Durham E-Theses Organic and hydride chemistry of beryllium Bell, N.A How to cite: Bell, N.A (1964) Organic and hydride chemistry of beryllium, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8894/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk ORGANIC AND HYDRIDE CHEMISTRY OF BERYLLIUM oy N.A. A thesis.submitted BELL. f o r the Degree of D o c t o r o f P h i l o s o p h y i n the U n i v e r s i t y - o f Durham. June 196^-. I Acknowledgements. The author wishes to express h i s s i n c e r e thanks to P r o f e s s o r G-.E. Coates, M.A., D.Sc., F.R.I.C., under whose d i r e c t i o n t h i s r e s e a r c h was c a r r i e d out, f o r h i s constant encouragement and extremely v a l u a b l e a d v i c e . ' The author i s a l s o indebted t o the Department of S c i e n - t i f i c and I n d u s t r i a l Research f o r a Research StudiSntshrp. I I Memorandum. The work d e s c r i b e d i n t h i s t h e s i s was c a r r i e d out in t h e U n i v e r s i t y o f Durham between September 1 9 b 1 and May 196A-. T h i s work h a s n o t been s u b m i t t e d d e c r e e and i s t h e o r i g i n a l acknowledged by r e f e r e n c e . f o r any o t h e r work of t h e a u t h o r e x c e p t where Summary. Mixed m e t h y l - and e t h y l - b e r y l l i u m h y d r i d e s been p r e p a r e d have i n e t h e r s o l u t i o n by r e a c t i o n between t h e sodium h y d r i d o d i a l k y l b e r y l l a t e s Ha(E,,HBe), and b e r y l l i u m c h l o r i d e . E t h e r c a n be removed from t h e p r o d u c t which h a s the o v e r a l l c o m p o s i t i o n Ri,Be_H_ evaporation (R= -CE_, -C...H,-). A f t e r 1 o f e t h e r from s o l u t i o n s o f we^Be.j.H^' which p r o b a b l y c o n t a i n s many complex s p e c i e s i n e q u i l i b r i u m , h e a t i n a t low p r e s s u r e c a u s e s disproportionation into volatile d i m e t h y l b e r y l l i u m and i n v o l a t i l e b e r y l l i u m h y d r i d e c o n t a i n i n g some methyl groups. A s i m i l a r still disproportionation o c c u r s more r e a d i l y when the e t h y l analogue i s h e a t e d and t h e i n f l u e n c e o f e x c e s s sodium h y d r i d o d i e t h y l b e r y l l a t e and b e r y l l i u m c h l o r i d e on t h i s r e a c t i o n h a s been Ethereal solutions containing shown to r e a c t w i t h sodium h y d r i d e studied. ' Et^Se-^':^ 1 to form sodium have been hydrido- d i e t h y l b e r y l l a t e and a sodium h y d r i d o b e r y l l a t e which h a s n o t been characterised. Although a pure a l k y l b e r y l l i u m h y d r i d e could n o t be o b t a i n e d coordination (RBeH) from t h e above mixed h y d r i d e compounds o f meth.ylberyllium h y d r i d e however, been i s o l a t e d . R e a c t i o n ('R.Be-Hhave, between t r i m e t h y l a m i n e and 'MeiBe-H-' H'ives a m i x t u r e o f t h e known compound Me_Be.NMe_. 1 and (MeKBe.NMe-)p which have been s e p a r a t e d pressure and the vapour and vapour phase a s s o c i a t i o n o f t h i s l a t t e r have been s t u d i e d . described The d i a m i n e (He_,NCH_-)„ g i v e s complex the p r e v i o u s l y compound ^^NCH-,-^BeMe.^ t o g e t h e r w i t h an i n s o l u b l e , i n v o l a t i l e and p r o b a b l y p o l y m e r i c complex ^(Me^iCH,,- ) (3eMeH ) J 2 The a n a l o g o u s e t h e r (MeOCH,,-)^ r e a c t s i n a s i m i l a r way f o r m i n g the p r e v i o u s l y a colourless viscous described compound (i-!eOCH. -) ^BeMe^ and 3 o i l KKieOCR' - ) (BeMeH)_J complex o f m e t h y l b e r y l l i u m h y d r i d e could A 2 ,2 ' - b i p j r r i d y l n o t be i s o l a t e d since t h i s r e d complex decomposes i n s o l u t i o n to form a brown tarry material. Reaction between t r i m e t h y l a m i n e h y d r o c h l o r i d e hydridodiethylberyliate i n ether r e s u l t e d i n the e v o l u t i o n o f both hydrogen and ethane and t h i s was t h e r e f o r e f a c t o r y method f o r the preparation t r i m e t h y l a m i n e complex. However, and sodium not a s a t i s - o f an e t h y l b e r y l l i u m r e a c t i o n between hydride- triethyl- s t a n n a n e and d i e t h y l b e r y l l i u m r e s u l t e d i n the f o r m a t i o n o f e t h y l b e r y l l i u m h y d r i d e which was c h a r a c t e r i s e d by conversion i n t o i t s t r i m e t h y l a m i n e complex. H y d r i d e i o n h a s been shown to d i s p l a c e from t h e l i q u i d trimethylamine complex d i e t h y l b e r y l l i u m - t r i m e t h y l a m i n e i n b o i l i n g e t h e r , w i t h f o r m a t i o n o f the h y d r i d o d i e t h y l b e r y l i a t e sal t. The infrared gas phase and the s p e c t r a of organo'beryllium and berylliura hydride and s p e c t r u m of d i m e t h y l b e r y l l i u m i n the organo- c o o r d i n a t i o n complexes have been s t u d i e d c o r r e l a t i o n s e s t a b l i s h e d f o r t h e s e compounds, w i t h p a r t i c u l a r r e s p e c t to b e r y l l i u m - h y d r o g e n i frequencies. Contents - Introduction. Summary o f t h e Background o f the O r g a n i c and H y d r i d e Hydride C h e m i s t r y of B e r y l l i u m Chemistry of t h e o t h e r E l e m e n t s o f Group I I . Some A s p e c t s o f the Hydride o f Group C h e m i s t r y o f the E l e m e n t s III. S p e c t r o s c o p i c C o r r e l a t i o n s f o r Groups I-III H y d r i d e s and A l k y l s O b j e c t i v e s of the P r e s e n t Work, i n o u t l i n e . Experimental (a) Apparatus and T e c h n i q u e s (b) P r e p a r a t i o n and P u r i f i c a t i o n o f S t a r t i n g M a t e r i a l s and S o l v e n t s . (c) Compounds P r e p a r e d m a i n l y w i t h a view to Spectroscopic Studies D i e t h y l b e r y l 1 i u m-1 r i m e th y l amin e I II c y c l o - ^ A ^ - ' T r i s d i i i i e ti i y 1; :.:"'.> i n o t r i . ' . e t l i y l t r i b e r y 11 i u n L i t h i u m h y d r i d o d i oheny 1 b e r y l 1 ium- e th s r a t e Attempted r e a c t i o n o i sodium h y d r i d e with d i p heny1b e r y l 1 i u m d i e t h e r a t e R e a c t i o n of sodium h y d r i d e with diethyl- beryllium Sodium d e u t e r o d i e t h y l b e r y H a t e R e a c t i o n o f sodium h y d r i d e with diethyl- b eryllium-1rime thylamin e Reaction of sodium hydri.de w i t h dimeohyl- beryllium S od ium d e u t e ro d ime th y l b e r y l 1 a. t e Reaction with of sodium h y d r i d o d i e t h y l b e r y l l a t e trimethylamine R e a c t i o n of Sodium hydrochloride Hydridodimethylberyllat w i t h B e r y l l i u m C h l o r i d e and the Thermal D e c o m p o s i t i o n of ' He, Be_,H„ ' Fage (e) P r e p a r a t i o n of M e t h y l b e r y l l i u m Hydride Coordination 79 Compounds N, N, N! N -Te trame t h y l e t h y l en ediamine compl ex 1 79 1 , 2 - D i m e t h o x y e t h a n e complex 80 2,2 -Bipyridyl complex 81 T r i m e t h y l a m i n e complex o2 1 R e a c t i o n o f t r i m e t h y l a m i n e complex w i t h 2,2 -bipyridyl 1 and d i m e t h y l a m i n e Triznethylamine-me t h y l b e r y l l i u m d e u t e r i d e 88 So Dime t h y l b e r y l l iu/n-N, IT, !•:; 1-i - te trame t h y l 1 90 o-phenylenediamine (f) R e a c t i o n o f Sodium H y d r i d o d i e t h y l b e r y l l a t e w i t h B e r y l l i u m C h l o r i d e and the Thermal 91 D e c o m p o s i t i o n o f 'Et ,Be,H ' ; T (g) Reactions between } d 'Et,Be-.K-,' and Sodium Hydride i 104 Page (h) Reaction between T r i - ' e t h y l s t a n n a n e and Diethylberyllium 10? Discussion. 109 D i s c u s s i o n of Experimental R e s u l t s The I n t e r p r e t a t i o n and Discussion S p e c t r o s c o p i c Data References. i of 123 1 k~j> INTRODUCTION INTRODUCTION. The with work d e s c r i b e d the p r e p a r a t i o n in this t h e s i s i s concerned of o r g a n o - b e r y l l i u m hydrides, their r e a c t i o n s w i t h donor m o l e c u l e s , and an i n f r a . r e d s p e c t r o s c o p i c s t u d y o f t h e s e and o t h e r b e r y l l i u m compounds. I n t h i s i n t r o d u c t i o n , the c h e m i s t r y r e l e v a n t to t h e s e o f compounds topics i s discussed. F i r s t , p r o p e r t i e s , and c o o r d i n a t i o n compounds a r e c o n s i d e r e d , the p r e p a r a t i o n , compounds o f o r g a n o - b e r y l l i u m i n c l u d i n g a review complexes o f b e r y l l i u m which a r e c o v e r e d o f the b i p y r i d y l separately. P r e p a r a t i v e methods f o r and r e a c t i o n s o f b e r y l l i u m are included, together with the r e l e v a n t h y d r i d e hydride chemistry o f o t h e r Group I I and Group I I I e l e m e n t s . F i n a l l y spectroscopic are data, r e l e v a n t to the compounds s t u d i e d , described. B e r y l l i u m , h a v i n g the e l e c t r o n i c c o n f i g u r a t i o n 2 2 1 s 2 s , a l m o s t e x c l u s i v e l y forms c o v a l e n t to the s m a l l s i z e and t h e r e f o r e h i g h the d i p o s i t i v e c a t i o n B e ^ + high p o l a r i s i n g power o f . The atomic r a d i u s o f b e r y l l i u m i s 0 . 8 9 ° and the c a l c u l a t e d i o n i c The compounds due radius of 3 e ^ i o n i s a t i o n p o t e n t i a l s of b e r y l l i u m , + is 0.3^2. the f i r s t b e i n g 2 1 5 and the second ^-20 k c a l . / m o l e , would suggest t h a t f r e e d i v a l e n t i o n s of b e r y l l i u m i n i t s compounds do ( 1 3 AUG 1964 ) . -2- not e x i s t . B e r y l l i u m f l u o r i d e , which might be e x p e c t e d to be the most i o n i c compound o f b e r y l l i u m , i s a poor conductor of e l e c t r i c i t y oxide i n the f u s e d s t a t e and b e r y l l i u m h a s o n l y about -+0 p e r c e n t i o n i c character. Compounds o f b e r y l l i u m have c o v a l e n c i e s of two, t h r e e o r f o u r f o r the m e t a l atom but t h e r e a r e no known compounds w i t h a c o o r d i n a t i o n number g r e a t e r than since four, the atomic o r b i t a l s of p r i n c i p a l quantum number t h r e e a r e o f too h i g h an energy to p a r t i c i p a t e i n bond formation and no h y b r i d o r b i t a l s i n v o l v i n g d - o r b i t a l s can be e x p e c t e d f o r b e r y l l i u m . The c o o r d i n a t i o n of two a r i s e s beryllium number from the u s e of sp h y b r i d o r b i t a l s by the to g i v e a l i n e a r m o l e c u l e a s i s found i n the case of b e r y l l i u m c h l o r i d e a t high t e m p e r a t u r e when i t k e x i s t s a s a monomer and, beyond r e a s o n a b l e monomeric d i - t e r t i a r y b u t y l b e r y l l i u m doubt, i n The r a t h e r unusual c o o r d i n a t i o n number o f t h r e e i s found, f o r example, i n d i m e t h y l b e r y l l i u m - t r i m e t h y l a m i n e ' t ' i n which the b e r y l l i u m 2 atom must make u s e o f sp however, h a s a s t r o n g hybrid o r b i t a l s . tendency to form f o u r compounds u s i n g sp"^ o r b i t a l s The to g i v e Eerylliurn, covalent t e t r a h e d r a l bonding. v i s c o s i t i e s , c o n d u c t i v i t i e s and f r e e z i n g p o i n t s o f 63 s o l u t i o n s of b e r y l l i u m s a l t s i o n i s more s t r o n g l y h y d r a t e d show t h a t the b e r y l l i u m than any o t h e r d i v a l e n t -3- e a t i o n and i t s s a l t s a l w a y s have f o u r m o l e c u l e s o f w a t e r of crystallisation f o r each b e r y l l i u m atom. The i o n i c m o b i l i t i e s a t 25°C a r e : Be Mg Ca Sr Ba Ra 30 55-5 59-8 59.8 6k.2 67 'The p h t h a l o c y a n i n e complex o f b e r y l l i u m in that i t has a square-planar i s exceptional c o n f i g u r a t i o n due to the shape o f the p h t h a l o c y a n i n e m o l e c u l e ^ * Organo-Beryllium Compounds. B e r y l l i u m d i a l k y l s and d i a r y l s have been p r e p a r e d i n small q u a n t i t i e s by t h e a c t i o n o f b e r y l l i u m m e t a l on the d i a l k y l o r d i a r y l d e r i v a t i v e s o f mercury a t e l e v a t e d temperatures, often with c a t a l y s t . ^ ^>»21»22,23• ^ t r a c e s of mercuric larger scales, c h l o r i d e as the r e a c t i o n 13 "1 ^ 3 7 • between b e r y l l i u m l i t h i u m reagent 3eCl_2Et 0 + : 3 or BeCl_2Et„0 c. c h l o r i d e and a G r i g n a r d i n ether i s better : 2RMgX > BeR_ + + 2RLi d. \ BeR_ + ' MgCl ' 2 MgX 2L1C1. c. When p r e p a r e d by t h i s method, complete of t h e b e r y l l i u m + "or compound separation from t r a c e s o f e t h e r i s u s u a l l y difficult. D i a l k y l b e r y l l i u n i compounds a r e a l s o formed when 8 a l k y l b e r y l l i u m h a l i d e s a r e c a u t i o u s l y heated and by t h e -k- r e a c t i o n of f r e e methyl o r e t h y l r a d i c a l s w i t h metallic 16 beryllium .' Some a l k y l - and a r y l - b e r y l l i u m h a l i d e s have been p r e p a r e d by h e a t i n g b e r y l l i u m meta.l w i t h the appropriate a l k y l halide. ' ' All and the o r g a n o - b e r y l l i u m compounds must be h a n d l e d i n the a b s e n c e o f oxygen, m o i s t u r e prepared and i n some i n s t a n c e s carbon d i o x i d e , w i t h which they r e a c t rapidly. D i a l k y l b e r y l l i u m compounds r e a c t w i t h hydrogen 18 peroxide i n ether s o l u t i o n producing b e r y l l i u m peroxide and w i t h phenyl i s o c y a n a t e to form the c o r r e s p o n d i n g 1 a n i l i d e . ^* A l k y l b e r y l l i u m compounds have been used polymerisation f o r the o f a l k e n e s , and a s i n t e r m e d i a t e s a s e x e m p l i f i e d by :Et Be 2 + n MePr C=CK n ? > MeEtPr CCE BeEt. 2 1 9 " They r e a c t w i t h e t h y l e n e s t e p w i s e , i n a s i m i l a r manner to aluminium and l i t h i u m a l k y l s , and Z i e g l e r has reviewed 20. t h i s c l a s s of r e a c t i o n The e l e c t r o n i c u n s a t u r a t i o n of b e r y l l i u m a l k y l s l e a d s to the f o r m a t i o n donor i thoroughly. molecules. o f c o o r d i n a t i o n compounds w i t h Dimethylberyllium. S m a l l q u a n t i t i e s o f d i m e t h y l b e r y l l i u m a r e most c o n v e n i e n t l y prepared by t h e r e a c t i o n o f d i m e t h y l m e r c u r y and e x c e s s powdered b e r y l l i u m m e t a l a t 1 0 0 C. 11,12,21,22,23. The product mixture j i T i -. i • c a n be sublimed J_ -, ,..o„ from t h e r e a c t i o n under h i g h vacuum, and t r a c e s o f mercury can be removed 21 w i t n gold foil. P r e p a r a t i o n from the G r i g n a r d or l i t h i u m reagent p r e s e n t s some d i f f i c u l t i e s . The p r o d u c t can be i s o l a t e d of t h i s r e a c t i o n f r e e from d i s s o l v e d s a l t s by a p r o c e s s 13 15 of but 'ether d i s t i l l a t i o n ' a t atmospheric pressure, complete s e p a r a t i o n from e t h e r i s d i f f i c u l t . ' 2h. ' The u s e s i n c e d i m e t h y l s u l p h i d e does n o t c o o r d i n a t e to d i m e t h y l of d i m e t h y l s u l p h i d e a s a s o l v e n t has been suggested,' b e r y l l i u m ^ , b u t the method h a s n o t been examined experimentally. S o l i d d i m e t h y l b e r y l l i u m has a polymeric structure 26 similar to s i l i c o n d i s u l p h i d e . X - r a y d i f f r a c t i o n methods have shown t h a t t h e r e i s an approximate t e t r a h e d r a l d i s t r i b u t i o n o f methyl groups round ea.ch b e r y l l i u m atom w i t h a l l t h e b e r y l l i u m - carbon bonds e q u i v a l e n t and o f l e n g t h 1 . 9 2 S . , the Be-C-Be a n g l e being- 6 6 ° : ^.Me.., y .--Me,, 'Be:;*' *"*:Be.'" 