1 + β)p2 = 1 (6 − α − β)p1 − (α − β)p2 ) 2 And 4P2 = 4p2 + 4b = 4p2 − (α + 1)(p1 + p2 ) = −(1 + α)p1 + (3 − α)p2 1 = 4p2 −(β +1)(p1 −p2 ) = −(1+β)p1 +(5+β)p2 = (−(2+α+β)p1 +(8−α+β)p2 ) 2 But p1 and p2 are primes. (β − α)p1 = (α + β + 2)p2 β+1 )(P1 − P2 )) 4 5+β 1+β = (β − α)(( )P1 − ( )P2 ) 4 4 β+1 )(P1 − P2 )) = (α + β + 2)(P2 − b) = (α + β + 2)(P2 + ( 4 1+β 3−β = (α + β + 2)(( )P1 + P2 ) 4 4 = (β − α)(P1 − b) = (β − α)(P1 + ( Thus ((β − α)(5 + β) − (α + β + 2)(1 + β))P1 = ((α + β + 2)(3 − β) + (β − α)(1 + β))P2 8 And (β − α)P1 = (α + β + 2)P2 + b(−β + α + α + β + 2) α+1 )(P1 − P2 ) = (α + β + 2)P2 − (β + 1)( 2 Hence (2β − 2α + (β + 1)(α + 1))P1 = (2α + 2β + 4 + (β + 1)(α + 1))P2 Thus ((β − α)(3 + β) − (2α + β + 3)(β + 1))P1 = ((α + β + 2)(1 − β) − (β + 1)(α + 1))P2 = ((α + 1)(−3 − β − 2 − 2β) + (β + 1)(β + 1 + 3 + β))P1 = ((β + 1)(1 − β) − (α + 1)(−β − 1 + 1 − β))P2 = ((α + 1)(−5 − 3β) + 2(β + 1)(β + 2)P1 = ((β + 1)(1 − β) + 2(α + 1)β)P2 Hence ((β + 1)(−5 − 3β) + 2(β + 1)(β + 2))(p1 − p2 )P1 = ((β + 1)(1 − β) + 2(α + 1)β)(p1 + p2 )P2 = ((β + 1)(p1 − p2 )(−5 − 3β) + 2(β + 1)(β + 2)(p1 − p2 ))P1 = ((β + 1)(p1 + p2 )(1 − β) + 2(β + 1)β(p1 − p2 ))P2 = (β + 1)((−β − 1)p1 + (β + 1)p2 )P1 = (β + 1)((β + 1)p1 + (1 − 3β)p2 )P2 If ((−1 − β)p1 − (1 + β)p2 )P1 − ((β + 1)p1 + (1 − 3β)p2 )P2 = 0 = ((−1 − β)p1 − (1 + β)p2 )(p1 + b) − ((β + 1)p1 + (1 − 3β)p2 )(p2 + b) = (−1 − β)p21 + (−1 + 3β)p22 − 2(β + 1)p1 p2 + b((−2 − 2β)p1 − (2 + 4β)p2 ) = 0 = −(1 + β)p21 + 3(1 + β)p22 − 4p22 − 2(β + 1)p1 p2 + b((−2 − 2β)p1 − (2 + 4β)p2 ) = (β + 1)(−p21 + 3p22 − 2p1 p2 ) − 4p22 ) + 2b((−1 − β)p1 − (1 + 2β)p2 ) = (β + 1)(p2 − p1 )(3p2 + p1 ) − 4p22 + 2b(−p1 − p2 − β(p1 + 2p2 )) = 4b(3p2 + p1 ) − 4p22 + 2b(−p1 − p2 − β(p1 + 2p2 )) p2 − p1 = (2p1 + 10p2 − β(p1 + 2p2 )) − 4p22 = 0 4 Impossible. And as ((−β − 1)p1 − (β + 1)p2 )P1 6= ((β + 1)p1 − (1 − 3β)p2 )P2 We deduce that β + 1 = 0 ⇒ 4b = −(β + 1)(p1 − p2 ) = 0 P1 and P2 are p1 and p2 and 2x = p1 + p2 Thus α = β = −1. And b=0 9 Theorem p1 + p2 2 We did not pose any condition on p1 and p2 . As p2 < x < p1 there are not an infinity of such primes. ∀x ≥ 3, ∃p1 ≥ 3, p2 ≥ 3, x = THEOREM OF THE PRIMAL RADIUS There exists r a primal radius for which x + r, x − r are prime numbers ∀x ≥ 3. Proof of theorem of primal radius For all x ≥ 3 exists p1 ≥ 3, p2 ≥ 3 prime numbers for which x= p1 + p2 2 r= p1 − p2 2 if then x + r = p1 x − r = p2 Corollary Between x and 2x exists always a prime number x < p1 = x + r < 2x = p1 + p2 . If 2z + 1 is an integer stricly greater than 8, exists always a prime p3 , which can be 3, for which 2z + 1 = p3 + 2x = p3 + p1 + p2 . de Polignac conjecture de Polignac conjecture stipulates that an even number is always equal to the difference between two prime numbers and that there is an infinity of such prime numbers. Let x an integer and p1 , p2 prime numbers strictly greater than 2. 