Quotient to Power: a = ab bm

5.1 Properties of Exponents
Product Property: am an = am+n
Power-to-Power: (am)n = amn
Product-to-Power: (ab)m = ambm
Negative Exponent: a-m = 1 , a≠0. and
am
1 = am
a-m
Zero Exponent: a0=1, a≠0
Quotient Rule: am = am-n , a≠0.
an
Quotient to Power: a
b
= am
bm
Nov 28­8:55 PM
Examples: Evaluate the expressions.
1.) 22 25
2.) (33)2
3.) 5
4
Nov 28­9:03 PM
1
4.) 5-6 54
5.) 5
3
6.) (-2)0(-2)3(-2)2
Nov 28­9:09 PM
Examples: Simplify the expressions.
1.) (2xy3)3
2.) (3p3q2)-1
3.) (w3x-2)(w-5x4)
Nov 28­9:15 PM
2
4.) 4r4s5
24r4s-5
5.) x4y-2 y3
4y-5 x-4
Nov 28­9:17 PM
Example: Write an expression that makes
the statement true.
3x3y2 = 12x2y5
?
Nov 28­9:20 PM
3
Examples: Write an expression for the
figure's area or volume in terms of x.
1.) A = √3 s2
4
x
3
2.) V = lwh
x
2x
5x
3
Nov 28­9:21 PM
Scientific Notation: a x 10n, where 1≤ IaI <10.
Examples: Write the answer in scientific notation.
1.) (1.2 x 10-3)(6.7 x 10-7)
2.) (7.2 x 109)(9.4 x 108)
3.) (3.1 x 10-3)3
4.) (6.5 x 109)(3.5 x 10-5)
2.5 x 106
Nov 28­9:25 PM
4