'Be:'*"" ***;Be;" "Me-X. -Me-' '•'Me-*' -6- The extrapolated sublimation t e m p e r a t u r e , 2'17°C , and t h e i n t e r c h a i n d i s t a n c e s i n t h e p o l y m e r , e x c l u d e an ionic s t r u c t u r e . B o t h b e r y l l i u m and of four tetrahedral probable 5 CCsp- ) c a r b o n atoms make use ( sp"^ ) a t o m i c o r b i t a l s and i ti s that three-centre molecular o r b i t a l s + Be(sp^) a r e formed Dimethylberyllium condensed BeCsp"^) + from these. f o r m s c o l o u r l e s s n e e d l e s when f r o m t h e v a p o u r phase b u t has n o t been o b s e r v e d t o m e l t . The vapour p r e s s u r e o f the s o l i d i s given by 27 the equations : 100-150°C : log P(mm.) = 12-530 - ^771/T. 155-180°C : log P(mm.) = 13-292 - 5100/T. 1 0 1 0 Vapour d e n s i t y measurements have been made b e t w e e n and 200°C and of 1o0 f r o m a s t u d y o f t h e p r e s s u r e - dependence t h e v a p o u r d e n s i t y , i t was o f monomer, d i m e r and shown t h a t the vapour trirner molecules, together consists with h i g h e r p o l y m e r s w h i c h o n l y become i m p o r t a n t a t n e a r saturation obtained c o n d i t i o n s . H e a t and e n t r o p y t e r m s h a v e been f o r t h e monomer-dimer and m o n o m e r - t r i m e r and s t r u c t u r e s have been p r o p o s e d and trimer f o r t h e monomer, d i m e r 27 " : monomer : Me - Be - Me. dimer Me - Be;*" : equilibria ""Be - Me. -V- triraer : Me - Ee^*' !Ee;'' *Be - Me. '•Me' I n these formulae, d o t t e d l i n e s r e p r e s e n t h a l f bonds. T h e r m a l d e c o m p o s i t i o n s t a r t s t o o c c u r a t 202°C with and the formation o f (BeCE^) as i n t e r m e d i s . t e -product 2 n a t 220-230°C b e r y l l i u m c a r b i d e i s formed as end product : 2 n(CH-,)_Be j 0 2 d. Beryllium > nCH, •+ + (BeCH-) , c. n 2 2 0 > n Be C + n CH, 0 m e t a l can be d e p o s i t e d by t h e e l e c t r o l y s i s o f a m i x t u r e o f d i m e t h y l b e r y l l i u m and b e r y l l i u m chloride 1 5. in ethereal solution. Dimethylberyllium reacts w i t h d i b o r a n e above room 7. temperature, the reaction taking place i n several Trimethylborane, methyl b e r y l l i u m borohydride a s an i n t e r m e d i a . t e which are strong will only n a r e formed coordinate with compounds w i t h trimethylphosphine, dimethyl- of (BeBH,.) molecules enough t o b r e a k down i t s p o l y m e r i c forms c o o r d i n a t i o n with n the reaction. Dimethylberyllium It (MeBeBH^)_ p r o d u c t , b e r y l l i u m b o r o h y d r i d e and an i n v o l a t i l e substance which i s rjrobably during stages. structure. trirnethylamine, and d i e t h y l - e t h e r , b u t n o t t r i m e t h y l a r s i n e o r d i m e t h y l s u l p h i d e and t h e p r o p e r t i e s t h e s e compounds i n d i c a t e t h a t the order o f heat o f 2 9 -8- coordination is N>F>0>As,S '. ' T h i s same o r d e r is 30 found w i t h 31 • t r i m e t h y l a l i i m i n i u m ' ^ ' and when t h e a c c e p t o r a t o m i s o f t h e coordination links without b o n d i n g o r any type s i m i l a r influence of due: simple to double d-orbitals. compound (Me^Bef-NMe^) a t 36°C , w i t h t r i m e t h y l a m i n e . T h i s i s s t a b l e 180°C and i s monomeric i n t h e gas associated i n benzene s o l u t i o n ^ ' (Me_BeK(KMe,)_ on t h a t forms complications D i m e t h y l b e r y l l i u m f o r m s a 1:1 melting trim ethyl gallium can be obtained phase'' , a l t h o u g h to slightly Below 9-10°C, a compound but t h i s begins to dissociate warming In the r e a c t i o n o f d i m e t h y l b e r y l l i u m w i t h p h o s p h i n e , complex e q u i l i b r i a result from the between the a f f i n i t i e s of dimethylberyllium t r i m e t h y l p h o s p h i n e and f o r each o t h e r . A trimethyl- similarities molecules f o r considerable r a n g e o f compounds (He_P) (Me„,Ee) where x= 2 , 3 > 1 » 2 , 2 , 2 _/ x n. y ana y= 1,2,1,3,^»5- stable i n a c e r t a i n range of trimethylphosphine. r e s p e c t i v e l y are A l l the f o r m e d , each t e m p e r a t u r e and that two molecules of pressure t r i m e t h y l p h o s p h i n e can removed i n vacuo a t room t e m p e r a t u r e . One p h o s j i h i n e can of be peculiarity coordinate m o l e c u l e o f d i m e t h y l b e r y l l i u m , whereas the being- to is one analogous t r i m e t h y l a m i n e c o m p l e x i s unknown even t h o u g h n i t r o g e n a stronger d o n o r t o b e r y l l i u m t h a n i s p h o s p h o r u s , as is shown -9- by the d i s s o c i a t i o n pressures o f these compounds. The n o n - f o r m a t i o n o f Me_Be(NMe-)_ must be due t o an e n t r o p y 2 rather than a s t e r i c ;> 2 e f f e c t since t h e phosphine analogue w o u l d be more s t e r i c a l l y h i n d e r e d and t h e compound Me 2 Me Be" I " forms N—CH. Me 2 2 With dimethyl ether, t h e compounds Me,,Be.0Me 2 ( M e B e ) ( 0 M e ) , , ( M e ^ e ^ C O M e . , ^ and ( M e 3 e ) 0 M e 2 2 been o b s e r v e d 2 2 2 ? , have b u t a l l a r e l e s s s t a b l e than the phosphine complexes. With diethylether, compound o f d e f i n i t e t h e r e was no i n d i c a t i o n o f a composition being Colourless c r y s t a l l i n e needles, formed. m.p. 31-92°C , o f d i m e t h y l d i p y r i d i n e b e r y l l i u m were i s o l a t e d from t h e r e a c t i o n of p y r i d i n e w i t h dimethylberyllium i n e t h e r . ^ " B i d e n t a t e l i g a n d s f o r m v e r y s t a b l e 1:1 c h e l a t e complexes w i t h d i m e t h y l b e r y l l i u m . ' ' N,N,N* ,N' ,- t e t r a - m e t h y l e t h y l e n e d i a m i n e and t h e c h e l a t i n g d i e t l i e r b o t h f o r m w e l l - d e f i n e d complexes w i t h of t h e type Both Me T)* ^Eejr" | dimethylberyllium where D i s t h e d o n o r a t o m . compounds must have v e r y s m a l l d i s s o c i a t i o n s i n c e t h e y c a n be s u b l i m e d 'Monoglyme pressures unchanged i n v a c u o . I n benzene 1 -10- solutions, the ether c o m p l e x i s monomeric b u t t h e amine i s about t e n per cent associated. Donor m o l e c u l e s c o n t a i n i n g also react readily with dimethylberyllium with o f methane and f o r m a t i o n products. of d i - , t r i - , or D i m e t h y l amine f o r m s t h e a d d u c t w h i c h m e l t s a t kk°C the white r e a c t i v e hydrogen with crystalline which a c y c l i c polymeric I ^ ^ B e Ir-lTEite^ leaving compound (MeBeN!'^)- s t r u c t u r e has been a s s i g n e d does n o t r e a c t w i t h the e l i m i n a t i o n t h e e v o l u t i o n o f methane, trimeric atoms to ( I ) and w h i c h C t r i m e t h y l a m i n e below 50 C. v He ''e .N—Be Me - B e ^ Me 2 Me ? Me Me - Be^f ,Be - Me Me (I) m.p. 55-56°C ( I I ) M e t h a n o l and d i m e t h y l b e r y l l i u m i m m e d i a t e e v o l u t i o n o f methane which d i s p r o p o r t i o n a t e s forming ( B e ( 0 K e ) ) above 120 C,, fairly to lose product ( I I ) and b e r y l l i u m V~ > " 2 D i i s o p r o ;:• y I amine" with the a dimeric to dimethylberyllium o methoxide react and d i m e t h y l b e r y l l i u m f o r m a s t a b l e monomeric a d d u c t (j>Je Be f- N E P r ^ j w h i c h 2 methane s l o w l y a t a b o u t 100°C i n t h e p r e s e n c e o f e x c e s s a m i n e . L o s s of" methane- was n o t q u a n t i t a t i v e starts — 11 — h o w e v e r , even a f t e r r e f l u x i n g w i t h e x c e s s amine f o r s e v e r a l d a y s , and t h i s i s p r o b a b l y due t o s t e r i c h i n d / r a n c e by the i s o p r o p y l groups. M e t h y l a m i n e and methanethiol w i l l methane f r o m d i m e t h y l b e r y i l i u m b u t appears to d i s p l a c e t r i m e t h y l a m i n e course liberate the o t h e r product the r e a c t i o n were n o t c h a r a c t e r i s e d . t r i m e t h y l a m i n e and also J ' from Methylamine dimethylberyllium- t h e r e f o r e the r e a c t i o n follows a t o t h e r e a c t i o n o f d i m e t h y l b e r y l l i u m and N- m e t h y l also y i e l d s u b s t i t u t e d p r i m a r y and products i n which of similar methylamine, secondary J diamines the c o o r d i n a t i v e u n s a t u r a t i o n 33 • of beryllium i s relieved by a s s o c i a t i o n o r p o l y m e r i s a t i o n . N,K,N'- T r i m e t h y l e t h y l e n e d i a m i n e l o s e s a m o l . o f methane a t room t e m p e r a t u r e the d i m e r i c product One mol. (III) which s o o n as believed methyl is t h e m i x t u r e m e l t s . The heated in tetralin quantitatively product product, which (IV), a t 1^5°C a b o u t e i g h t y p e r bound t o b e r y l l i u m (V) i s z i s evolved sublimes is slowly at cent of the remaining as m e t h a n e . When ( I V ) s o l u t i o n , methane i s e v o l v e d a t 1 fO-150°C. and formed. f r o m N,K' - dimethylberylliura i n ether t o have t h e s t r u c t u r e 9 0 ° C . and forming m e l t s a t 116-118°C. o f methane i s a l s o l i b e r a t e d d i m e t h y l e t h y l e n e d i a m i n e and as with dimethylberyllium, an insoluble polymeric 12 " " c« x (III) c ^ j (IV) U n s y m m e t r i c a l N,N- c/^— | (V) dimethylethylenediamine liberates one m o l . o f methane f r o m d i m e t h y l b e r y l l i u m i n e t h e r just b e l o w room t e m p e r a t u r e , g i v i n g a p r o d u c t a n a l o g o u s t o (IV). T h i s p r o d u c t s u b l i m e s a t 1 1 5 ° C , and a t melts with a vigorous evolution a hard 170°C i t o f methane a n d , on glass i s produced. Ethylenediamine l i b e r a t e s about e i g h t y the methyl from d i m e t h y l b e r y l l i u m with the formation of a white, m a t e r i a l . Even a f t e r h e a t i n g of cooling; the methyl groups a t room per cent of temperature amorphous, e v i d e n t l y t o k^°C, i s retained polymeric about s i x per cent but t h i s i s released on hydrolysis. The r e a c t i o n b e r y l l i u m has a l s o b e t w e e n h y d r o g e n c y a n i d e and been i n v e s t i g a t e d . d i c y a n i d e i s p r e c i p i t a t e d when e t h e r e a l is added s l o w l y '.3eryllium dimethylberyllium t o e x c e s s h y d r o g e n c y a n i d e In benzene and t h i s does n o t r e a c t solvents " dimethyl- with, t r i m e t h y l a m i n e w i t h w h i c h i t does n o t r e a c t , has a c r o s s - l i n k e d nor dissolve i n s i n c e i t no d o u b t p o l y m e r i c s t r u c t u r e . E q u i m o l a r amounts o f -13- t h e above r e a c t a n t s beryllium f o r m methane and the s o l u b l e c y a n i d e f r o m w h i c h t h e e t h e r can p u m p i n g a t 70°C b u t the residue i s no.doubt p o l y m e r i c . was found was isolated No does n o t be an removed redissolve method f o r p u r i f y i n g but i t s c o o r d i n a t i o n complex w i t h as involatile methyl- this by and compound trimethylamine amorphous p r o d u c t from r e a c t i o n o f d i m e t h y l b e r y l l i u m - t r i m e t h y l a m i n e and the hydrogen cyanide. T M Me - Be - C^SN — * Be 4— NMe_ Dieitiiylberyllium. This compound c a n n o t be prepared from diethylmercury 13 23» and b e r y l l i u m metal from but i s conveniently t h e r e a c t i o n o f e t h y l m a g n e s i u m b r o m i d e and obtained beryllium 13 3 7 . chloride i n ether. but prolonged gives p u m p i n g , f o l l o w e d by a colourless product c o n t a i n i n g a b o u t two material and by * Separation per from ether i s d i f f i c u l t vacuum distillation b o i l i n g a t 63°C/0.3®w-Hg., cent s o l i d i f i e s as w h i t e ether."^''" Some o f t h e purest c r y s t a l s m e l t i n g b e t w e e n -13°C -12°C.''^" D i e t h y l b e r y l l i u m has 0 r e c e n t l y been p r e p a r e d ^ " treating beryllium chloride with triethylaluminium at I 100°C f o r one h o u r . The b e r y l l i u m from the l a t t e r by d i s t i l l a t i o n electron-donor complexing The compound i s s e p a r a t e d after t h e a d d i t i o n o f an agent f o r the aluminium vapour pressure i s given approximately compound. by t h e equation : log 1 Q p (mm.) = 7-59 - 2200/T. 37. •o whence t h e e x t r a p o l a t e d b o i l i n g p o i n t i s 1 9 ^ C. Diethylberyllium i s monomeric i n d i o x a n , b u t i s a s s o c i a t e d i n c y c l o h e x a n e and b e n z e n e , i t s m o l e c u l a r weight being t i m e d e p e n d e n t ( 1 6 0 and 14-0 r e s p e c t i v e l y two d a y s after t h e p r e p a r a t i o n o f t h e s o l u t i o n and 2 1 2 and 224 28 r e s p e c t i v e l y a f t e r 24-0 d a y s ) . The apparent d i p o l e moment o f d i e t h y l b e r y l l i u m i n v a r i o u s s o l v e n t s i s i n t e r m e d i a t e between those magnesium and - z i n c . of diethyl- I t s moment i s 1.0D i n h e p t a n e , 1.69D i n b e n z e n e , i n b o t h o f w h i c h i t i s a s s o c i a t e d , and 4.3D i n ,. 39,^0. dioxan. D i e t h y l b e r y i i i u m decomposes s l o w l y a t 85°C and r a p i d l y a t 190-200°C. r e s u l t i n g i n t h e f o r m a t i o n o f e t h y l e n e , and b u t e n e , together with ethane, s m a l l amounts o f 3- h e x e n e , 1 - 3 - c y c l o h e x a d i e n e and b e n z e n e . The r e s i d u e i s a m i x t u r e o f an o i l , w h i c h can be d i s t i l l e d having and the approximate a crystalline j solid formula a t 95-100°C/0.1-0.2mm. ( (H * Be - GR^ ~^ 2 TO ( Be(CE-,)-, ) 2 3 n. J ' -15- Methanol, isopropanol and h y d r o g e n c h l o r i d e , a l l react explosively w i t h • d i e t h y l b e r y l l i u m . " Little study o f t h e c o o r d i n a t i o n compounds o f d i e t h y l b e r y l l i u m h a s been made. I t f o r m s an o r a n g e 33 with pyridine^" ; BeFy ! (Et BeFy ) complex 2 5 2 5 forms t h e polymeric compound and d i p h e n y l a r n i n e (Be(HPh ) ) 2 2 n and e t h a n e . The r e a c t i o n s b e t w e e n d i e t h y l b e r y l l i u m and a l s o its t r i m e t h y l a m i n e c o m p l e x and t h e m e t h y l h y d r a z i n e s been i n v e s t i g a t e d . I n general, l i b e r a t i o n n o t q u a n t i t a t i v e and p o l y m e r i c although a 1:1 a d d u c t have formed, (Me NNMeH.BeEt ) was f o r m e d w i t h 2 2 T (Et Be) Me K NMe 2 2 2 2 > tetramethylhydrazine.~ " 1 S t r o h m e i e r and c o - w o r k e r s in between o f e t h a n e was m a t e r i a l s were t r i m e t h y l h y d r a z i n e a n d a 2:1 a d d u c t with crystalline * have p r e p a r e d recent years a s e r i e s o f e t h e r - f r e e s a l t s o f d i e t h y l - b e r y l l i u m o f the type alkali metal, MXCBeEt,,) X represents where M r e p r e s e n t s an h a l i d e o r c y a n i d e and n = 1 , 2 , o r Potassium f l u o r i d e d i s s o l v e s i n e t h e r e a l diethyl- b e r y l l i u m a t 65°C o v e r t h r e e h o u r s and t h e c r y s t a l l i n e material KF(3eEt,,)~ 2 this c a n be i s o l a t e d . A t 70°8 i n benzene eL compound decomposes t o f o r m the insoluble material KFBeEt, and p u r e , e t h e r - f r e e d i e t h y l b e r y l l i u m w h i c h c a n be d i s t i l l e d o u t . E t h e r - f r e e d i e t h y l b e r y l l i u m c a n a l s o be obtained by h e a t i n g KFCBeEt-)^ :,) 2 a t 100-130°C. Rubidium k. -16- and c a e s i u m f l u o r i d e s a l s o f o r m s i m i l a r compounds b u t o i i h nr sodium c y a n i d e , c a e s i u m c h l o r i d e and sodium f l u o r i d e , l i t h i u m potassium c h l o r i d e e i t h e r do a p p e a r t o r e a c t o r , a t l e a s t , no isolated from t h e i r the product at which 1 0 0 - 1 5 0 ° C i n vacuo and forms a v i s c o u s l i q u i d type has RbF > compound c o u l d The KF > A crystalline l o s e s pure tendency d i e t h y l b e r y l l i u m and hydride forms chloride the o r d e r o f r e a c t i v i t y appear t o the appears NaF. pyrophoric material (NaBeEt_H) d. been i s o l a t e d n from the r e a c t i o n of s o d i u m h y d r i d e i n ether.. L i t h i u m r e a c t s w i t h d i e t h y l b e r y l l i u m a t 110°C b u t a p r o d u c t was of f o r complex f o r m a t i o n ~ m e l t i n g a t 1 9 8 ° C , has be diethylberyllium tetra-ethylammonium been i n v e s t i g a t e d , and CsF > not p r o d u c t a t room t e m p e r a t u r e Et,NCI.(BeEtp)^ t o be pure r e a c t i o n . Potassium cyanide KCN.(BeEt^)^ fluoride, not i s o l a t e d and pure magnesium h y d r i d e does n o t react. Di-isopropylberyllium.^°" T h i s m a t e r i a l has been p r e p a r e d by the reaction b e t w e e n i s o p r o p y l m a g n e s i u r n b r o m i d e and be r y l l i a i m o . c h l o r i d e in o b t a i n e d by e t h e r . An with e t h e r - f r e e product continuous p r o d u c t which can be refluxing p u m p i n g f o r a l o n g t i m e . The e t h e r - f r e e i s a colourless, slightly viscous liquid, -17- f r e e z e s a t -9.5°C and i s dimeric. i O consistent a t 50°C and ( 0 . 1 7 ™ n . a t 20°C extrapolated with a dimeric Propene i s s l o w l y boiling point evolved from (280°C) di-isopropylberyllium the formation of a isopropylberyllium hydride, w i t h dimethylamine at p r o p a n e and and structure. r a p i d l y a t 200°C w i t h n o n - v o l a t i l e polymer of reacts i n benzene i n w h i c h i t I t s vapour p r e s s u r e , 0.53mm- a t f 0 C ) and are i s soluble hydrogen i n the room t e m p e r a t u r e ratio 2.5 : 1» and viscous, which liberating which decomposes a t 2 2 0 - 2 5 0 ° C f o r m i n g p r o p a n e , p r o p e n e , h y d r o g e n , beryllium is and an formed w i t h o r a n g e r e s i d u e . The t r i m e t h y l a m i n e and benzene s o l u t i o n . At 200°C liquid adduct t h i s i s monomeric 1 in di-isopropylberyllium-trimethyl- amine l o s e s a m o l . o f p r o p e n e f o r m i n g f e a t h e r y (Pr BeH.NMe-.) b u t 3 n (Pr^Be^-NMe^) t h i s p r o d u c t has ^ not needles y e t been of further s tudied. Di-isopropylberyllium 1 p r o p a n e and ( P r B e .OMe) W i t h one forms a mol. beryllium leaving mol. w i t h methanol o f p r o p a n e and 1 n the liquid which a t di-isopropylberyllium dimethylaminoisopropyl- 100°C e v o l v e s p r o p e n e glassy product dimethylaminoberyllium (HBe.NMe,) . 2 n Addition of two giving m.p. 1 3 3 ° C of dimethylamine, ( P r B e .BV.e^ ) the reacts mols. of dimethylamine tc hydride di-isopropyl- -18- b e r y l l i u m a t j u s t above room t e m p e r a t u r e affords two m o l s . o f p r o p a n e and b i s d i m e t h y l a m i n o b e r y l l i u m w h i c h i s t r i m e r i c i n b o t h benzene s o l u t i o n and t h e v a p o u r phase and has the c y c l i c probably s t r u c t u r e as shown b e l o w : Me 2 A Me_NBe 3eNMe£ It Me~N NMe _ y he NMe^ m.p. 9k°C. Pi-tertiary-butylberyllium T h i s was p r e p a r e d from e t h e r e a l s o l u t i o n s o f b u t y l m a g n e s i u m c h l o r i d e and b e r y l l i u m c h l o r i d e . s l o w l y a t room t e m p e r a t u r e and with beer, o b t a i n e d e t h e r - f r e e by t r e a t i n g affinity than I t has the product o f the c h l o r i d e w h i c h has a h i g h e r f o r e t h e r , f o l l o w e d by d i s t i l l a t i o n tert.