2x = p1 − p2 + 2bp1 ,p2 = p1 − p2 + 2b For commodity, we have suppressed the indexes, but b depends of p1 and p2 . p1 − p2 +b x= 2 But for all x, p1 , p2 , b exists y whose expression is p1 + p2 y= +b 2 We pose x1 = p1 + 2b x2 = p2 − 2b x = p2 + 2b 3 x4 = p1 − 2b p1 +p2 p1 +x2 2 2 y = 2 + b = 2 + 2b = x1 +p = x1 +x +b 2 2 p1 +x3 x1 +x3 x4 +x3 x4 +x2 = 2 = 2 − b = 2 + b = 2 + 3b 2 2 2 2 ⇒ x = p1 −p + b = p1 −x = x1 −p = x1 −x −b 2 2 2 2 p1 −x3 x1 −x3 x4 −x3 x4 −x2 = 2 + 2b = 2 + b = 2 + 3b = 2 + b x1 + x2 = p 1 + p 2 10 LEMMA 2 The following formula 2 2 2 2 + b = p1 +x + 2b = x1 +p = x1 +x +b y = p1 +p 2 2 2 2 p1 +x3 x1 +x3 x4 +x3 x4 +x2 = 2 = 2 − b = 2 + b = 2 + 3b 2 2 2 2 x = p1 −p + b = p1 −x = x1 −p = x1 −x −b 2 2 2 2 p1 −x3 x1 −x3 x4 −x3 2 = 2 + 2b = 2 + b = 2 + 3b = x4 −x +b 2 x1 + x2 = p 1 + p 2 imply that ∃p1 , p2 an infinity of couples which verify b=0 Proof of lemma 2 If x = 0 is a prime number, 2x = p − p an infinity of couples of primes, and p1 − p2 6= 0 we will suppose firstly that (x1 − x2 )(x1 + x3 ) 6= 0 let ( x1 −x2 p1 −p2 p1 −p2 x1 −x2 = = p1 −p2 +4b p1 −p2 x1 −x2 −4b x1 −x2 = 1 + p14b −p2 = 1 − x14b −x2 we pose ( k = p12b −p2 k′ = − (p1 −p2b2 +4b) if kk′ = 0 ⇒ b = 0 we will suppose kk′ 6= 0 But ∀x, y, ∃φ verifying y = φx x + y = (φ + 1)x = x1 6= 0 x − y = (φ − 1)x = p2 6= 0 Thus ∀k, k′ , ∃α verifying k = αk ′ ⇒k= −2b 2b =α p1 − p2 x1 − x2 ⇒ x1 − x2 = −α(p1 − p2 ) ⇒ x1 − x2 − p1 + p2 = 4b = −(α + 1)(p1 − p2 ) −(α + 1) (p1 − p2 ) 4 p1 + p2 p1 + p2 α + 1 ⇒y= +b= − (p1 − p2 ) 2 2 4 ⇒b= 11 ⇒x= p1 − p2 α + 1 p1 − p2 +b= − (p1 + p2 ) 2 2 4 or y= (1 − α)p1 + (3 + α)p2 φ = p2 4 φ−1 and x= let ( 1 (1 − α)(p1 − p2 ) = p2 4 φ−1 x1 +x3 p1 +p2 p1 +p2 x1 +x3 = = p1 +p2 +4b p1 +p2 x1 +x2 −4b x1 +x3 = 1 + p14b +p2 = 1 − x14b +x2 we pose ( m = p12b +p2 m′ = − x12b +x2 mm′ 6= 0 and ∀m, m′ , ∃β verifying m = βm′ ⇒m= 2b −2b =β p1 + p2 x1 + x3 ⇒ x1 + x3 = −β(p1 + p2 ) ⇒ x1 + x3 − p1 − p2 = 4b = −(β + 1)(p1 + p2 ) −(β + 1) (p1 + p2 ) 4 p1 + p2 (β + 1) p1 + p2 +b= − (p1 + p2 ) ⇒y= 2 2 4 p1 − p2 p1 − p2 (β + 1) ⇒x= +b= − (p1 + p2 ) 2 2 4 ⇒b= we deduce y= 1−β φ 1−β p1 + p2 = p2 4 4 φ−1 x= 1−β β+3 1 p1 − p2 = p2 4 4 φ−1 we resume y= (1 − α)p1 + (3 + α)p2 1−β 1−β φ = p1 + p2 = p2 4 4 4 φ−1 and x= 1−β β+3 1 (1 − α)(p1 − p2 ) = p1 − p2 = p2 4 4 4 φ−1 b= −(β + 1) −(α + 1) (p1 − p2 ) = (p1 + p2 ) 4 4 β−α −2 − α − β ⇒ p1 = p2 4 4 12 ⇒ −2 − α − β β−α = p2 p1 but 4y − 4x + 4b = 2p1 + 2p2 + 4b − 2p1 + 2p2 − 4b + 4b = 4p2 + 4b = 4P2 And 4x + 4y − 4b = 2p1 + 2p2 + 4b + 2p1 − 2p2 + 4b − 4b = 4p1 + 4b = 4P1 Thus 4P1 = 4p1 + 4b = 4p1 − (α + 1)(p1 − p2 ) = (3 − α)p1 + (1 + α)p2 = 4p1 − (β + 1)(p1 + p2 ) = (3 − β)p1 − (1 + β)p2 = 1 (6 − α − β)p1 + (α − β)p2 ) 2 And 4P2 = 4p2 + 4b = 