-butylberyllium. I t decomposes the e v o l u t i o n o f isobutene i s t h e r e f o r e best kept a t low temperature. above r e a c t i o n w i t h b e r y l l i u m tert.- of the d i - " T h i s l a t t e r p r o d u c t i s more volatile t h e e t h e r complex: i t f r e e z e s a t -16°C, has a vapour pressure o f 35^™. a t 25°C and i s t h e r e f o r e p r o b a b l y Di-tert.-butylberyllium reacts with b u t t h e p r o d u c t has n o t been w e l l monomeric, trimethylamine characterised o t h e r c o o r d i n a t i o n compounds have been s t u d i e d . and no -19- Diphenylberyllium. T h i s h a s been o b t a i n e d by h e a t i n g and b e r y l l i u m metal followed heating f o r one t o two h o u r s by r e c r y s t a l l i s a t i o n 9 and b y I t m e l t s a t 244-24S°C w i t h and i t s d i p o l e moment i s 1.64D i n b e n z e n e , d i o x a n and z e r o i n h e p t a n e J ^ O . A crystalline d i e t h e r a t e m.p. 2 8 - 3 2 ° C isolated f r o m an e t h e r e a l and compound l o s e s e t h e r this ' i n d r y xylene i n a sealed tube f o r t h r e e days a t 1 5 0 ° C . " ^•33D i n a t 210-220°C f r o m benzene, t h e same two r e a g e n t s decomposition diphenylmercury The has been solution of diphenylberyllium, i n vacuo a t 1 3 0 ° C . ^ " c o m p l e x s a l t Li(BePh-,) can be i s o l a t e d f r o m t h e r e a c t i o n o f p h e n y l - l i t h i u m and d i p h e n y l b e r y l l i u m a t room t e m p e r a t u r e , f o l l o w e d xylene. C r y s t a l l i s a t i o n i n ether by r e c r y s t a l l i s a t i o n from from dioxan y i e l d s a product (Li(BePh^)(dioxan)^) containing f o u r molecules D i p h e n y l -magnesium, -cadmium, and - z i n c a l s o of solvent. form s i m i l a r compounds.^" A complex h y d r i d e , by the reaction of diphenylberyllium h a s been etherate formed and l i t h i u m 5 0 hydride at 150-165°C. " Dessy' h a s shown t h a t t h e r e diphenylberyllium in LiCBeFlr^iOOEt., ether i s no exchange b e t w e e n and i s o t o p i c a l l y l a b e l l e d b e r y l l i u m b r o m i d e s o l u t i o n and s u g g e s t s t h a t t h e complex formed may -20- be f o r m u l a t e d as PhpBe .BeBr-j Since s i m i l a r c l a i m s were made i n r e s p e c t o f p h e n y l m a g n e s i u m b r o m i d e , now known t o 61 e x i s t as monomer P h M g B r ( 0 E t ) 2 2 by X - r a y diffraction, t h e r e i s now some d o u b t a b o u t t h e i s o t o p i c for exchange b o t h b e r y l l i u m a n d magnesium compounds. Beryllium Borohydride. The most c o n v e n i e n t p r e p a r a t i o n o f b e r y l l i u m is results borohydride from t h e r e a c t i o n o f l i t h i u m , o r sodium b o r o h y d r i d e with beryllium halides a t elevated It i sa white, volatile temperatures. solid, monomeric i n the v a p o u r p h a s e , m e l t i n g a t 123°C and i t s v a p o u r p r e s s u r e i s 7 760mm.Hg a t 9 1 . 3 ° C . " B e r y l l i u m b o r o h y d r i d e undergoes r e a c t i o n with t r i m e t h y l a m i n e i n s e v e r a l s t a g e s . I t a b s o r b s t h e amine a t -S0°C f o r m i n g t h e 1 : 1 c o m p l e x , w h i c h i s monomeric gas phase and does n o t r e a c t w i t h in d i b o r a n e a t 7 0 ° C . A t 100°C t h e presence o f t h e amine, i t r e a c t s f u r t h e r BH-,.NMe, and BeBH NMe_, :> c 3 5 7 forming T h i s l a t t e r p r o d u c t l o s e s t h e amine 3- r e v e r s i b l y above room t e m p e r a t u r e c a n be r e m o v e d . i n the * b u t n o t a l l t h e amine 21 3ipyridyl Complexes. A remarkable s e r i e s of t h e orga.no and h a l i d e o f c o l o u r e d b i p y r i d y l complexes compounds o f b e r y l l i u m has been p r e p a r e d . These compounds, t h e i r c o l o u r s , wavelength absorption coefficients their long- bands ( A m a x . ) , and m o l a r extinction are l i s t e d below. X i n X b i p y Be. Colour. White CI . A max(ma). 352 M o l a r e x t i n c t i o n _, coefficient, xlQ^. infl. 1.2 cream 364 2.4 I Yellow 368 7.0 Ph. Yellow 353 Me. Yellow 395 2.7 Et. Red 461 3-7 Fale Br The b i p j r i d y l infl. 0.5 complexes o f d i - i s o p r o p y l b e r y l 1 i u m , i s o p r o p y l b e r y l l i u m h y d r i d e and d i - n - b u t y l b e r y l l i u m decomposed readily t o brown tars. n The i n c r e a s e i n m o l a r e x t i j C t i o n c o e f f i c i e n t electronegativity explained o f X d e c r e a s e s and t h e i r c o l o u r s by e l e c t r o n - t r a n s f e r f r o m t h e Be-X lowest unoccupied molecular o r b i t a l Two black as t h e are bonds t o t h e of the b i p y r i d y l . c r y s t a l l i n e c o m p l e x e s o f b e r y l l i u m have also -22- been p r e p a r e d , - b i s b i p y r i d y l b e r y l l i u m d i l i t h i u m adduct in (bipy_Be) from the o f b i p y r i d y l and d i c h l o r o ( b i p y r i d y l ) b e r y l l i u i n 'monoglyme* and c r y s t a l l i s e d bisbipyridylberyllate f r o m benzene; from l i t h i u m b i p y r i d y l lithium and dichloro- ( b i p y r i d y l ) b e r y l l i u m i n ether. This l a t t e r product reacts w i t h bromine to form d i b r o i a o ( b i p y r i d y l ) b e r y l l i u m . The m a g n e t i c p r o p e r t i e s o f ( b i j j y ^ B e ) and i t s deep c o l o u r a r e c o n s i s t e n t w i t h i t s f o r m u l a t i o n as a c o o r d i n a t i o n complex o f the b i p y r i d y l anion Beryllium ( ( b i p y ~ ) ^Be^ ). Hydride. Many methods f o r p r e p a r i n g b e r y l l i u m h y d r i d e have been i n v e s t i g a t e d , and v a r y i n g d e g r e e s o f p u r i t y have been obtained. 52. I t was f i r s t r e p o r t e d by S c h l e s i n g e r and f r o m t h e r e a c t i o n between l i t h i u m aluminium co-workers h y d r i d e and d i m e t h y l b e r y l l i u m i n e t h e r . The w h i t e , i n s o l u b l e , m a t e r i a l which c o n t a i n s e t h e r , decomposed involatile t o b e r y l l i u m and h y d r o g e n a t 125^C and r e a c t e d v i g o r o u s l y w i t h w a t e r , b u t n o t w i t h d r y a i r . L a t e r workers h o w e v e r , showed be i n s e p a r a b l y c o n t a m i n a t e d w i t h aluminium C o a t e s and G l o c k l i n g di-tert-butylberyllium, be r e m o v e d , s t a r t s " found t h i s product to t h a t 63mole p e r c e n t the r e s t being ether which t o decompose T and l i t h i u m . ~ ' ~ " could not a t 100°C and a t 150°C a -23- white, apparently non-crystalline solid products, e t h e r and i s o b u t e n e f o r m e d . The volatile were removed and t h e r e s i d u e was shown by h y d r o l y s i s t o be 89mole p e r c e n t b e r y l l i u m h y d r i d e . P y r o l y s i s a t 210°C, d u r i n g w h i c h t i m e a l i t t l e hydrogen was f o r m e d , y i e l d e d 96-3 mole p e r c e n t b e r y l l i u m h y d r i d e , t h e r e s t being tertiary butyl groups. B e r y l l i u m hydride prepared t h i s method was r e m a r k a b l y temperature r e s i s t a n t to water, by even a t room and a c i d was r e q u i r e d t o c o m p l e t e t h e h y d r o l y s i s . P y r o l y s i s a t 2^0-290°C c a u s e d i n c r e a s i n g l i b e r a t i o n o f o h y d r o g e n w h i c h became r a p i d a t 300 C. -8. Pyrolysis of ether-free di-tert-butylberyllium ' * at 200°C a f f o r d e d 97 mole p e r c e n t b e r y l l i u m h y d r i d e w h i c h has a d e n s i t y o f 0.57 g m s / c c , and an X - r a y powder p h o t o g r a p h showed no l i n e s a t t r i b u t a b l e to the hydride. The d i r e c t s y n t h e s i s f r o m b e r y l l i u m and b o t h and atomic been t r i e d h y d r o g e n a t h i g h t e m p e r a t u r e and p r e s s u r e 53 . unsuccessfully. A surface has , y r e a c t i o n b e t w e e n l i t h i u m h y d r i d e and b e r y l l i u m c h l o r i d e has been n o t i c e d b u t no p r o d u c t isolated. molecular was * D i m e t h y l b e r y l l i u m r e a c t s w i t h d i m e t h y l alumiiniuni h y d r i d e 52. in was t h e absence o f s o l v e n t . " Although trimethylaluminium f o r m e d as i n d i c a t e d by t h e e q u a t i o n b e l o w , a p r o d u c t from methyl g r o u p s c o u l d n o t be obtained: free -24- 2Me_AlH + Me_Be ^ 2Me„Al 2 d. 7 + BeH_. 2 y T h i s may be due t o t h e i n t e r m e d i a t e o c c u r r e n c e o f a r e v e r s i b l e reaction: Me AlH 2 + No b e t t e r r e s u l t s isopentane Me Be } 2 than Me^Al + MeBeE. t h e above c o u l d be o b t a i n e d i n solution. 47. Beryllium hydride * r e a c t s w i t h two c o l s , a t 1faO°C l i b e r a t i n g h y d r o g e n and f o r m i n g b e r y l l i u m ; w i t h diborane but f a i l s Hydride dimethylamine bisdimethylamino- a t 95°C f o r m i n g b e r y l l i u m b o r o h y d r i d e , t o r e a c t w i t h t r i m e t h y l a m i n e even a t 210°C. C h e m i s t r y o f o t h e r Group I I e l e m e n t s . A l k y l - h y d r o g e n exchange r e a c t i o n s f o r t h e p r e p a r a t i o n o f Group I I m e t a l h y d r i d e s have been i n v e s t i g a t e d b u t a h i g h d e g r e e o f p u r i t y was n e v e r L i t h i u m aluminium obtained. h y d r i d e r e a c t s w i t h some d i a l k y l d e r i v a t i v e s o f magnesium, z i n c , a n d cadmium i n e t h e r s o l u t i o n s i n a somewhat s i m i l a r , b u t a p p a r e n t l y r a t h e r more f o r w a r d way t o the metal straight- thereaction with dimethylberyllium, h y d r i d e s as w h i t e , i n v o l a t i l e , Z i n c a n d cadmium h y d r i d e s a r e o b t a i n e d forming i n s o l u b l e powders. e t h e r - f r e e by t h i s method b u t c o n t a i n s m a l l amounts o f o t h e r i m p u r i t i e s . The " -25- f o r m e r decomposes a t room t e m p e r a t u r e into the corresponding metal and and the: l a t t e r hydrogen, w h i l s t at^*C. dimethyl- mercury r e a c t s w i t h l i t h i u m aluminium hydride a t -80°C. f o r m i n g m e r c u r y and hydride l i b e r a t i n g hydrogen. Zinc is i n s o l u b l e i n pure ether but d i s s o l v e s i n ether c o n t a i n i n g a l a r g e excess o f d i m e t h y l a i n c presumably w i t h the o f a. m e t h y l z i n c h y d r i d e . Z i n c h y d r i d e a s i m i l a r degree o f p u r i t y hydride and can t o t h e above f r o m d i e t h y l m a g n e s i u r n and e t h e r and and from hydride, to note the p r o p o r t i o n concentration of s o l u t i o n s . t h a t the decomposition t h e r e f o r e t h e p u r i t y o f t h e Group I I m e t a l v a r i e s c o n s i d e r a b l y d e p e n d i n g on preparation the r e a c t i o n of o f t e n a l u m i n i u m , d e p e n d i n g on i s of i n t e r e s t temperatures, hydrides, in dimethylaluminium ethereal l i t h i u m aluminium o f r e a c t a n t s , o r d e r o f a d d i t i o n , and It obtained dimethylzinc. Magnesium h y d r i d e as p r e c i p i t a t e d contains a l s o be formation t h e method (compare above method o f p r e p a r a t i o n o f of r ber3 llium hi. h y d r i d e w i t h C o a t e s and seems p r o b a b l e prepared Glockling's preparation t h a t these ' ) . I t e l e c t r o n - d e f i c i e n t hydrides as a b o v e , a r e c o n t a m i n a t e d to various extents w i t h o t h e r e l e c t r o n - d e f i c i e n t m o l e c u l e s s u c h as a l u m i n i u m or w i t h l i t h i u m h y d r i d e , or t h e i r methyl hydride, analogues, a l l of w h i c h may be f o r m e d d u r i n g t h e r e a c t i o n . „. 65. . 66. , / __ v 6 6 . Zinc , cadmium , ana m e r c u r y t i l ; . ,. , , l o d i a e s as w a l l -26- as d i p h e n y l m e r c u r y but pure hydrides " are r e d u c e d by l i t h i u m a l u m i n i u m were n o t o b t a i n e d . A third s a t i s f a c t o r y preparation of zinc hydride but hydride less i n v o l v e s the use 6 '-i o f z i n c c h l o r i d e and aluminium chlorohydride.. A l k y l - h y d r o g e n exchange r e a c t i o n s b e t w e e n t h e d e r i v a t i v e s o f magnesium, z i n c , cadmium and diethylaluminium hydride 67 been i n v e s t i g a t e d . mercury diethyl and i n t h e absence o f s o l v e n t , have ' Although i n every case, the o n l y h y d r i d e i n a p u r i t y o f 97%. ( No t r i e t h y l a l u m i n i u m was i s o l a t e d was isolated t h a t o f magnesium m e n t i o n o f t h e i m p u r i t y was The z i n c and and d e p o s i t i n g t h e m e t a l u n d e r t h e r e a c t i o n c o n d i t i o n s used (temperatures cadmium compounds decomposed l i b e r a t i n g made). i n the range 25-50°C). D i e t h y l r n e r c u r y w i t h d i e t h y l a l u m i n i u m hydride w i t h the formation h y d r o g e n and products hydride m e r c u r y . The reflects and t h i s mainly formation of hydride An apparently polymeric ( HZnBH, ) i s f o r m e d f r o m n. > hydride hydrogen. hydride-borohydride 68. d i m e t h y l z i n c and d l b o r a n e . form anionic " f o r m s an hydride e t h e r c o m p l e x L i ( Z n P h K)OEt. c with l i t h i u m hydride i n a s i m i l a r way b e r y l l i u m compound. R e c e n t l y or mixed O r g a n o - z i n c compounds a l s o complexes. D i p h e n y l z i n c mercury to give mercury w h i c h s u b s e q u e n t l y b r e a k s down t o m e r c u r y and reaction ethylmercury b r e a k s down t o e t h a n e and reacts with diethylaluminium reacts o f ethane , presence o f ethane i n the the i n t e r m e d i a t e hydrogen to the t h e compound analogous (NaH(Et_Zn)„) t -27- has been f o r m e d by t h e r e a c t i o n o f s o d i u m h y d r i d e w i t h d i e t h y l z i n c i n 'monoglyme' o r ' d i g l y m e ' b u t a t t e m p t s t o i s o l a t e i t r e s u l t e d i n i t s decomposition. No r e a c t i o n was observed i n e t h e r , t e t r a h y d r o f u r a n , aromatic or aliphatic h y d r o c a r b o n s . Sodium h y d r i d e a l s o r e a c t s w i t h , z i n c c h l o r i d e in glycol ethers forming (NaH(ZnCl^)^) w h i c h c o u l d n o t be i s o l a t e d , b u t two c o m p e t i n g r e a c t i o n s a p p e a r t o t a k e s i n c e s o d i u m c h l o r i d e and z i n c m e t a l with together some gas e v o l u t i o n w h i c h i s more r a p i d a t e l e v a t e d temperatures ' The G r i g n a r d has are deposited place reagent (HHgX ) d e r i v e d f r o m hydrogen- been o b t a i n e d as b i s - t e t r a h y d r o f u r a n and e t h e r complexes from diborane crystalline- t h e r e a c t i o n s o f ethylmagnesium h a l i d e s w i t h i n the appropriate solvent a t -25°C.^' B Hg 2 + 6EtMgX V&EMgX Analogous s o l v e n t - f r e e p r o d u c t s the p y r o l y s i s o f Grignard C^H^MgBr + 2Et.^B. have been o b t a i n e d reagents. from 71 72. ' 2 ~ ° °> C H 2 Zf + EMgBr. 73 • L a t e r workers have d e s c r i b e d this compound, p o s s i b l y i n c o r r e c t l y , as an e q u i m o l a r m i x t u r e o f magnesium h y d r i d e and b r o m i d e s i n c e a t 300-350°C. i t decomposes into magnesium, h y d r o g e n and magnesium b r o m i d e . Some d i a l k y l m a g n e s i u m compounds decompose a t e l e v a t e d temperatures e v o l v i n g o l e f i n and l e a v i n g magnesium h y d r i d e as residue, although side reactions also take place resulting 75 7^ • in t h e f o r m a t i o n o f some p a r a f f i n . '' " Magnesium hydride p r e p a r e d by t h i s method decomposes i n t o i t s e l e m e n t s a t 280300°C. The r e a c t i o n s b e t w e e n d i b o r a n e and d i e t h y l m a g n e s i u m •74 111 112 113. a p p e a r t o be r e l a t i v e l y c o m p l e x . ' ' ' ' I n ether s o l u t i o n and w i t h e x c e s s d i e t h y l m a g n e s i u m , magnesium h y d r i d e is formed; w i t h excess d i b o r a n e , magnesium b o r o h y d r i d e is 1- f o r m e d , s u r p r i s i n g l y as a w h i t e m i c r o c r y s t a l l i n e but t h e r e a c t i o n s a p p e a r t o go t h r o u g h several precipitate' intermediate s tages. P u r e d i e t h y l m a g n e s i u m ( c o n t a i n i n g no a l u m i n i u m ) a b s o r b s d i b o r a n e v / i t h t h e f o r m a t i o n o f MgH_(BEtH_)_ d d w h i c h r e a c t s w i t h more MgEt^ f o r m i n g EtMgH._,BEtH t h i s r e v e r t s t o I on r e a c t i o n w i t h d i b o r a n e . are c o l o u r l e s s a i r - s e n s i t i v e viscous polymeric ( I I ) and B o t h I and I I and t h e r e f o r e p o s s i b l y l i q u i d s a t room t e m p e r a t u r e w h i c h above 80°C, i n t o magnesium h y d r i d e (I) d decompose and EtBK„ and Et^BH r e s p e c t i v e l y . The m i x e d b o r o n - m a g n e s i u m compounds I and I I 111. a r e f u r t h e r d e - a l k y l a t e d by r e a c t i o n w i t h Et^BH; MgH (BEtH ) + Et.BH >Mg(BH ) +• 2 E t _ B . 2 2EtMgH BHH 2 2 + 2 6Et,,BH i f > 2MgH (BRH ) When a l u m i n i u m i s p r e s e n t 2 ( as 2 2 2 + *fEt B. triethylaluminium), more c o m p l e t e d i s p r o p o r t i o n s t i o n i s c a t a l y s e d , producing -29- e t h e r - i n s o l u b l e EtMgBH^ and MgK-.BEt^. The f o r m e r i s s t a b l e in but t h e presence o f t r i - e t h y l a l u m i n i u m and d i e t h y l m a g n e s i u m decomposes above 100°C. p r o d u c i n g MgCEH^}^ and Et^Mg which recombine f o r m i n g 2MgH,, + 2EtBH 2 or i f s u f f i c i e n t EtpMg i s p r e s e n t : Mg(BKi,)The l a t t e r + JEt-Mg 2 of 2 2Et-JB. into o f a l u m i n i u m , EtMgH^BEtH and t o f o r m MgR^BEt^ and EtMgBH^. A d d i t i o n tri-ethylaluminium initiates if recombine + (MgH-^BEt-^) decomposes above 80°C. HgH„, and Et-,B. I n t h e p r e s e n c e HMgH BEt > 4MgH_, t o a s t a b l e s o l u t i o n o f EtMgH BEtH 0 t h e r e a c t i o n and t h e same p r o d u c t s a r e o b t a i n e d as a l u m i n i u m were p r e s e n t d u r i n g t h e r e a c t i o n o f E t M g and 2 „ .. 112. B^h^ c o. in formed but is the presence o f a l u m i n i u m a l k y l s , MgCBH^)-, i s by t h e r e a c t i o n o f Et-^Mg and 3.pHg a t room t e m p e r a t u r e , when a l u m i n i u m i s a b s e n t , a s e r i e s o f c o m p l e x i n t e r m e d i a t e s formed which r e q u i r e h e a t i n g t o 100°C. t o decompose t h e 113. intermediates i n order to give the borohydride. The h i g h p r e s s u r e and t e m p e r a t u r e r e a c t i o n o f magnesium and h y d r o g e n i n t h e presence o f magnesium i o d i d e a l s o 75 • r e s u l t s i n t h e f o r m a t i o n o f magnesium h y d r i d e . . A s l o w r e a c t i o n b e t w e e n d i e t h y l m a g n e s i u m and s i l a n e i n ether results i n the gradual deposition of c r y s t a l l i n e (HMgOEt) w h i c h i s s t a b l e t o 2 0 0 ° C . ' n 7 6 -30- A comparison of decomposition h y d r i d e s , whatever their stability temperatures of these t h e i r method o f p r e p a r a t i o n , shows decreases considerably with that increasing a t o m i c w e i g h t o f t h e m e t a l a t o m . However, i t i s a p p a r e n t t h a t t h e i n v e s t i g a t i o n o f t h e Group I I m e t a l h y d r i d e s been somewhat i n a d e q u a t e , and f u r t h e r study i n t h i s Hydride Chemistry that t h e r e i s much scope f o r area. o f t h e Group I I I Much w o r k has has elements. been done on t h e h y d r i d e s and on r e a c t i o n s o f a l k a l i m e t a l h y d r i d e c o m p l e x e s o f t h e o r g a n o compounds o f b o r o n and aluminium, v e r y much l e s s h a v i n g been r e p o r t e d c o n c e r n i n g t h e r e m a i n i n g Group I I I L i t h i u m h y d r i d e and t r i p h e n y l b o r a n e f o r m a 1:1 a t 180°C, t h e p r o d u c t r e t a i n i n g recrystallised when h e a t e d formed and elements. f i v e m o l s . o f d i o x a n when from t h a t s o l v e n t but l o s i n g t o 100 o C. complex three mols. 78 in_ v a c u o . " S i m i l a r compounds a r e u f r o m s o d i u m h y d r i d e and f r o m s o d i u m h y d r i d e and triphenylborane i n ether triethylborane i n ether, "', 'diglyme' 80 o r hexane, " but these l a s t of c r y s t a l l i s a t i o n . The p r o d u c t s r e t a i n no s o l v e n t l a t t e r p r o d u c t , NaBEt.,H, w h i c h i s a colourless viscous o i l , s o d i u m h y d r i d e and two decomposes a t 135°0. i n v a c u o . t r i e t h y l b o r a n e , and into disproportionates i n ' d i g l y m e •' a t 170°C. i n t o s o d i u m b o r o h y d r i d e and sodium t e t r a - e t h y l b o r a t e . T r i a r y l b o r a n e - a l k a l i m e t a l compounds r e a c t w i t h methanol also forming an a n i o n i c b o r o n hydride d e r i•v a t i v e . 79. 2Ph„B' H a + + + MeOE » N a (Ph,B. OMe ) ~ y + + l!a (?h_BH)~ y The r e s t o f t h e v e r y extensive o f boron i s l e s s r e l e v a n t t o t h i s y hydride chemistry t h e s i s , and i s n o t discussed further. A l k a l i metal hydrides react with organo-aluminium compounds i n a s i m i l a r way t o t h o s e o f b o r o n and b e r y l l i u m . Sodium h y d r i d e reacts w i t h both t r i e t h y l a l u m i n i u m and o 81 . i n h e p t a n e a t 80 C. ' and l i t h i u m o 82 diethylaluminium hydride hydride r e a c t s w i t h t r i p h e n y l a l u m i n i u m a t 250-260 C. forming 1:1 c o m p l e x e s . Two p r o d u c t s , from h o w e v e r , can be t h e r e a c t i o n o f t r i e t h y l a l u m i n i u m and l i t h i u m The l i q u i d 1:1 complex i s f o r m e d by h e a t i n g at 1j50°C. and when t h i s p r o d u c t this i s mixed w i t h y obtained hydride.^" mixture triethyl- a l u m i n i u m , two phases a r e f o r m e d , t h e l o w e r l a y e r the coirujosition LiK(AlEt_)-, ", having H y d r i d e c o m p l e x e s NaAl-Et_.H, <^ • y NaAlEt-jE^ b u t n o t N a A l E t H - can be p r e p a r e d by h e a t i n g t e t r a - e t h y l a l u m i n a t e and s o d i u m a l u m i n i u m h y d r i d e in sodium together t h e r i g h t p r o p o r t i o n s a t b0-1C0 C. The r e a c t i o n s b e t w e e n a l k a l i m e t a l h y d r i d e s and a l k y l a l u m i n i u m h a l i d e s have been used f o r t h e p r e p a r a t i o n of alkylaluminium hydrides and t h e i r a l k a l i metal hydride . 85,86,37,88. adducts. MH + R A 1 C 1 — > MCI 2 «f IfE»ME AlH R A1H 2 2 ( M r e p r e s e n t s an a l k a l i m e t a l 3EtAlCl ? + 7NaH > Et AlH 2 2 > ) + EtAlF_ + 2 NaAlH,.+- 6NaCl Dimethylaluminium h y d r i d e i s obtained from the r e a c t i o n between l i t h i u m aluminium h y d r i d e and t h e t r i m e t h y l 89. d e r i v a t i v e s of boron, trimeric of aluminium i n hydrocarbon and g a l l i u m . s o l v e n t s , b u t i t s vapour c o n s i s t s a m i x t u r e o f d i m e r and t r i m e r m o l e c u l e s . ethers d i s s o c i a t e the trimers with c o m p l e x e s and an i n f r a r e d these " I t is Amines and the formation ofcoordination spectroscopic i n v e s t i g a t i o n of compounds haS? l e d t o t h e s u g g e s t i o n that the trimers a r e a s s o c i a t e d by means o f h y d r o g e n b r i d g e s and t h e h e a t o f d i s s o c i a t i o n i s e s t i m a t e d as 15-20 k c a l s . p e r h y d r o g e n bond 39 90. as compared w i t h 10 k c a l s . f o r a m e t h y l Recently bridge. d i a l k y l a l u m i n i u m h y d r i d e s have been f r o m t r i a l k y l a l u m i n i u r a compounds and t r i - a l k y l . at and 80°C. E t h e r s and t e r t i a r y amines i n h i b i t prepared t i n hydrides the r e a c t i o n thus the e l e c t r o n - d e f i c i e n t s t a t e o f the aluminium i s important since a t r a n s i t i o n state i n v o l v i n g and ' aluminium compounds i s p r o b a b l y first the t i n 108 formed. J * A l k y l a l u m i n i u m h y d r i d e t r i m e t h y l a m i n e -complexes can a l s o be p r e p a r e d by t h e a l k y l a t i o n o f t r i m e t h y l a m i n e - a l a n e w i t h d i a l k y l r a e r c u r y compounds o r t h e e q u i l i b r a t i o n o f -33- trimethylamine-alane w i t h organo-aluminium trimethyiamine 91 complexes. The especially c o o r d i n a t i o n compounds o f als.ne ( a l u m i n i u m t h e t r i m e t h y i a m i n e c o m p l e x e s have been subject of several studies i n recent years. i n v e s t i g a t i o n o f t h e mono- and has hydride) the Spectroscopic b i s - trimethyiamine complexes shown t h a t b o t h compounds a r e monomeric i n t h e gas phase 93 • and t h e b i s compound a l s o i n t h e s o l i d the f i v e co-ordinate been c o n f i r m e d prepared state, " i n which trigonal biprismatic structure by X - r a y a n a l y s i s . The from l i t h i u m aluminium has mono-amine c o m p l e x i s h y d r i d e and trimethyiamine h y d r o c h l o r i d e i n e t h e r b e l o w room t e m p e r a t u r e and this r e a c t s r e v e r s i b l y w i t h t r i m e t h y i a m i n e f o r m i n g the b i s c ompound. LiAlH + e^KHCl j ' S i m i l a r l y a 1:1 LiCl t h e d i a m i n e and i s d i m e r i c i n t h e gas T c o m p l e x i s f o r m e d w i t h N,N,NJN|- t h e amine as s o l v e n t and from he_N (Me-jOpAlK Ne-EA1H 3 3 d t e t r a m e t h y l e t h y l e n e d i a m i n e from in + the diamine lithium dihydrocnloride aluminium hydride; b i s - 1 r i m e t h y l a m i n e ..alane. T h i s phase, a s s o c i a t i o n p r o b a b l y or compound occuring by means o i h y d r o g e n b r i d g e s . Dialkylammonium h a l i d e s r e a c t w i t h l i t h i u m ydride forming tertiary N,-dialkylamino-al^nes 95 aluminium which l i k e a m i n o - a l a n e s ,9S i-eact w i t h m e t a l h y d r i d e s the (Li,Ma, -34- Ca, b u t n o t Mg.) f o r m i n g m e t a l Me,NAlH-, + 2AlH„NMe„ d + NaH NaH Soluble aluminium mols. o f l i t h i u m > NaAlH.. + » NaAlH. hydrides. 96. Me,N HAl(NMe„)_ £ 2. h y d r i d e i s prepared from three * cL aluminium aluminium + H- h y d r i d e a n d one m o l . o f a l u m i n i u m c h l o r i d e i n ether, b u t q u i c k l y polymerises into an i n s o l u b l e 97 product. When t h e above r e a c t i o n i s c a r r i e s o u t i n t h e • presence o f donor molecules, s u c h as d i o x a n , tetrahydrofuran o r amines, t h e c o r r e s p o n d i n g a r.e f o r m e dj . 9 8 , 9 9 'i 1 0 0', 1 0 1 . c o o r d i n a t i o n compounds o f a l a n e QV C o o r d i n a t i o n compounds o f a l u m i n i u m h a l i d e s c a n be p r e p a r e d a l k y l s , a r y l s , and froir- t h e c o o r d i n a t i o n compounds o f 102. alane and an o r g a n o m e t a l l i c H_AlNMe R represents 3 / 2 R Hg ? ? + 6BuLi L i t h i u m aluminium of the f i f t h > R_AlNMe_ + 3 / 2 Kg + 3/2 H 2 a r y l , a l k y l o r halogen. 3H AlNMe 2 + 3 compound. } (3u AlNMe ), ? p + 6LiH hydride reacts w i t h the hydrides g r o u p o f e l e m e n t s , l i b e r a t i n g h y d r o g e n and forming L i A l ( E H ) ^ 2 ( w h e r e E = N.P o r A s ) b u t c o r e hydrogen atoms c a n be r e p l a c e d , d e p e n d i n g on t h e r a t i o o f t h e r e a c t a n t s . The above compounds r e a c t w i t h w a t e r 107. group h y d r i d e s . , j . r e l e a s i n g 'the f i f t h * Mono- and b i s - t r i m e t b y l a m i n e g a l l a n e s a r e p r e p a r e d from l i t h i u m gallium hydride i n a similar way t o t h e a l a n e s . 1 0 * 104 ^' -35- Boron t r i f l u o r i d e a c t s as a s t r o n g e r a c c e p t o r amine and removes i t f r o m trimethylamine-gallane leaving g a l l i u m h y d r i d e w h i c h decomposes room t e m p e r a t u r e . to trimethyl- i n t o i t s elements a t When t h i s r e a c t i o n i s c a r r i e d out i n the presence o f o t h e r donors, d i f f e r e n t c o o r d i n a t i o n f- n .105,106. ! 01 g a l l a n e c a n be Spectroscopic compounds prepared. Background. The i n f r a r e d s p e c t r a o f b e r y l l i u m compounds have n o t been s t u d i e d t o a n y g r e a t e x t e n t . The i n f r a r e d and Raman s p e c t r a o f s o l i d d i m e t h y l - b e r y l l i u m have shown, t h a t polymeric m a t e r i a l has this symmetry w i t h s i x v i b r a t i o n s a c t i v e i n t h e i n f r a r e d and s i x i n t h e Raman s p e c t r u m . The assignment o f frequencies decomposition Table I product, beryllium carbide, are l i s t e d i n . Significantly, 14-00-1500 cm" f o r t h i s m a t e r i a l and i t s t h e r m a l t h e r e was no a b s o r p t i o n r e g i o n where most compounds containing g r o u p s a b s o r b s t r o n g l y on a c c o u n t o f t h e m e t h y l deformation (S^ —1 and 1255 cm to deformations methyl asymmetric CE, ) b u t t h e r e were two v e r y s t r o n g bands 1 a t 124-3 cm" i n the —1 ( Raman 1255 cm o f the b r i d g i n g methyl compounds , M e Z n 1 1 6 2 a b s o r p t i o n s due t o o , Me^B 1 1 7 ) w h i c h a r e due groups. I n r e l a t e d 1 8 , M e ^ A l ^ and M e ^ A l - . C l ^ CH-, a r e much weaker t h a n asym. 3 ' 1 1 9 ' , t h o s e due -36- to O CH,. sym. ? The s p e c t r a o f o r g e u i o - a l u m i n i u m compounds have been *i i 3 "11Q extensively studied. ' I n t r i m e t h y l a l u m i n i u m the methyl- m e t a l s t r e t c h i n g v i b r a t i o n does n o t d i f f e r g r e a t l y i n frequency f r o m t h e m e t h y l r o c k i n g v i b r a t i o n , and t h i s has made t h e i n t e r p r e t a t i o n o f s p e c t r a more d i f f i c u l t t h a n m i g h t have been e x p e c t e d . The r e l a t i v e weakness o f & CH-, a t a sym. y *\kkO cm"' i n (CH_)/-A1., and 11 +0 c m i n (CD_).A1_ c o n t r a s t s 5 o d 5> 'o 2 1 ; with t h e s t r o n g a b s o r p t i o n due toS - 1 m CH^ a t 1255 cm ^ -1 ( b r i d g i n g ) and 1208 955 and part cm cm -1 ( t e r m i n a l ) w h i c h move t o 1036 cm r e s p e c t i v e l y on d e u t e r a t i o n . 'This r e s u l t s i n from t h e symmetric d e f o r m a t i o n h a v i n g some o f t h e c h a r a c t e r o f the aluminium-carbon s t r e t c h i n g v i b r a t i o n s which a r e s t r o n g and a r e l i s t e d b e l o w : V* asym. ( ~ ' ^ CCE )gAl 772 ) c m 3 5 4 2 2 (CD^AlgClg v Vsym. = ™ (cm 616 2 (CD,)^A13 o 2 (CH ) A1 C1 / v 677 570 720 585 664 530 ^ v A4m N - 1 -371 J \ \ T ,_ O > o O 9 « 0 Modes e x h i b i t i n g s h i f t s on d e u t e r a t i o n w e r e c o n s i d e r e d t o be p r i m a r i l y of t h e methyl group itself. in which group the methyl i n t h e range associated with vibrations S t r e t c h i n g v i b r a t i o n s v(Afc-Me) moves as a u n i t s h o u l d much l e s s on d e u t e r a t i o n . 1.2-1.3 change I f t h e CH^ and CD_ g r o u p s a r e r e g a r d e d as atoms o f a t o m i c w e i g h t 15 and 18 r e s p e c t i v e l y , t h e n Vg/vp s h o u l d be / 1 8 / 1 5 = 1.096 i f t h e mass o f t h e aluminium 27- i s r e g a r d e d as i n f i n i t e o r 1.06* v v ma Thus a r e l a t i v e l y l o w v a l u e o f g / j - , -J i n d i c a t e a metal-methyl i f i t i s t a k e n as be t a k e n t o s t r e t c h i n g v i b r a t i o n , and h i g h e r v a l u e s 1 . 2 - 1 . 3 may be t a k e n t o i n d i c a t e r o c k i n g or deformation modes o f t h e m e t h y l * x 2? I 1 8 + 27 - groups. 1 15 x 27 \ = 1.059 15 + 27 / 2 Monomeric d i m e t h y l b e r y l l i u m , w h i c h p r e s u m a b l y i s linear, will zinc no d o u b t have a s i m i l a r s p e c t r u m and d i m e t h y l m e r c u r y w h i c h essentially b o t h have f r e e r o t a t i o n o f methyl groups. two compounds a r e l i s t e d i n Table to dimethyl- , symmetry w i t h The assignments for these and C-Zn s t r e t c h i n g f o r c e c o n s t a n t s have been c a l c u l a t e d 1 2.4-5 x 10^ and 2 . 3 9 x 10"" dynes/cm. The a b s o r p t i o n band a t 83O cm I I and t h e C-Hg t o be respectively. i nberyllium acetyl- -38- acetonate and s u b s t i t u t e d d e r i v a t i v e s h a s been a s s i g n e d t o the s t r e t c h i n g v i b r a t i o n o f t h e b e r y l l i u m - o x y g e n bond, w i t h a f o r c e c o n s t a n t o f 2 . 3 x 1 0 ^ dynes/cm. e'ther c o m p l e x e s o f b e r y l l i u m c h l o r i d e t h e r a n g e ( 7 5 0 - 9 0 0 cm includes a study o f the f r o m 1SOO-650 cm ) i n which the s t r e t c h i n g v i b r a t i o n s o f t h e b e r y l l i u m - o x y g e n bond a r e s t a t e d found and t h e s e frequencies are l i s t e d Cl-,Be(0Me-,) - Be(0Me ) Po 888 s Cl Be(0Ht ) 2 860 ra 2 2 2 2 2 887 s Cl Be(tetrahydropyran) 2 864 s Cl Be(dioxan) 2 Cl Be(0H ) 2 2 906 2 s 8 9 0 , 9 0 5 , 927- Z f —1 The 121 . below s=strong m=medium Cl_,Be( t e t r a h y d r o f u r a n ) 2 t o be v e r y s t r o n g bands a t 8 0 0 cm —1 and 1 0 9 0 cm i n beryllium 9 h y d r o x i d e have been a s s a y e d as v(Be-OH) and £(0H) 122 respectively. No b e r y l l i u m - n i t r o g e n f r e q u e n c i e s have been assigned -1 but these a r e s t a t e d t o o c c u r b e l o w 65O cm i n Cl Be(KNMe ) 2 p 2 123 and CI Be(NMe-j) 2 2 I n boron c o o r d i n a t i o n compounds o f t h e t y p e R^E.NR,, t h e 3-N s t r e t c h i n g in t h e 7 0 0 - 8 0 0 cm" t h e 3-N f r e q u e n c y —1 ( 1 3 3 0 - 1 5 3 0 cm frequency usually occurs r e g i o n b u t i n compounds o f t h e t y p e FLjB.NK i s found a t considerably higher wavelengths 124 ). " The v a r i a t i o n i n t h e s e f r e q u e n c i e s has g e n e r a l l y been i n t e r p r e t e d as b e i n g m a i n l y due t o a change in the m u l t i p l i c i t y 1 5 5 2 era Ph^B.NH o f t h e B-N bond so t h e h i g h o b s e r v e d i n t h e case o f t h e d i m e r i c 2 compound i n w h i c h t h e B-N bond must s u r e l y be s i n g l e , seems remarkably h i g h . However v i b r a t i o n a l modes due t o t h e s t r e t c h i n g o f b o r o n - n i t r o g e n bonds i n a r i n g expected frequency t o be c l o s e l y c o m p a r a b l e t o t h o s e can s c a r c e l y be due t o an i s o l a t e d 12^. B-N bond i n a monomeric compound. " s t r e t c h i n g frequencies would probably to lower similar Beryllium-nitrogen n o t be f a r d i s p l a c e d wavelengths from b o r o n - n i t r o g e n frequencies i n t y p e s o f compounds. F o u r bands were o b s e r v e d i n t h e a b s o r p t i o n s p e c t r u m a t 5 0 0 ° o f b e r y l l i u m c h l o r i d e ( m o s t l y d i m e r ) o f w h i c h o n l y two were observed i n t h e e m i s s i o n —1 bands a t 1 1 1 3 cm s p e c t r u m a t 1 0 0 0 ° . These two -1 and k&2 cm were assigned t o t h e asymmetric s t r e t c h i n g and b e n d i n g modes r e s p e c t i v e l y i n monomeric b e r y l l i u m c h l o r i d e , b u t i t i s p o s s i b l e t h a t o t h e r polymer bands a r e masked by t h e monomer band a t 4 8 2 err.. -1 p a r t i c u l a r l y by t h e 1 1 1 jj cm Examination and 126 . band. o f the spectra o f b e r y l l i u m s a l t s c o n t a i n i n g f l u o r i n e has l e d t o t h e c o n c l u s i o n t h a t v ( B e - F ) o c c u r s i n the 800-1000 cm - 1 region. The i n f r a r e d a broad 1 2 ^" s p e c t r u m o f magnesium h y d r i d e band ( 9 0 0 - 1 6 0 0 cm -1 contains — ) w i t h a maximum a t 1 1 6 0 cm 1 w h i c h has been i n t e r p r e t e d as b e i n g due t o h y d r o g e n b r i d g i n g 127- LI i.n t n e convcouna: " The 1.1 M *' primary feature of the absorption spectra of t h i n f i l m s o f l i t h i u m h y d r i d e and d e u t e r i d e a t room t e m p e r a t u r e i s a broad a b s o r p t i o n c e n t r e d on 5 8 8 c m f o r t h e h y d r i d e and 446cm f o r t h e d e u t e r i d e , and t h e s e a r e p r o b a b l y due t o l a t t i c e 128 vibrations. at " The i n f r a r e d spectrum of l i t h i u m hydride 1000° consists o f r o t a t i o n a l vapour fine structure extending 1 6 0 0 - 1 'lOOcrrT ' . The p o s i t i o n o f t h e n o n - e x i s t e n t from Q branch i n t h i s s p e c t r u m has been c a l c u l a t e d (from, d a t a on t h e P and R b r a n c h e s ) as 1 4 0 6 c m The infrared '. s p e c t r a o f t r i m e t h y l a m i n e c o m p l e x e s have been q u i t e e x t e n s i v e l y s t u d i e d ; t h e f r e q u e n c i e s o b s e r v e d and t h e a s s i g n m e n t s made b o t h trimethylamine-borane f o r t h e f r e e base '-- -' ^ 1 • l " are l i s t e d >( > i n Tables I I I a n c , £ o r and I V respectively. In t h i s w o r k , a s s i g n m e n t s o f t h e b e r y l l i u m - m e t h y l and -hydride infrared f r e q u e n c i e s have been made. An a g u i d e t o t h e r e g i o n s where t h e s e found f r e q u e n c i e s may be e x p e c t e d t h e two g r a p h s shown i n F i g u r e graph o f t h e s t r e t c h i n g t o be I have been d r a w n . The frequencies d e r i v e d from s-pectra f o r t h e m o n o - h y d r i d e s o f t h e f i r s t oericd the electronic FIGURE I, Mono-hydrides of the first period elements. Atomic No. Freouencv(cm~!) Atomic Number. m 6(q- 3 4 5 6 7 8 9 1406 2059 2366 2861 3300 3735 4138 5(B)3fLi) IOOO 2000 3000 Frequency (cm'') 4000 Methyl compounds of the first period e/ements. Stretching Atomic Atomic No. Force x 10 {dynes/cm) Constant Number. 