4p2 − (α + 1)(p1 − p2 ) = −(1 + α)p1 + (5 + α)p2 1 = 4p2 −(β +1)(p1 +p2 ) = −(1+β)p1 +(3−β)p2 = (−(2+α+β)p1 +(8+α−β)p2 ) 2 But p1 and p2 are primes. (β − α)p1 = (−α − β − 2)p2 α+1 )(P1 − P2 )) 4 1+α 5+α )P1 − ( )P2 ) = (β − α)(( 4 4 α+1 = (−α − β − 2)(P2 − b) = (−α − β − 2)(P2 + ( )(P1 − P2 )) 4 1+α 3−α = (−α − β − 2)(( )P1 + P2 ) 4 4 = (β − α)(P1 − b) = (β − α)(P1 + ( Thus ((β − α)(5 + α) + (α + β + 2)(1 + α))P1 = ((−α − β − 2)(3 − α) + (β − α)(1 + α))P2 And (β − α)P1 = (−α − β − 2)P2 + b(β − α + α + β + 2) = (−α − β − 2)P2 − (β + 1)( α+1 )(P1 − P2 ) 2 Hence (2β − 2α + (β + 1)(α + 1))P1 = (−2α − 2β − 4 + (β + 1)(α + 1))P2 Thus ((β − α)(3 + α) + (α + 1)2 )P1 = ((−α − β − 2)(1 − α) − (α + 1)2 )P2 13 = ((β + 1)(3 + α) + (α + 1)(α + 1 − 3 − α))P1 = (−(β + 1)(1 − α) − (α + 1)(α + 1 + 1 − α))P2 = ((β + 1)(3 + α) − 2α − 2)P1 = (−(β + 1)(1 − α) − 2α − 2)P2 ((β + 1)(3 + α) − 2(α + 1))(p1 + p2 )P1 = (−(β + 1)(1 − α) − 2(α + 1))(p1 + p2 )P2 = ((α + 1)(p1 − p2 )(3 + α) − 2(α + 1)(p1 + p2 ))P1 = (−(α + 1)(p1 − p2 )(1 − α) − 2(α + 1)(p1 + p2 ))P2 = (α + 1)((−α + 1)p1 − (3α + 5)p2 )P1 = (α + 1)(−(α + 3)p1 − (1 + 3α)p2 )P2 And as ((−α + 1)p1 − (3α + 5)p2 )P1 6= (−(α + 3)p1 − (1 + 3α)p2 )P2 We deduce that α + 1 = 0 ⇒ 4b = −(α + 1)(p1 − p2 ) = 0 If (x1 − x2 )(x1 + x3 ) = 0 ⇒ (x4 + x2 )(x4 − x3 ) 6= 0 let ( x4 +x2 p1 +p2 p1 +p2 x4 +x2 = = p1 +p2 −4b p1 +p2 x4 +x2 +4b x4 +x2 = 1 − p14b +p2 = 1 + x44b +x2 we pose ( let ( 2k + 1 = 1 − p14b +p2 2k′ + 1 = 1 + x44b +x2 x4 −x3 p1 −p2 p1 −p2 x4 −x3 = = p1 −p2 −4b p1 −p2 x4 −x3 +4b x4 −x3 = 1 − p14b −p2 = 1 + x44b −x3 we pose ( 2m + 1 = 1 − p14b −p2 2m′ + 1 = 1 + x44b −x3 2 2 2 2 = p1 +p then p1 = p2 = y or p1 +p = p1 +p ⇒ p1 = p2 = 0 and it is ⇒ y = p1 +3p 4 2 2 4 impossible, thus (x1 − x2 )(x1 + x3 ) 6= 0 and b=0 The primal radius r here is equal to r= p1 + p2 2 14 with x= p1 − p2 2 then x + r = p1 and r − x = p2 Its existence is proved. p1 and p2 are an infinity of couples of primes, because we did not specify any condition on them. Conclusion The conclusion is that Goldbach conjecture and de Polignac conjecture, which seem so inaccessible, are in fact true. Because, we have defined the primal radius. The conjecture of the primal radius seems to be a consequence of Goldbach and de Polignac conjectures. In fact, if we had not its concept in mind, there would not be the present proof of those conjectures. Références [1] Van der Corput, J. G. "Sur l’hypothese de Goldbach" Proc. Akad. Wet. Amsterdam , 41, 76-80 (1938). [2] Estermann, T. "On Goldbach’s problem : proof that almost all even positive integers are sums of two primes" Proc. London Math. Soc. 2 44, 307-314 (1938). [3] Sinisalo, Matti K. "Checking the Goldbach Conjecture up to 4 1011" Mathematics of Computation 61, 931-934 (1993). 15
© Copyright 2026 Paperzz