9(F) 5 6 8(0H 7 7H 8 6fc) 9 s 5(&)1 3(Li)-1 I 2 3 4 5 6 7 Stretching Force Constant (dynes/cm) xto* -41- elements approximates c l o s e l y which is to a straight line the extrapolated beryllium-hydrogen 188O cm '' a l t h o u g h - expected stretching frequency t h e c a l c u l a t e d v a l u e i s 2 0 5 9 cm"^ . ^ ' Thus t h e t e r m i n a l b e r y l l i u m - h y d r o g e n is from stretching i n t h e r a n g e 18S0-2100 cm frequency . Association i n v o l v i n g h y d r o g e n b r i d g e s w o u l d cause t h e b e r y l l i u m - h y d r o g e n frequencies t o occur a t ' l o w e r frequency as i s f o u n d i n the 13^. Doron h y d r i d e s : v ,(cm~' ) v^vcm 1915 1606 1972 1605 1880 1605 1850 1582 1 1 B H 2 6 Me^B H 2 2 .3 ^ .5 E t B H 4 2 2 where v ^ ) and v^^, a r e t h e s y m m e t r i c o u t o f phase and t h e a s y m m e t r i c i n phase r i n g s t r e t c h e s r e s p e c t i v e l y . 13 The t e r m i n a l b o r o n - h y d r o g e n s t r e t c h i n g f r e q u e n c y u s u a l l y occurs a t a b o u t 2 5 0 0 cm From t h e g r a p h o f the f o r c e constants o f the methyl d e r i v a t i v e s o f the f i r s t p e r i o d o f elements, methylated compounds) t h e e x t r a p o l a t e d b e r y l l i u m - m e t h y l f o r c e c o n s t a n t i s 3 » 0 dynes/cm. f r o m w h i c h s t r e t c h i n g frequency methyl ( i n fully- i s calculated the t o be 9 5 0 cm approximate (the g r o u p i s c o n s i d e r e d as an atom o f mass 1 5 ) • TABLE INFRARED (cm" ) I. RAMAN (cm ) ASSIGNMENTS DIMETHYLBERYLLIUM. 2 9 . s g3e C n 455") 510 , 535 567 835 s m vs ? J \ P } S CH 923J 12^3 1255 2885 2912 V Be C vs vs s vs J 2912 C H 3 3 v CH, v ^ -CH^ sym. 3 aS i:i BERYLLIUM CARBIDE A-30 vs s 555 1 1 2 5 vs combination band(2x555) -44- TABLE II. DIMETKYLMERCURY I.R.(cm ) DIMETHYLZINC Raman(cm ) 1 I.E.(cm" ) 1 Raman(eg ) 2898 1158 504 2910 1182 515 v G-H CH., b e n d i n g v C-M-C v C-H 8 CH, v e-M-c-^ v C-H 2870 1185 615 2940 1444 2880 1205 559 2966 1475 "asym j> p CH_ C-M-C b e n d i n g v C-H « CHj p CH 3 707 787 144 2833 1388 620 156 2869 1443 700 TABLE III, TRIMETHYL AMINE 3 0 , 1 3 1 1 INFRARED 1 (cm" ) ASSIGNMENT, 2967,2777,2822 1466,1402 1272,1183,1104 v C-H CH., bend i n <r 1043 ? v 826 v cf. 6 h B T B . C - N ^ 9 3 0 C E 3 asym. sy:?i. I n dirnethylamine v C-N o c c u r s a t 1024 C-TI asym. -1 V 16 ASSIGNMENTS . ' C-N C-N and -45- TABLE I V . Me,N.BH~ , .? 'J 132 Me_N.BD, • 3 ASSIGNMENT ' 3• 2270 s 1340 v s 1255 m 1117 m 1656 m 1355 si 1248 m 840 s 850 s 850 s p CH_ 2372 s 1480 ms 1780 v s 1480 ms v B-H(D) 6 1450 ms 1460 ms 1402 m 1402 w $ CH^ 1169 vs 860 s $ BE_(D ) 1115 m 1115 w p 1005 s 995 s w CH, 1005 s 995 s 913 m 720 ('Raman ) v CN p EH ( D _ ) v B-E(D) S CEj v B-N S BH-.CD-.) C 3 Oil-, 3 t h e above T a b l e s , t h e f o l l o w i n g a b b r e v i a t i o n s In H CH have been u s e d . $ = deformation vs = v e r y strong p = rocking s = strong v =i ms = medium stretching v; = w a g g i n g m = medium w = weak. strong -46- Object of the I n v e s t i g a t i o n . T h i s was p r i n c i p a l l y of the r e c e n t l y prepared to explore the p o t e n t i a l i t y compound, s o d i u m h y d r i d o d i e t h y l - 45 beryllate and i t s a n a l o g u e s , as i n t e r m e d i a t e s f o r t h e p r e p a r a t i o n o f some a l k y i b e r y l l i u m h y d r i d e s , b e r y l l i u m h y d r i d e and t h e i r c o o r d i n a t i o n compounds. As t h e r e was a p a u c i t y o f i n f r a r e d d a t a to organo-beryllium establishment the present appertainin compounds, i t was hoped t h a t t h e o f such c o r r e l a t i o n s w o u l d be d e r i v e d work. from I EXPERIMENTAL -47- Apparatus Nitrogen and Techniques. supply. As most o f t h e compounds s t u d i e d o x y g e n and m o i s t u r e , a l m o s t a l l t h e w o r k was an a t m o s p h e r e o f d r y , o x y g e n - f r e e The react nitrogen h y d r o g e n gas, nitrogen. used f o r t h i s w o r k was first sieve freejfrom copper a t by r e d u c i n g c o p p e r o x i d e w i t h a s t r e a m and t i i e n t h r o u g h a column p a c k e d w i t h t o d r y t h e gas. The with c a r r i e d out i n o x y g e n by passage t h r o u g h a column c o n t a i n i n g 350°) p r e p a r e d rapidly m o l e c u l a r s i e v e was of molecular regenerated o p e r i o d i c a l l y by p u m p i n g a t 200 . Techniques f o r h a n d l i n g b e r y l l i u m As beryllium compounds. oxide i s very t o x i c , compounds must be h a n d l e d with beryllium great care, particularly when fumes o f b e r y l l i u m o x i d e a r e f o r m e d on e x p o s u r e t o the a i r . Many r e a c t i o n s fume c u p b o a r d , and were t h e r e f o r e volatile compounds were h a n d l e d vacuum s y s t e m . Compounds were u s u a l l y vessel c a r r i e d out i n a t o a n o t h e r i n a g l o v e box transferred filled with dry i n the from one nitrogen. -48- S t a r t i n g m a t e r i a l s s u c h as d i m e t h y l b e r y l l i u m were s t o r e d as e t h e r flasks fitted solutions then hypodermic s y r i n g e to s o l u t i o n s i n two-necked with a nitrogen lead could and d i e t h y l - and serum c a p . These be c o n v e n i e n t l y and n e e d l e , t h u s transferred using preventing a any e x p o s u r e the a i r . Many r e a c t i o n s were c a r r i e d o u t i n w h i c h o r g a n o b e r y l l i u m compounds r e q u i r e d As g r e a s e s w i l l refluxing f o r many h o u r s . d i s s o l v e u n d e r such c o n d i t i o n s , s l e e v e s were used a t t h e g r o u n d g l a s s joints ethereal ' Teflon ' but these w e r e n e v e r u s e d w h e n e v e r vacuum w o r k was i n v o l v e d . G l o v e Box. The glove box ( L i n t o t t a way t h a t a f t e r p u r g i n g the m a t e r i a l s recycled t h e t r a n s f e r t u b e and i n t r o d u c i n g required into f o r several hours the n i t r o g e n p u r i f i c a t i o n a small traces from pump f i t t e d t h e box, t h e n i t r o g e n c o u l d ( o r days i f n e c e s s a r y ) system. This The involved i n s i d e the box, thus o f o x y g e n and m o i s t u r e the transfer I I I E) was s e t up i n s u c h be through t h e use o f r e m o v i n g srr.all w h i c h may have been introduced tube. b o x was f o u n d t o be c o n t a m i n a t e d w i t h an amount o f w a t e r , so a l i q u i d a i r t r a p was f i t t e d appreciable i n the r e c y c l i n g system b e f o r e this water ( a n d on some o c c a s i o n s o r g a n i c may h a v e d e s o r b e d liquid from t o remove vapours) which f l a s k s i n s i d e t h e box. A second a i r t r a p was i n s e r t e d a f t e r molecular flow the nitrogen p u r i f i e r the p u r i f i e r s i e v e d i d n o t a p p e a r t o be e f f i c i e n t rates required f o r purging as t h e a t the high the t r a n s f e r tube. Vacuum A p p a r a t u s . Many r e a c t i o n s w e r e c a r r i e d o u t i n a vacuum a p p a r a t u s w h i c h was a l s o d e s i g n e d The flask of could the l i n e t o be used f o r gas a p p a r a t u s had a s e c t i o n t o -which a r e a c t i o n be a t t a c h e d through and t h i s gases, - t h e s m a l l e r and gases ( n o r m a l l y methane bulbs attached nitrogen to a f o r t h e measurement o f c o n d e n s a b l e one f o r v o l u m e s up t o a b o u t t h e l a r g e r one f o r v o l u m e s g r e a t e r t h a n c.c, to the rest c o n d e n s e d by l i q u i d be m e a s u r e d . Two c a l i b r a t e d manometer w e r e i n c l u d e d this, 100N-cc. (a normal w r i t t e n as N - c c , i s one c . c . a t N.T.F.). An i n f r a r e d spectrometer mixtures to so t h a t hydrogen) n o t completely could was c o n n e c t e d t h r e e t r a p s . A T H p l e r pump and gas b u r e t t e were a l s o i n c l u d e d and analyses. cell o r a combustion bulb f o r a n a l y s e s o f gas ( n o r m a l l y methane and h y d r o g e n ) c o u l d be a t t a c h e d t h e a p p a r a t u s as r e q u i r e d . The w h o l e a p p a r a t u s c o u l d be GQS measurement bulbs. Q bulb f float valve float valve N N manometer^ 300 c 'secondary bulb ISJ Kg |j n -50- filled w i t h n i t r o g e n l e t i n through a needle v a l v e . Infrared Spectroscopy. Infrared GS 1 s p e c t r a were r e c o r d e d u s i n g a G r u b b - P a r s o n s 2 A p r i s m - g r a t i n g s p e c t r o p h o t o m e t e r h a v i n g a range o f 2- 25^ Specimens o f a i r - s e n s i t i v e compounds w e r e for s p e c t r o s c o p i c e x a m i n a t i o n i n t h e g l o v e box. of i n v o l a t i l e volatile heated range compounds a t room t e m p e r a t u r e b u t prepared The spectra sufficiently b e l o w 200° were r e c o r d e d u s i n g a P e r k i n - E l m e r G....3.H. gas cell, h a v i n g s o d i u m c h l o r i d e windows w i t h 2-V-jyi. o r p o t a s s i u m a b r o m i d e w i n d o w s , 2-25yU . Analyses. Beryllium analyses. B e r y l l i u m was e s t i m a t e d by t r e a t i n g an aqueous a c i d s o l u t i o n o f each compound w i t h e x c e s s ammonium h y d r o x i d e . The white gelatinous p r e c i p i t a t e of b e r y l l i u m hydroxide s e p a r a t e d by f i l t r a t i o n u s i n g a and 'Whatman 5 ^ 1 ' f i l t e r was paper, i g n i t e d t o b e r y l l i u m o x i d e i n a weighed c r u c i b l e w i t h pumice u n t i l a c o n s t a n t w e i g h t was a c h i e v e d . The purpose o f -51- the pumice produced Gas was in to the during finely the divided oxide ignition. e v o l v i n g gases on h y d r o l y s i s r u n n i n g degassed was cooled warm s l o w l y t o evolution vigorous under gas Sometimes evolution, conditions. sulphuric the acid in infrared spectra. Mixtures liquid as nitrogen.(Both combustion through products, was platinum carbon and was is therefore ignited not excess and place with fractionated be separated condensable oxygen the were in described s t r i c t l y correct) by p a s s i n g an water, prevent their hereafter adopted. filament inside dioxide gases were completely gases are to completed cannot to gas take i d e n t i f i e d by hydrogen is this mixed w i t h b u l b and the these was liberated neither although f o l l o w i n g procedure gas the time can sample allowed required reactions analysed a weighed d u r i n g which The h y d r o l y s i s and to were T h e m i x t u r e was side o f methane and vacuum l i n e of as on c o o l i n g was vacuum l i n e , uncondensable volume air. room t e m p e r a t u r e measured the 2-methoxyethanol in liquid occured. these dilute as very analyses. which in the crucible Compounds by retain The A measured inside electric bulb. The separated the current combustion and the -52- carbon was dioxide estimated hydride Amine and measured. by condensing measuring the i t on produced to hydrogen in lithium the combustio aluminium produced. analyses. These were alkaline acid. with The w a t e r solution The excess standard estimated by s t e a m d i s t i l l a t i o n o f containing acid was the amine determined into by excess an standard back-titration alkali. Sodium. Estimation flame sodium photometer sulphate compared with of s o d i u m was w h i c h had solutions, a standard been and cs_rried out calibrated the solution unknown of using with an 'EEL' standard solution approximately was equal strength. Cryoscopic molecular 'Analar' days, was used benzene were weight benzene, as recrystallised dried so&.vent. determined measurements. sodium w i r e Cryoscopic using from ethanol with biphenyl and dried. constants w h i c h had for several for the been -53- i-reparation All solvents atmosphere Diethyl And P u r i f i c a t i o n purified and stored under an of nitrogen. Ether. •Anhydrous v/ire were Of S t a r t i n g M a t e r i a l s And S o l v e n t s f o r several Methylated Ether' days, a n d was aluminium hydride just 'Monoglyme' before was dried distilled over from sodium lithium use. (1 ,2-Dimetho:-:yethane or Ethylene Glycol Dimethyl Ether.) This for several was repeated Final was p u r i f i e d hours, refluxing followed a second purification with, by r e f l u x i n g by d i s t i l l a t i o n . the distillate carried out just distillation from, potassium The t i m e and was and i t with process stored. b e f o r e use lithium by aluminium hydride. 'Diglyme' (Diethylene Glycol Dimethyl Ether or 2,5,05- Trioxanonane.) T h i s was p u r i f i e d using sodium instead of in a similar potassium. way t o 1 Monogly/ne 1 Benzene. ' Analar* over b e n z e n e was sodium w i r e dried f o r several by a l l o w i n g i t to stand days. Pentane. D r y i n g was diethyl carried out in exactly the same w a y as ether. Trimethylamine. Triiaethylamine was and subsequently stored off as The with a required. 'Teflon' greater than tap dried over vessel and with this used phosphorus; d r y i n g agent f o r storage would withstand pentoxide and was pressures distilled fitted slightly atmospheric. NiN,M' ,H' ,-Tetramethylethylenediamiii8. This followed by amine was fractional purified by r e f l u x i n g w i t h distillation. sodium, -55- Dirnethylamine. Me_iTH Cl + NaNO- 0 Dimethylamine of ammonium obtained hydrochloride chloride, triraethylamine by following An a q u e o u s a c i d was then oil which with combined fractional with separated was ether. and dried until was the liberated by with dried potassium hydroxide for and and a 96% pellets was was heated two h o u r s . . carbonate: the the The pale aqueous extracts and of the at solution yellow solution the carbonate. yield o i l Subsequent pale yellow 148-150°- ^ K0C1 + " . ' I e N E C l . 2 with two m o l e s became v e r y by p a s s a g e salt potassium b.p. treatment solution, traces dimethylamine the ethereal refluxed solution of isolated 2 acid pure nitrite i-le NNO + 2HC1 was contains 3 sodium The N,-dimethylnitrosamine. nitrosamine usually method. ^" d i s t i l l a t i o n gave This so solution sodium saturated extracted were excess + Ke-NKO + H . O . methylamine h y d r o c h l o r i d e , hydrochloride, the 75-80° with WKaCl with aqueous through and pale a of -H'l coloured. potassium column stored ? in a hydrochloric The amine hydroxide packed with vacuum apparatus. -56- 2 2'-Bipyridyl. S As b i p y r i d y l period just at of time, before goes brown i n a i r p u r i f i c a t i o n was use to obtain and light effected a white over a by vacuum crystalline sublimation solid melting 70-71°. f N,H,N',N ,-Tetramethyl-o-phenylenediamine. o - P h e n y l e n e d i a m i n e was concentrated stannous whilst hydrochloric chloride hot. and form colourless in about dry in 90% y i e l d , removed of solution of and then f i l t r a t e was filtered brought f o l l o w e d by c o o l i g g o-phenylenediamine about i n ice to dihydrochloride f i l t e r e d o f f and dihydrochloride from the treated After potassium boiled was the of aqueous charcoal w h i c h were i n a bomb a t solution. with this of an a mixture pumped vacuot" methanol quently animal crystals The a m i n e was acid, Concentration by d i s t i l l a t i o n and boiled with over with 175-185° bomb, for pumped hydroxide, of the heated eight dry excess aqueous extracting a range was hours. i n vacuo sodium product with with excess The and mixture subse- hydroxide ether and drying a c o l o u r l e s s o i l was i s o l a t e d w h i c h ,o 57. 215-256 and whxch s l o w l y went b l a c k . -57- This further iodide 220 mixture of N-methylated treated at with 180-1S5° ) isolated presence chloride, the treated with with ether, the to of and this free 50-60° caustic the and product product N-H, methyl (B.p.218- with pure colourless tends stored As to under showed w h i c h was p-toluene o i l which the removed sulphonyl The s o d a s o l u t i o n and i n 50% y i e l d . i t was o f methanol by vacuum d i s t i l l a t i o n . o-phenylenediamine of hours amount amine was light, ten examination of followed isolated volumes was above.' of a small by h e a t i n g was for as Infrared equal o-phenylenediaraines distillate after extraction boiled at 36°/lO ^'-M?- H g . 1 N,N,N ,N',-tetramethyl go d a r k - c o l o u r e d vacuum a t -20° in in air the and absence light. Trimethylamine Hydrochloride. Equal were volumes condensed ether, which allowed into was of an taken to below atmospheric vacuum and the evacuated cooled t o warm s l o w l y ensure trimethylamine that the air. hydrogen pressure The The m i x t u r e inside ether chloride containing a room t e m p e r a t u r e , pressure. white, flask, in liquid to and was care the l i t t l e was being f l a s k was removed c r y s t a l l i n e , hygroscopic kept under amine hydrochloride -58- which remained Sodium was stored was obtained 50% s l u r r y i n o i l a n d washing under Sodium the hydride with Schlenk tube. n i t r o g e n and and purified sample actually in removed by dry pentane under h y d r i d e was transferred, the a repeatedly nitrogen in pumped d r y , when r e q u i r e d , Shot A 200-2^0° i n o i l from same way a s a stored i n a glove box. then as one 'Metal gram Kydrid.es sodium h y d r i d e . the samples Incorporated Mass gaseous h y d r o l y s i s showed that it products was deuterated. Preparation. petroleum f r a c t i o n concentrated hydrocarbons obtained of sodium d e u t e r i d e , 96 a t o m % with was investigation of for Lithium times & Co. L t d . , as Deuteride. spectrometry Oil o i l was The g r e y atom % d e u t e r a t e d , from a from L.Light the Sodium d e u t e r i d e 97 nitrogen. Hydride. This double under sulphuric twice with was w a s h e d acid water, to remove followed several unsaturated by d r y i n g with 1 potassium hydroxide. between 200° and On d i s t i l l a t i o n , 2 ^ 0 ° was the fraction boiling collected. 1 Preparation of Lithium Weighed apparatus with The the o i l described when hea.ting heated the was lithium was continued dirt lithium metal to until and a the break the corrosion products which o i l , were r u n o f f . The l i t h i u m all solvents, was w a s h e d counter and then current During kept as is the s l o w as appreciably of rinsed was refluxing U 180 ). sink shot The to globules. The o i l to which to cause Stirring together the bottom floats be nitrogen used with the solvent into the reaction f l a s k against the nitrogen flow preparation possible since molten consequently lithium an argon must is of on in the nitrogen. by n i t r o g e n ; preferable. of vigorously tiny the half-filled i t (m."D. solidified. the reaction until o i l stirred shot in atmosphere melted down i n t o placed almost an burner have were was under ring will and metal I I which above, with stopped the with of lithium shown i n F i g u r e o i l was well pieces Shot. be attacked atmosphere a ' Lithium shot a p p a r a t u s . FigureR i i N stirrer N u lightly creased flpsk IO •ntn. tap -60- Lithium Keagents. Methyl-, in ethyl-, 80-90% y i e l d s and lithium Grignard from shot in magnesium Beryllium in was about of alkyl or aryl halide wool I I I . The p r o d u c t needles in the bromides dried gas was in beryllium, the sublimed f l a s k w h i c h was off then tube. was supplied by p a s s a g e o n w h i c h some a n h y d r o u s sublimed. by h e a t i n g chloride aiTimonium c h l o r i d e was alkyl ether. i n 90-95?<' y i e l d chloride and in of 2 The h y d r o g e n acid reaction ^ ' reaction sulphuric been 7 o f f from the containing the dry hydrogen white apparatus glass 3 i n Figure as from 90% y i e l d prepared shown collected sealed prepared i n a stream apparatus and corresponding ether. Chloride.^' This flakes the prepared Reagents. These were with and p h e n y l - l i t h i u m were and of from a Kipp's concentrated the gas through aluminium chloride had Beryllium chloride apparatus. Figure M glass wool plug AlCl on 3 glass wool beryllium T collecting flasF -61- D ime t h y 1 b 6 r y l 1 i u m . Ethereal in 70-80% y i e l d li'thium to addition mol. of of of of two m o l s . most the of addition beryllium of 'ether 25 h o u r s in ether. i t analysed by h y d r o l y s i s and 1 prepared of by rnethyl- the to solution one was washed with by d i s t i l l a t i o n . achieved a mole from dissolved The which were removed distillation separate two r n o l s . chloride salts, ether for half of were methylmagnesium bromide chloride the dimethylberyllium d i m e t h y l b e r y l l i u m was continuous (about mol. by of from precipitated and the both beryllium decanted ether one solutions by a p r o c e s s of at 200° of dimethylberyllium), salts. f o r many Purification The f o r methane and solution hours, to was beryllium. Diethylberyllium." This of was two m o l s . chloride bromide and to solution washed with remaining : i n 70-809: y i e l d of ethyl-lithium by the one was prepared mol. addition of decanted ether ether and was to of one both mol. of by the addition beryllium two m o l s . of etjylmagnesium chloride in ether. beryllium The from p r e c i p i t a t e d salts which distilled small volume. removed down under to vacuum followed by were The distillation -62- of the was diethylberyllium analysed by h y d r o l y s i s There or lithium at was l i t t l e reagent is preferable in the as was the preparations 6 0 - 5 5 / 0 . 3mm. f o r ethane difference used. involving and the salts Grignard solution beryllium. in yield However precipitated H E . The when a lithium settle Grignard reagent better than reagents. Diphenylmercury. A good y i e l d reduction in of boiling of diphenylmercury phenylmercuric ethanol f o r one was chloride with hour, followed obtained hydrazine by by the hydrate filtration 59 from mercury and subsequent c r y s t a l l i s a t i o n and sublimation.' Bii^henylberyllium. It product in of ether found impossible diphenylberylliuni of beryllium by was two m o l s chloride. tube by allowing to was stand activated i n an crystalline the with However a c r y s t a l l i n e ''' '-3 method. a from of phenyl-lithium powder i t isolate etherate a modification of Wittig's Beryllium to one reaction ;;ol . o f product was obtained '' i n a double ethereal Schlenk solution of diethylberyllium was removed dry. and for a while. the powder D i p h e n y i m e r c u r y was under n i t r o g e n which time and of d i e t h y l b e r y l l i u m solution- washed w i t h added heated droplets The at to the 200° mercury f o r one f o r m e d on vacuo the diphenylberyllium p u r i f i e d by from benzene. Diphenylberyllium dietherate crystalline diphenylberyllium solid removed the (m.p. from ether 32°) pumped powder hour, diphenyimercury a v/hite and beryllium Unreacted and was ether during beryllium. by s u b l i m a t i o n in crystallisation was isolated as by c r y s t a l l i s a t i o n of solution. Tri-ethylstannane. ^EtMgBr + SnCl^ Anhydrous added dropwise bromide, stannic to an w h i c h had addition complete, the flask reagent followed the the ( w h i c h was was ether reactants, then and by bOOcc. solutions of became clear, the of o f magnesium. was ethylmagnesium mole.) When returning ether the excess ice-cold 10% h y d r o c h l o r i c layer the was of the to of ether was distilled off in ice) 125c.c. ice-cold 0.07& m o l e . ) solution after cooled decomposed w i t h (I25g-, -r M g B r C l . from 375g-(3-^ 75g-(3-09 m o l e . ) the Et^Sn ether been p r e p a r e d and concentrate chloride ice-cold ethylbromide was > to Grignard water acid. When separated, the -64- aqueous l a y e r combined removal extracted extracts twice dried o f the ether over with calcium was d i s t i l l e d u n d e r 57°/l1aim.Hg.) and then bromide shaken a n d 5% h y d r o c h l o r i c into of ether chloride, and t h e before b y d i s t i l l a t i o n . 'The t e t r a - e t h y l t i n thus prepared solution 150cc. reduced pressure i n turn with acid the corresponding 3% s o d i u m to convert chloride, ( b . p . 55hydroxide any t r a c e s o f before being 11 4 . extracted, dried, and d i s t i l l e d 3Et,,Sn + S n C l , HA mixture stannic heated at * -+ fitted with packed w i t h glass at was d i s t i l l e d helices at freshly distilled of tetra-ethyltin an a i r - c o n d e n s e r 1 0 0 ° , f o l l o w e d by two h o u r s chloride, yield. _p and 91g-(0.39 m o l e . ) in a flask i n c1% 4Et-.SnCl. o f 35'6g.(0.13 mole.) chloride ethyltin as b e f o r e 200°. f o r one were hour The p r o d u c t , t r i - through a short column 0 82 . 0 - 8 2 . J ' / " ' O m n i . a n d collected 11 4 . as a c o l o u r l e s s l i q u i d i n S0% y i e l d . 4EUSnCl + L i A l H . 9> 4 - E t , S n H + L i C l Tri-ethyltin of ether lithium eth^-r. was a d d e d dropv/ise aluminium hydride This temperature through chloride mixture and t h e n a short (I02g.,0.423 mole.) t o an i c e - c o o l e d (I0g., was s t i r r e d most column, + A1C1-. the r e s t suspension o f 0.264 m o l e . ) i n 300cc. o f f o r three hours o f the ether being i n 200cc. at room removed by d i s t i l l a t i o n removed under reduced -65- pressure The d i s t i l l a t i o n of tri-ethylstannane collected It before was i n an thought over a long ice-bath that period under n i t r o g e n was this of a t -20 as a 11 - at colourless compound c . product redistilled time, o the might consequently at 23 /2.5nim. 44°/'l6mm. liquid deposit i t we.s and i n 66% yield. metallic tinstored Compounds p r e p a r e d mainly with a view t oSpectroscopic Studies• The f i r s t f e w compounds d e s c r i b e d , a n d t h e d e u t e r i d e s which a r e d e s c r i b e d immediately i .fter the analogous h y d r i d e s , were prepared w i t h a view t o e s t a b l i s h i n g i n f r a r e d c o r r e l a t i o n s f o r o r g a n i c a n d h y d r i d e compounds o f b e r y l l i u m . j Nearly a l l the beryllium v/ork a r e s e n s i t i v e were to carried exclude t oa i randmoisture, a i randmoisture Diethylberyllium solution.) was p l a c e d apparatus. The s o l u t i o n so p r e p a r a t i o n s and care cooled (0.0273 i n a flask Et Be.Uhe_ p 10cc. o f a 2.7cH. mole, attached was pumped fifteen be s e e n , the pressure appreciably. The f l a s k warm u p t o e n s u r e were andalthough removed under no v i s i b l e i n the apparatus was a g a i n complete reduced cooled reaction. pressure minutes trimetbylamine o n t o t h e compound a i r . The m i x t u r e was a l l o w e d room t e m p e r a t u r e ethereal t o t h e vacuum f o r about 672 N - c c . ) w a s c o n d e n s e d i n liquid was t a k e n a ta l l stages. r e m o v e a s much e t h e r a s p o s s i b l e , a n d t h e n (0.030 m o l e . , to involved i n this out i n a n i t r o g e n atmosphere, Die thylbe ryl1ium-1rime thy1amine, to compounds t o warm slowly r e a c t i o n could d i d not increase and then Ether after allowed t o and excess amine passage through a -67- a t -40 . The c o l o u r l e s s l i q u i d receiving flask distilled s l o w l y a t room t e m p e r a t u r e The c o m p l e x f u m e s s t r o n g l y air, this receiver. when exposed to traces of below - 4 0 ° and r e a c t s v i g o r o u s l y w i t h melts with into remaining water effervescence. Be, 7-25, Found: 45.1. 7-23; Me.JM, 4 5 . 8 ; hydrolysable Be, 7-15; C H gBeN (EtpBe.NMe_) r e q u i r e s 7 1 hydrolyzable ethyl, ethyl,45.5, Me N, 46-5; k^.S%. cyclo-^ij*J*"~Trisdime t h y l a m i n o t r i m e t h y l t r i b e r y l l ium. ^ ' Dimethylberyllium v a 0.929i ione solution ( 9 6 . 3 TT-cc . , 0 . 0 0 4 3 i n e t h e r . ) was t r a n s f e r r e d linab o f a d o u b l e Schlenk tube (166.5 N - c c , m o l e . ) was c o n d e n s e d o n t o t h e b e r y l l i u m and a i r . The m i x t u r e was a l l o w e d then melted bO until sublimed 55"'- compound, c o o l e d i n t o warm t o room a t room t e m p e r a t u r e a n d more g a s was e v o l v e d methane c o l l e c t e d , at 0.00742 temperature t h e e x c e s s a m i n e ( 7 1 - 2 N - c c . ) w a s r e m o v e d . Some methane was e v o l v e d compound by s y r i n g e t o a n d t h e e t h e r w a s then- removed u n d e r vacuum. D i m e t h y l a m i n e liquid mole.,4.6cc.of 90.5 N - c c ) . gas e v o l u t i o n (literature and then as w h i t e value, 55-56°) • (total The t e m p e r a t u r e ceased i n vacuum a t 4 5 - 5 0 ° and a t 4 4 ° t h e volume o f was m a i n t a i n e d t h e compound was crystals melting a t -68- Lithium hydridodiphenylberyllium Diphenylberyllium intimately (0.8g., hydride with with mortar / until yielded tube tube w i t h a glove t ocool lithium t o a powder b o x . The m i x t u r e was mass b e c a m e a h a r d and several rhombic disc m o l e . ) was h a d been ground the liquid colourless on t h e s i n t e r e d Schlenk inside LiBePi^H.OEt-, (5.1g.,0.01 Schlenk mole.) which m i x t u r e was a l l o w e d filtered the 0.1 a t 160-165" ether dietherate i n a double a. p e r c u s s i o n heated The mixed etherate, extractions c r y s t a l s , which connecting cake. were t h e twolimbs o f a n d pumped d r y . r Attempted reaction o f sodium h y d r i d e with diph&nylberyllium ctie t h e r a t e . Excess sodium h y d r i d e beryllium for t w o d a y s o r when solvent the dietherate a t 165° products d i d not react e i t h e r when b o i l e d with t h e two were h e a t e d f o r twohours, with r e f l u x i n ether i n t h e absence o f ( t h esupernatant i n ether d i d n o t evolve diphenyl- hydrogen solution of on h y d r o l y s i s ) . 45 Reaction o f sodium h y d r i d e w i t h NaH Diethylberyllium + E t Be diethylberyllium.^ ^ N a B e E t K. (0.0417 mole . , 15cc. o f a 2 .?SM..j^solution) -69- was of t r a n s f e r r e d by s y r i n g e to a flask 2 . 1 g . (0.0875 m o l e . ) o f s o d i u m h y d r i d e The mixture was s t i r r e d hours during which formed. limb The m i x t u r e time v i g o r o u s l y under a colourless o f a double Schlenk tube hot ether ( t h e same e t h e r w a s u s e d was recovered reduced small volume and by d i s t i l l a t i o n pressure). thecrystalline sintered disc from into i n 90?* y i e l d needles melting cooled to the other t o about -50°(acetone-C0_,) b y f i l t r a t i o n on t h e o f t h efjchlenk diethylberyllium, and f i n a l l y as c o l o u r l e s s , p y r o p h o r i c , decomposition explosively with B e , 9-86: h y d r o l y z a b i e - e t h y l , no ether at 2 0 ° . C H B e N a (NaBeEt.,H) r e q u i r e s ethyl, was d e t e c t e d / f slightly 1 1 1.10-%. tube pumped was crystalline i na sealed soluble i n water. 62.5; - h y d r i d e , i n t h e compound. S o l u b i l i t y , 63.7; - h y d r i d e , with one l i m b u n d e r vacuum. The c o m p l e x i s o n l y Found: limb e x t r a c t i o n and t h e two l i m b s a t 1970° w i t h o u t benzene and r e a c t s material f o r each m a t e r i a l separated connecting t o one theother The c o m p l e x , s o d i u m h y d r i d o d i e t h y l b e r y l l a t e , obtained tube deposit T h e s o l u t i o n w a s puiirped d o w n t o 10cc), remove any u n r e a c t e d dry. for eight crystalline excess sodium h y d r i d e (about reflux and t h e c r y s t a l l i n e from under i n 70cc. o f e t h e r . was t r a n s f e r r e d u n d e r n i t r o g e n extracted to containing a suspension B e , 9-90; 1.08, 0.25mole/litf.t- Kydrolyzable -70- Sodium deuterodiethylberyllate. NaD + E t B e >NaBeEt D. 2 Sodium 2 d e u t e r o d i e t h y l b e r y l l a t e was o b t a i n e d n e e d l e s , m e l t i n g a t 200-201° i n a s e a l e d in tube under a s i m i l a r way t o t h e a n a l o g o u s h y d r i d e 0.2655g.(0.010b m o l e . ) o f s o d i u m d e u t e r i d e a in 1,5M. as c o l o u r l e s s compound, vacuum, using and 7.0cc. o f solution o f ethereal diethylberyllium (0.0105 mole.) bOcc. o f e t h e r . Found: Hydrolyzable-ethyl, hydrogen deuteride evolved 63.1j - d e u t e r i d e , o n h y d r o l y s i s w a s s h o w n b y mass spectrometry t o be 4 8 . k on o f t h e sodium d e u t e r i d e thebasis being 2.19. T h e atom % d e u t e r a t e d 96.0 a t o m % d e u t e r a t e d ) . ( r e q u i r e d , 48.0 used i n t h e r e a c t i o n C^E^BeDNa (NaBeEt^D) requires h y d r o l y z a b l e - e t h y l , 63.0; - d e u t e r i d e , Reaction of sodium h y d r i d e with Et Be.NMe_, + NaH 0 Diethylberyllium-trimethylamine sodium hydride diethylberyllium-trimethylarnine. * N a B e E t _ H + NMe, (l.6g., 0.013 m o l e . ) a n d ( 2 . 0 g . , O.O83 m o l e . ) w e r e b o i l e d i n 1 0 0 c c . of ether by hydrolysis o f a small ethyl 2.17%. f o r twelve i n theratio hours. The s u p e r n a t a n t sample liquid was shown t o c o n t a i n h y d r i d e and 1:2.9» T h e e t h e r e a l s o l u t i o n v/as t r a n s f e r r e d -71- to a double Schlenk (identified isolated tube, by i n f r a r e d by ether and sodium spectrum from ether the were pasBed preparation which on e v a p o r a t i o n trimethylamine through yielded R e a c t i o n o f sodium h y d r i d e Heating about this NaBel beM hydrochloric acid by i n f r a r e d spectrum). H 20cc. o f sodium h y d r i d e under during dimethylberyllium. (0.0352 m o l e . , mixture dilute (identified e t h e r ) was t r a n s f e r r e d b y s y r i n g e 1.2g.,(o.o5 mole.) sodium h y d r i d e and 0.456* , ( 0 . 0 0 4 7 m o l e . ) o f with NaH + Me_Be in excess p o i n t ) was s o l u t i o n . Gases e v o l v e d hydrochloride Dimethylberyllium and m e l t i n g e x t r a c t i o n from crystallisation hydridodiethylberyllate reflux o f a 1.76M. s o l u t i o n t oa flask and 30cc. with containing o f ether. vigorous e i g h t hours r e s u l t e d i n t h e d e p o s i t i o n ofa m a t e r i a l . The complex analogous e t h y l compound, and e x t r a c t i o n i n a d o u b l e S c h l e n k than t h e p r o v e d t o be l a b o r i o u s . The hydride disc soluble white insoluble tube was l e s s stirring for compound was t h e r e f o r e with boiling Soxhlet beryllate, during ether extracted f o r several days e x t r a c t o r . The compound, s o d i u m crystallised as t i n y from excess using a sintered hydridodimethyl- needles i n the ether t h e e x t r a c t i o n . When s u f f i c i e n t sodium material solution was o b t a i n e d . the mixture compound was t r a n s f e r r e d filtered connecting o f f a n d pumped d r y o n t h e s i n t e r e d compound water andmelts Other i spyrophoric, a t 195-196° experiments r e f l u x i n g were required tetrahydirofuran increase Be, 14.98, -hydride, i n reacts a sealed showed tube under t h a t twot o three f o r complete as solvent explosively 1.59, 14.80; 1.62. hydrolyzable-methyl hydrolyzable-methyl, No e t h e r 47.5; was d e t e c t e d -hydride colourless crystalline i n the products Be, 14.3; 1.60%. compound, m e l t i n g t u b e u n d e r vacuum, was p r e p a r e d analogous hydride sodium d e u t e r i d e ethereal Found: 4 ? . 8 , 46.S; y rJaBeMe^D . 2 of days deuterodimethylberyllate. NaD + M e B e the vacuum. r e s u l t e d i n no a p p a r e n t 2 sealed with r e a c t i o n , and the use o f h y d r o l y s i s . CpK^BeMa ( N a B e M e H ) r e q u i r e s This disc i n the rate o f reaction. Found: Sodium tube and t h e t h e two l i m b s . The of t o a d o u b l e Schler.k compound and7«0cc. dimethylberyllium C^HgBeDNa ( N a B e M e ^ D ) r e q u i r e s 3«1%- i na similar i na way t o 0.1389g«(O.0056mole.) o f a 0.929M- (0.0065 Kydrolyzable-methyl, -deuteride, from a t 19o solutiono f mole.). 46.9; - d e u t e r i d e , 3'«1« hydrolyzable-methyl 46.9; -73- Reaction o f sodium h y d r i d o d i e t h y l b e r y l l a t e with trimethylamine hydrochloride• Me,N. B e E t ^ + N a C l 3 + P" ^ 2 N a B e E t p H + Me^NECl ..N . B e H E t + N a C l 5 2.2g.(0.023 mole.) o f t r i m e t h y l a m i n e in a glove box, was added i n small + C_H 2 6, r hydrochloride, t o 1 .'9858g. quantities (0.022 m o l e . ) o f sodium h y d r i d o - d i e t h y l b e r y l l a t e of a t -78°(acetone-C0 ether mixture was a l l o w e d ) . After ;:) t o warm s l o w l y gas e v o l u t i o n ceased, hydrochloride was a d d e d . A t room of gasoccurred formation o f sodium solution chloride. t o room must have produced beryllium- ande t h y l b e r y l l i u m the yielded 774.0 N-cc. A for consisted products, of Thus the diethylcomplexes, t oseparate. Hydrolysis o f 318.1 IC-cc. o f h y d r o g e n a n d o f ethane. This method evolution due t o the o f ethane. two until amine hydride-trimethylamine difficult solution slow The g a s e v o l v e d which were considered residual o f the became c l o u d y a tl e a s t the temperature temperature, 168.7 N - c c . o f h y d r o g e n a n d 196.0 N-cc. reaction 50cc. in each a d d i t i o n then a f u r t h e r q u a n t i t y and the transferred type the successful o freaction preparation preparation trimethylamine is therefore not o fethylberyllium o f the a satisfactory hydride ethylberyllium complex by a n o t h e r method complexes. hydride- i s described later. -7k- Reaction of Chloride and For Sodium H y d r i d o d i m e t h y l b e r y l l a t e w i t h the Thermal Decomposition most r e a c t i o n s and beryllium the time-consuming operation beryllate compound chloride between free did from not i t was interfere i n ether) was sodium h y d r i d e in was cool a allowed sample to of the found of L hydridodimethylberyllates unnecessary isolating with the the refluxed 100cc. o f to had as to this to a 1.76M. 1 .Og. (0.0-+17 m o l e . ) for two days.. The room t e m p e r a t u r e , and reacted latter reaction. with ether undertake hydridodimethyl- (0.0352 m o l e . , 2 0 c c . o f supernatant l i q u i d dimethylberyllium 'Me Be^K^' excess sodium h y d r i d e Dimethylberyllium solution the of Beryllium showed form an solution hydrolysis that of most o f evidently of the very -2 sparingly soluble at 20°). in 50cc. o f mixture to Beryllium ether with cooled to settle. A syringe hydrogen, and was slowly a white The An mixture the to the exothermic and was the Found: m e t h a n e on x 10 mole/litre 0.0817 m o l e . ) dissolved refluxing reaction reaction appeared sodium refluxed chloride overnight, precipitate allowed supernatant l i q u i d analysed. 5«8 M - c c . o f added 2.64 p r e c i p i t a t e of temperature sample o f and (l.5g., stirring. formed. room (solubility chloride rapid take place immediately by compound was then Be, to removed 0 - 7 c c . g a v e 3*0 K - c c . hydrolysis; then of O.OOlSg. I -75Th e r a t i o and to methyl :hydrogen : b e r y l l i u m t h e r e f o r e the the 3 . 8 9 ^ : 2 .. 003 = r e a c t i o n appeared to have :3 • 0 0 0 , gone according equation: i 2nNaBeMe^H + n B e C l - no hydrolysis, the (Me,,Ee„H_) 2 a As > 2nNaCl + c h l o r i d e was a l l the '+ found in the 3 2 solution after b e r y l l i u m c h l o r i d e must have s o d i u m c h l o r i d e f o r m e d has a negligible n. reacted solubility and in e th e r. 'The product which 1 'Me^Be^Hj , a l t h o u g h probably species combined w i t h soluble i n ether; and sodium pressure ether cooled which for until was with thus the be many h o u r s . but removed by about 30cc. solid No reduced a negligible amount by rest into of a be detected of on in ether the receiver h y d r o l y s i s and formation of bipyridyl complex.' ^" H y d r o l y s i s the of also the dimethyl- identified characteristic a pumping together 0.00024 mole.) o f measured 5 The atmospheric i t s surface consisted (about amount o f hydride colourless viscous o i l , beryllium a small completely (sodium pressure, m a t e r i a l on condensate complex o f f under remained. b e r y l l i u m could the many by filtration. distilled a i r , leaving a forms denoted consisting of insoluble material condensed, under slowly be in equilibrium, is e t h e r was only in liquid distillate ether c h l o r i d e ) can Most o f hereafter will sample o f by yellow the o i l the -76- 1 2 . 7 N - c c . o f m e t h a n e , 5.8 N - c c . o f h y d r o g e n ; yielded Be, = 0.00396g. o fheat a t 51° 1 o f theviscous the o i l s t a r t e d e t h e r were which evolved white solid evolved, started approximately ether, apparatus solid fire Sublimate: (about temperatures a t6 0 ° . Assuming 1 t o t h ecomposition although a the solia r e s i d u e was t r a n s f e r r e d heated started under Me^Be,E„.OEt^ t oa s u b l i m a t i o n vacuum. A t 6 0 ° a w h i t e t osublime a n d t h e s u b l i m a t i o n was which both sublimate r e s i d u e o f amorphous appearance which n o r fumed i n t h ea i r , were Be, 22.5; h y d r o l y z a b l e m e t h y l , 77-2. C E,Be C Be) r e q u i r e s Be, 23.1; h y d r o l y z a b l e m e t h y l , H y d r o l y s i s was r a p i d Residue; with Samples e v o l v e d neither analysed. _____ (Me 0.6g.) , theo i l consisted o f a t 120° f o r t e n days, a f t e r the white solid ; and then continued caught a white 'Me^Be-H., vacuum 0 . 0 0 7 m o l e , o f Me^Ee_H_' a n d 0 . 0 0 7 m o l e , o f solid pyrophoric leaving under a n d 153*3 N - c c . ( 0 . 5 0 5 g . ) t obubble t osublime corresponding The o i l was h e a t e d no more e t h e r a t h i g h e r r e s i d u e was e n t i r e l y and methyl:hydrogen:beryllium o n Me^Be^H., * . 1.1g. About of t h er a t i o 4.00:1.84:3.10. Action and and thus w 11.0%. 2-methoxyethanol a t l o w temperature 5-2 N - c c , 5-7 N - c c . o f m e t h a n e a n d -77- 11.J N - c c , which 12.3 N-cc. was s l o w w i t h although rapid with o f hydrogen respectively 2-methoxyethanol acid. even a t room condensed air, on t o 0.0584g. (78.0 u n d e r vacuum. A t 5 0 - 6 0 ° , compound cation. sublimed The w h i t e hydrolysis volatile d 33 d "r ratio as t h e known o f 0.43:1. some m e t h y l groups compound, reaction had occurred t o be r a i s e d beryllium groups, how h i g h hydride, f u r t h e r experiments thehydride content 1 'Me^Be^E^ 1 p r e p a r e d o f ethereal dim e t h y l b e r y l H u m mole.) o f sodium h y d r i d e chloride beryllium were of the b y pyrol2/'S.is. containing a I.76H. s o l u t i o n 3.5g.(0.145 and i n v o l a t i l e some m e t h y l t odetermine could into y d. A solution of identifi- r e s i d u e was-, s h o w n b y h a s removed insufficient dimethylberyllium undertaken of reaction for 'Me.Be^H ' w a s a p p a r e n t l y d i s p r o p o r t i o n a t i n e containing residue temperature. further investigation. As s t i l l i n liquid crystalline was o b t a i n e d amorphous-looking this Me_Be(Me.,NCHr-. )_. warrant a colourless butinsufficient the residue, probably d cooled t o warm t o room t o have a m e t h y l : h y d r o g e n Although d residue, N-cc.) ( 3 8 . 0 N-cc.) was removed, a n d t h e r e s i d u e Excess amine from o f this and t h e m i x t u r e was a l l o w e d heated temperature Methyl:hydrogen = 0.461,0.463:1. N,N,N'jN'-tetraraethylethylenediamine was on h y d r o l y s i s from 60cc. (0.106mole. ) , and 4.2g.(0.0526 mole.) i n 4 0 0 c c . o f e t h e r , was pumped a t room -78- temperature remained a white vacuum t o remove liberated solid. This ether. e t h e r a t 51° i more l a t t e r was h e a t e d f o r three days d u r i n g which sublimed leaving a white Residue; Samples residue the further at time 1.8 leaving 170-180° u n d e r a white solid as b e f o r e . N-cc., o f hydrogen 1.0 N-cc. slow w i t h 2- o f methane and respectively, Therefore r a t i o i s 10.30,10.25:1. s a m p l e o f t h e same s o l u t i o n , t h e s o l v e n t was h e a t e d under at after removal 200-210° f o r e i g h t h o u r s vacuum. A s a m p l e o n h y d r o l y s i s g a v e 1.2 Residue: 13-0 N - c c . o f hydrogen, N-cc. o f methane and therefore the hydrogen:methyl ratio 10.4:1. was In were small of N-cc. hydrogen:methyl A of 10.5 N-cc, u n d e r vacuum, on h y d r o l y s i s , w h i c h was v e r y m.ethoxyethanol, l i b e r a t e d 18.6 The c o l o u r l e s s o i l w h i c h one e x p e r i m e n t , evolved during appears This volume i s q u i t e due t o t h e presence o f the hydrogen:methyl t o be a b o u t 10:1. 91 m o l e p e r c e n t assumed o f uncondensable gas o f small amounts i no r on t h e g l a s s . The l i m i t being the pyrolysis. a n d was p r o b a b l y moisture 2.5 N - c c . This ratio corresponds beryllium hydride t o be d i m e t h y l b e r y l l i u m . i nthe residue t o the residue i f the remainder i s -79- Preparation The with of o fHethylberyilium Hydride Coordination Corn-pounds 1 r e a c t i o n s o f s o l u t i o n s o f Me^Be^H.,' i n e t h e r donor molecules methylberyllium proved hydride t o be a r o u t e f o rthepreparation c o o r d i n a t i o n compounds. N,N,N',N'-Te t r a a e t h y l e t h y l e n e d i a m l n e. An e t h e r e a l s o l u t i o n prepared a I.76M. from (10CC.) c o n t a i n i n g ether 3«5g»(0.l45 m o l e . ) o f s o d i u m h y d r i d e , &Occ. o f solution o f ethereal dimethylberyllium and concentrated transferred by s y r i n g e by d i s t i l l a t i o n into one l i m b Excess o f t h e d i a m i n e was c o n d e n s e d cooled i nliquid room temperature mixture mixing, being of 1 (0.10b mole.) 4.2g.(0.0326 m o l e . ) o f b e r y l l i u m c h l o r i d e i n 4 0 0 c c . o f and The 'Me.Be^H^ then through o f a double Schlenk tube. Ether t o ensure o p e r a t i o n was r e p e a t e d by connecting was d i s t i l l e d ether by r e p e t i t i o n t o warm t o m a t e r i a l was d e p o s i t e d . m a t e r i a l was s e p a r a t e d on t h e s i n t e r e d d i s c tube on t o t h e s o l u t i o n , f o ra fewminutes t h e s i n t e r e d d i s c , and t h i s washed w i t h washing an i n s o l u b l e white t h es o l i d t h e Schlenk 1 0 0 c c . was a i r , and on a l l o w i n g t h e m i x t u r e was s h a k e n collected t o about complete filtration, t h e two l i m b s back under allowed t h es o l i d o f t h e above p r o c e s s . once more, a n d then vacuum t o be This the ether -80- and excess crystals amine were r e m a i n e d when shown b y i t s m e l t i n g Colourless was e v a p o r a t e d vacuum. T h i s and t h e s e m a t e r i a l was 81°(literature v a l u e point i n f r a r e d spectrum 1 the f i l t r a t e a t 3 0 - 4 0 ° under were sublimed its removed u n d e r vacuum. t o b e t h e known compound 8 1 - 8 2 ° ) and dimethyl- 1 (N,N,N , N -1 e t r a m e t h y l e t h y l en e d i a r n i n e ) - b e r y l 1 ium , 33Me Be(Me .NCH-. ) 2 2 The white insoluble The and n e i t h e r carbon sample under 280-290°, 10.85; -hydride, prepared fumed n o r c a u g h t fire insoluble 2- i na i r . i n carbon t u b e became s e m i - l i q u i d a n d crystalline solid sublimed, 69.k: h y d r o l y z a b l e - m e t h y l , diamine, CpK^Be^^JCMeBeH) (He NCH-) "J 2 69.9; diamine, leaving 2 2 hydrolyzable-methyl, 17-9; requires ".8.05; 1.21%. 1,2-pimethoxyethane. An rapidly with residue. 1.20. -hydride, amorphous t e t r a c h l o r i d e and benzene. At 248° a s m a l l a colourless Be, 11.0; Found: moderately vacuum i n a s e a l e d brown-yellow Be, was an a p p a r e n t l y compound w a s i n v o l a t i l e , disulphide, a material powder w h i c h h y d r o l y s e d methoxyethanol at 2 ethereal 1 ('monoglyme ) solution (60cc.) containing 'Me^Be-H^ from 1 . 6 g . ( 0 . 0 6 7 7 mole.) o f sodium h y d r i d e , 60cc. o f -81- a 0.929M. solution of ethereal 2.2g.,(0.0275 and ether, was (about 10g.). by s y r i n g e The c l e a r m i n u t e s and then oil mole.) o f b e r y l l i u m transferred and a w h i t e solid. removed The w h i t e t e m p e r a t u r e was m a i n t a i n e d appeared to sublime. swirled under solid pumping and a t 48-50° a c o l o u r l e s s T&is chloride on t o excess s o l u t i o n was the ether The c r y s t a l l i n e of 'monoglyme' went o i l y solid no f u r t h e r solid an on sublimed. material was i d e n t i f i e d m.p.101°, as (literature 100-101° ) ^ ' The in i n 150cc. vacuum, l e a v i n g crystalline until mole, f o r a few slowly (1,2-dimethoxyethane) dimethylberyllium, value (0.0558 dirnethyiberylliuin viscous oily r e s i d u e was i n v o l a t i l e b e n z e n e , a n d no method Be, 1 . 3 - 1 , Found: 13-2: hydrolyzable-methyl, -hydride, 1.33, requires Be, 12.9; h y d r o l y z a b l e - m e t h y l , The 1-37- f o ri t s purification CgH^gBe^ course o f the r e a c t i o n ' m o n o g l y m e ' was a d d e d and insoluble could 21.6, be found. 21.5; £(MeBeH) (CH^OCH^)^ 2 21.h; -hydride, d i d not d i f f e r to the beryllium 1.44% when compound. 2,2'-Bipyridyl. The ethereal addition solution of deposition o f excess 2 , 2 ' - b i p y r i d y l 1 file.Be-H- ' r e s u l t e d 4 3 £ o f a yelloi-v s o l i d i n ether t o an i n the immediate ( b i p y r i d y l d i m e t h y l b e r y l l i u m ) and -82- the f o r m a t i o n o f a deep these two m a t e r i a l s could beryllium while redsolution. i s slightly t h e deep-red appeared leaving Complete n o t be e f f e c t e d as separation of "oipyridyldimethyl- s o l u b l e i n e t h e r and afi;er a s h o r t colour o f the supernatant a dark-brown tarry liquid dis- material. Trimethylamine. (31-!- N - c c . , a n e x c e s s ) w a s c o n d e n s e d Trimethylamine to 15cc. liquid o f an e t h e r e a l s o l u t i o n 60cc. from o f a 1 .76M. (0.106 z 3«5g«(0.1 f5 solution of ethereal mole.) and T . 2 g . ( 0 . 0 5 2 6 m i x t u r e was a l l o w e d cooled and a l l o w e d reaction. clear mole.) o f b e r y l l i u m crystals 36° t o room temperature, t o ensure vacuum, l e a v i n g continuously through sublimed into a n d was t h e known amine t o warm (literature 40-^5° w i t h compound value continuous 36°)."'" pumping then complete removed from the colourless crystals. a liquid the trap. chloride i n t o 100cc. by d i s t i l l a t i o n t o warm, u p a g a i n under tube, which had dimethylberylliurn The e t h e r a n d e x c e s s a m i n e w e r e solution pumping Schlenk mole.) o f sodium h y d r i d e , ^OOcc. o f e t h e r a n d c o n c e n t r a t e d The 1 o f Me^Be^H^', c o o l e d i n a i r i n one l i m b o f a d o u b l e been prepared on This a i r trap, On colourless compound m e l t e d a t dimethylberylliuir..-trimethylThe r e s i d u e was h e a t e d a t through thel i q u i d air trap -83- when c o l o u r l e s s the Schlenk Found: tiibe, condensing 1.20, 1.20; M, cryoscopically molecular weight association solutions o f 1.97 a n d prepared sublimate second 1.83 respectively experiments, for purification ) 2 17.8; t o degrees i n t h e two sublimation beryllium- trimethylamine fractional isolation The o f a pure apparatus so t h a t be c a r r i e d joints vacuum s y s t e m this ratio d i d n o t produce was c o n t a m i n a t e d Consequently amine with method were of fractional as t h e g r e a t e r than one, and a pure compound., i e . t h e s m a l l amounts o f d i m e t h y l - and i t m e l t e d condensation over t h e range o0-80°. methods were used f o r compound. shown i n F i g u r e trap-to-trap I V . was u s e d fractionations o u t w i t h o u t vapours o r t a p s . The a p p a r a t u s i n which complex was n o t s a t i s f a c t o r y had a methyl:hydrogen sublimate greased (MeHBe.NMe 2 measurements correspond samples o f t h i s f o r further sublimation could 2 166,15^ measured. When l a r g e r designed i n benzene, Cg.H gBe N 2 17.5,17-7; 1.20; M, 168. The the parts. B e , 10.7; Me^N, 70-3; h y d r o l y z a b l e - m e t h y l , -hydride, of up t h e w a l l s o f on t h e c o o l e r 0.if,0.2 w e i g h t % s o l u t i o n s . requires a (prisms) sublimed B e , 10.8; Me_N, 70.5; h y d r o l y z a b l e - m e t h y l , -hydride, in crystals a n d i t was under coming i n t o vacuum, contact with was a t t a c h e d t o t h e t r i m e t h y l a m i n e had been s t o r e d ; i t was FIGURE 17 MeHBs.NMe^ apparatus. serum cap T7 fvj 'H M to vacuum. f7=h r, M K n U U0 vg/ to vacuum. then evacuated and f i n a l l y A 0.929M. s o l u t i o n filled with nitrogen. of ethereal dimethyl beryllium ( 6 0 c c . 0.0557 m o l e . ) w a s h e a t e d u n d e r (O.O667 m o l e . ) o f s o d i u m h y d r i d e for to two days w i t h c o n t i n u o u s be c o m p l e t e liquid the since evolved original only reflux with suspended stirring. 1 .6g. i n '100cc. o f e t h e r Reaction was p r e s u m e d h y d r o l y s i s o f 2cc. o f t h e supernatant 2.5 N - c c . o f u n c o n d e n s a b l e dimethylberyllium present would gas, whereas have given 31.2 N - c c . p e r 2 c c . o n h y d r o l y s i s . B e r y l l i u m c h l o r i d e 0.0275 m o l e . ) i n 5 0 c c . o f e t h e r w a s a d d e d reaction mixture precipitate. and then with t h e immediate The m i x t u r e thesolution No c h l o r i d e c o u l d about into trap sealed was and by s y r i n g e into through being evolved Ether i nliquid trimethylamine two o r t h r e e times filtered. 26.0 N - c c . o f was r e d u c e d t o t h e serum cap and 'A' a n d t h e m i x t u r e frosen again overnight a n d t h e s o l u t i o n was * A' f r o z e n evacuated. Excess reaction. which white t h e h y d r o l y s i s o f a 2cc. 'A' ( F i g u r e I V ) . T h e c o n s t r i c t i o n o f f and w i t h condensed after before g a s . The v o l u m e o f t h e s o l u t i o n 80cc. by d i s t i l l a t i o n , transferred formation o f a to cool be d e t e c t e d sample o f t h e c l e a r f i l t r a t e uncondensable to the refluxing was b o i l e d w i t h r e f l u x allowed (2.2g., below then t a p 'H' *H' w a s a i r , the apparatus (1000 N - c c . ) w a s warmed t o room t o ensure and excess amine were temperature complete removed u n d e r vacuum, -35- leaving 'J' 1 a colourless crystalline shut, water with 'K' a n d : and C cooled from cretailine in liquid trap in solid point, i t was sublimed from 'B' i n t o The the and vacuum i n t o mercury oil that of was bulb was of had the c o l o u r l e s s dimethylberylliura- colourless crystalline 'J' sealed bulb pure in '3' and open and had was f a sharp therefore K' a n d ' L under n i t r o g e n 'B' was 170° 1 and at by was raised at on 1 shut and 1 'E' a n d 'F . and possible t h e vacuum t h e compound sublimed in liquid were listed taken i n Table system. ballunder a i r . The the b u l b immersed r e a d i n g the mercury mark c l o s e as means o f a s m a l l cooled readings are 'G' a s ( F i g u r e V) some o f 'A' w h i c h each the standard the sealed broken thermostat. Pressure Before sublimed vapour d e n s i t y measurements. a magnet and and in ice- (i.e. 'D' w i t h 'K' was cut-off between 20° to 36 temperature break-seal bearing and apparatus 'high t o 0° p r e s u m e d , t o be the apparatus Vapour p r e s s u r e to 'B' c o o l e d 7 3 - 7 ^ ° • As t h e m a t e r i a l '3' was The valves a i r , t h e compound, was was i n 'C melting finally float 'A', t h e m e l t i n g p o i n t t r i m e t h y l a m i n e " ' ' ) , and solid traps With p u m p i n g a t 2 0 - 3 0 ° • When a l l t h e m a t e r i a l continuous sublimed 'L' o p e n , solid. about in an 10° every V. cut-off 'B' was 'C. Temperatures were measured by raised a FIG. THE HIGH TEMPERATURE UJ Z TO LOW VACUUM BULB -86- standardised mercury thermometer reading to tenths of a degree. A t t h e end o f t h e e x p e r i m e n t , present was d e t e r m i n e d by h y d r o l y s i s measurement o f t h e uncondensable Vapour Pressure material - over gas vapour : Observed those The heat pressures log r 0 vapour calculated (56-115°) 0 f o r the l i q u i d P m. from and 73-115° ~ ^ 3 9 a r e compared i n TableV point kcal.per i s 257°j mole., and the latent the Trouton 21.1. constant Vapour-phase The association. vapour density m e a s u r e m e n t s when a l l t h e m a t e r i a l was p r e s e n t i n t h e g a s e o u s p h a s e o v e r that t h e range 144-172° t h e compound i s inonomeric b u t shows s i g n s o f association. Temp(°C) Molecular Weight Degree are t h e above e q u a t i o n . boiling 11.2 from a equation: = m pressures extrapolated of vapourisation indicate i n which the ''( .K) w a s l i n e a r 1 r e p r e s e n t e d by t h e l i n e a r 73-115° with range was n o t a l l p r e s e n t i n t h e gas phase the. o b s e r v e d and liberated. the temperature & o f compound of the material -plot o f l o g p against temperature ° - mm. closely the quantity of Association 144.2 156.2 165-3 172.3 101.6 95-1 90.8 82-5 1.21 1.13 1-08 0.?S. -87- Table V. Vapour p r e s s u r e o f t r i m e t h y l a m i n e - m e t h y l b e r y l l i u m O b ' s . p r e s s . (mm.) Vap.press.(mm.) Temp.(°C) hydride. Gale.] 0.26 0.2.6 23.0 0.42 0.42 30.6 0.44 0.43 39.4 0.80 0.79 47.0 1 .15 1.13 55-8 1 .170 1.98 1 .94 65.9 1 .941 3-09 3.02 75.2 3.025 4.96 4.84 85.6 4.849 7.97 7-75 96.0 7.513 11.31 10.96 104.8 10.64 15.96 15.38 114.7 15.58 21.92 20.9^ 125.8 25.90 24.43 134.8 30.00 27.81 144.2 34.16 30.57 156.2 37.82 32.70 165.3 43.20 36.56 172.6 -88- Reaction o f (MeBeHNHe^) ~, w i t h 2 , 2 ' - b i p y r i d y l . Excess of bipyridyl i n e t h e r was a d d e d trimethylamine-methylberyllium Immediately either a deep when p r e c i p i t a t e d allowing the solution p u m p i n g down brown the solution dissolved i n ether. formed w h i c h decomposed by t h e a d d i t i o n t o stand sample o f hexane, o r on f o r a few h o u r s , to small o r on volume, t o form a dark- tarry material. Reaction o f (MeBeH.NMe^,)^ w i t h 20*9 beryllium N-cc. o f monomer) o f hydride cooled i n liquid e v o l u t i o n o f gas o c c u r r e d gas e v o l u t i o n ceased. 2 0 . 8 hydrogen were formed dimethylamine. N-cc. o f d i m e t h y l a m i n e were 0.0783g. (20.8 slow red solution hydride to a small which evolved and thus on t o trimethylamine-rnethyla i r . A t room and t h e m i x t u r e N-cc. o f a m i x t u r e a mixture temperature was l e f t until o f methane and o f c o m p o u n d s was was n o t f u r t h e r i n v e s t i g a t e d . Trimethylarnine-rnethylberyllium Sodium condensed deuteride 2.^2M. s o l u t i o n deuteride. (O.^i'g-j 0.021 m o l e . ) ar.d S e e . o f a of ethereal dimethylberyllium (C.019^ mole.) -89- were b o i l e d i n 200cc. a 2cc. o:f e t h e r f o r two days. H y d r o l y s i s sample o f t h e supernatant of uncondensable in 50cc. mixture liquid gas. B e r y l l i u m of ether was a d d e d and b o i l i n g chloride yielde-d f o ra further filtered. chloride was transferred to the apparatus described of trimethylamine trimethylamine condensed was then isolated a t 75-76° Found: Eydrolyzable-methyl. i f -deuteride, raethylberylliura to hydride, bond might a chelate have complex, -deuteride, 2.29- hydrolyzable-methyl, t o form i n which be e x p e c t e d might a chelate 17-6; t o be p r e s e n t . o-phenylenediamine, bond. Since was first with I t was thought because of i t s induce methylberyllium thus have a the preparative resulted i n the formation the l a t t e r complex a terminal beryllium- complex which would beryllium-hydrogen also appears configuration, form 17*6; analogue. 1 N,N,N',N'-tetramethyl steric crystals N,N,N'.N -tetramethylethylenediamine nor 1,2-dimethoxyethane that as c o l o u r l e s s deuterid 2-35%- Neither hydrogen f o r the I V . ) and 1100 N-cc. i n t h e same w a y a s i t s h y d r i d e (MeDBe.NMe^) r e q u i r e s 1 2 d i d not contain on t o i t . M e t h y l b e r y l l i u m melting C H BeDN (Figure mole.) h o u r and then t h e was o f the analogous hydride which N-cc. reaction solution isolation The f i l t r a t e , 2.1 only (O.bjg-,0.008 to the refluxing continued of hydride terminal method would of the dimethylberyllium -preoared. a n d characterized. -90- Reaction of dimethylberyllium with N,N,N',N'-tetramethylo-phenylenediamine • N,N,N' ,N' - t e t r a m e t h y l 0 . 0 1 2 2 m o l e . ) was solution of contained ethereal i n one exothermic for a few added minutes solution was crystals appeared. of a double took to ensure (at 8 0 - 9 0 / I 0 ~ ~ m m . ) UD t h e and fumes s l o w l y reacts Found: vigorously Be, Be, weight % 4.42; degrees t u b e as sealed in the with of slightly was swirled clear good vacuum colourless does n o t vacuum sublimed -prisms, vacuum. hydrolyzable-methyl, 211, 20b r e s p e c t i v e l y . C^ of A colourless then 14.8%, M, m o l e c u l a r w e i g h t measurements association mole.), The under tube under 0.929M. catch The fire water. i n benzene, 215, solutions and a i r but hydrolyzable-methyl, The mixture mixing. (2.0g., a tube. volume excess amine 4.52, 4.29; cryoscopically 0.42 remove 103-104° i n a at the a t low of (0.00929 These w e r e pumped d r y one compound to 10cc. Schlenk complete pumped down and hour to plaice and for melting syringe dimethylberyllium limb reaction by o-phenylen.edia.mine 1.05, 1*03, 1.01 14.6: M, i n 0.92, O.65, ^Be¥> requires 203correspond to respectively. I _91_ R e a c t i o n o f Sodium P l y d r i d o d i e t h y l b e r y l l a t e w i t h B e , r y l l i u m C h l o r i d e a n d t h e T h e r m a l D e c o m p o s i t i o n o f 'Et .Be^E^, ( (0.03 Diethylberylliurn in e t h e r ) was heated under mole, 20cc. reflux (0.0*+ m o l e . ) o f s o d i u m h y d r i d e (0.015 added then boiled allowed to cool be 9-1 the refluxing with reflux supernatant gave to expected was according of heat The filtrate a on to and the was to a by r e c e i v e r w h i c h was cooled leaving- a latter viscous by before A 2cc. syringe overall being- sample o f and TB.2 N - c c o f the Lydrolysed,and e t h a n e , as would equation: * 2NaCl + ' syringe 'Et.Be^H ' '+ y 2 20cc. of to a flask ether residue. the clear joined attached removed u n d e r in liquid evolved glassy and receiving flask e t h e r was this was filtered v a c u u m s y s t e m . The and r e a c t i o n mixture, which + 3eCl_, 2 transferred d i s t i l l a t i o n arm oil was hour of 1.2g., 'Et.Be,?!-' 4. solution was ether. ether further removed solution w i t h 1.Og., day i n 100cc. o f temperature. of hydrogen 2NaH + 2 E t _ B e 2 Action ; for a t o room liquid N-cc. f o r one b e r y l l i u m c h l o r i d e i n 50cc. mole.) of slowly 1 .pM. of to This the vacuum i n t o a i r , leaving a at about by 50° residue colourless under was the vacuum heated to 1 -92- 50-60 , t h e minimum distils, leaving temperature when a c o l o u r l e s s l i q u i d a colourless glassy-lite distillate consisted evolved of only ethane 1 3 - ^ N-cc. In another N-cc. A small 110° experiment of 'Et^Be^H^ using of sample o f t h i s liquid distilled a white this A solid further N-cc. of the f o r eight o f hydrogen was residue was heated of a double Schlenk up washed although the walls of the half ratio tube. an h o u r , h e a t i n g to 98.0 was A was removing remarkably evolved I f the product and d i e t h y l b e r y l l i u m slow with N-cc. and thus were only, a then mole % b e r y l l i u m h y d r i d e . experiment usina - 20cc. the white, w i t h a c i d , 16.7 o f ethane were i s *f?.7:1. to tube, twice with ether quite rapid of beryllium hydride corresponds 10cc. and pumped d r y . H y d r o l y s i s o f t h i s hydrogen:ethyl mixture evolved ethane. 10.1 evolved and a f t e r h y d r o g e n and 0 - 3 5 N-cc. the of a further non-crystalline residue, 2-methoxyethanol of residue residue product, apparently ethereal ethane. colourless liquid the receiver and h e a t i n g a t 70--80° 1 i n one l i m b The The into on h y d r o l y s i s 1 ? . ? N-cc. and vacuum stopped. residue. residue under leaving distilled on h y d r o l y s i s a n d e v i d e n t l y a sample o f t h e r e s i d u e 11.6 and o f hydrogen solution hours, diethylberyllium diethylberyllium. A sample o f t h e s o l i d above a t which of the solution of -93- 'Et,Be.,H ' was 4- } 2 ether for was c a r r i e d out removed f o u r h o u r s and hours. During Residue 81.856: Be, (a). 36.6 The of N-cc. Addition of no 79 •~'}%\ N-cc. diethylberyllate such period Be, 0.9 and vacuum, subsequently this Found: hydrogen v/ashed w i t h by h e a t i n g 0.0090g. on prior gas was 60° to 110-120° to for two evolved. gave 3 5 - 7 N-cc. of h y d r o l y s i s . BeH^ to sodium filtration shown i n P h o t o g r a p h obtained. ether The requires hydrogen. without be followed beryllium chloride apparatus, could apparatus. permanent ethane of similar heating that quantitative isolation products be under using and I t also without from enabled from sodium I . was analysis removal hydridohydride. designed of both the: r e s i d u e the to apparatus. 1 ^0° 1 Et ,Be-.H_ ' *T J> d. -—* ; Diethylberyllium in ether) was (O.O83 m o l e . ) o f After the 2k hours, in 50cc. further then (0.06 t r a n s f e r r e d by 2.0g. of (0.03 ether hour. filtered.. The Two mole, M-Occ. o f syringe sodium h y d r i d e reaction mixture 2.4g. 2Et_Be + d T had and 1 solution suspension i n 100cc. of boiling reflux was samples o f continued allowed the for dissolved for to cool filtrate of ether. beryllium chloride, reaction mixture 3«0cc. a a been b o i l e d w i t h mole.) of were added into BeH_ d. were a and -9k- h y d r o l y s e d and y i e l d e d 23-2, 2J.1 N-cc. o f h y d r o g e n and 4-6.6, 4-6.5 N-cc. o f e t h a n e . c A n o t h e r sample ( 3 1 « 3 c . ) o f t h e same f i l t r a t e transferred through illustrated i n Photograph I . This apparatus to t h e vacuum l i n e 'b' t o b u l b allowed 'A' o f t h e a p p a r a t u s by b a l l - j o i n t (acetone-CC^)• t h e apparatus evacuated, 'B' was t h e n c o o l e d i nliquid 1 down t o b u l b bulb and as 'A' was the ether g l a s s b e t w e e n t h e t o p o f 'A , t h e j o i n t connected 'A' was c o o l e d which was condensed i n t h e vacuum a p p a r a t u s Bulb and was 'e'. B u l b t o warm t o room t e m p e r a t u r e evaporated was and s t o r e d n i t r o g e n , the 1 ' b , and e x t e n d i n g 'C was wound w i t h h e a t i n g t a p e k e p t a t 60-70° 'A' was s l o w l y warmed t o 70° and m a i n t a i n e d a t or near t h a t temperature f o r 2k h o u r s . D u r i n g d i e t h y l b e r y l l i u m , probably this time a c c o m p a n i e d b y some e t h e r , c o n d e n s e d i n 'B'. The t e m p e r a t u r e o f the o i l bath surrounding t h e n r a i s e d t o 120° f o r a f u r t h e r 2k h o u r s , time t h e c o n t e n t s o f 'A' p a r t i a l l y solidified liquefied during condensed j u s t above t h e l e v e l period, m a t e r i a l had of the o i l bath, but this was removed by r a i s i n g t h e l e v e l inch. Finally which and t h e n as a w h i t e m a t e r i a l . A t t h e end o f t h i s a s m a l l amount o f c o l o u r l e s s c r y s t a l l i n e 'A' was o f t h e l a t t e r a b o u t an t h e o i l b a t h was h e a t e d t o 180° f o r 8 h o u r s . -95- Bulb 'B' was a l l o w e d t o warm t o -9b°(CEUClp (identified by i n f r a r e d bath) and 1A-.0 N-cc. o f e t h y l e n e spectrum) was c o l l e c t e d i n a t r a p a t -196°. No gas t h a t c o u l d n o t be condensed a t -196° ws-s p r o d u c e d d u r i n g t h e r e a c t i o n . The apparatus was t h e n f i l l e d w i t h n i t r o g e n , and, a g a i n s t a c o u n t e r c u r r e n t o f n i t r o g e n cap 'c' was r e p l a c e d by a n i t r o g e n l e a d . The l e f t then separated from hand s i d e o f t h e a p p a r a t u s was 'B' by s e a l i n g o f f a t ' f . Analysis o f the d i e t h y l b e r y l l i u r a . Cap 'd' was removed a g a i n s t a c o u n t e r c u r r e n t o f n i t r o g e n and r e p l a c e d b y a d r o p p i n g funnel containing de-gasseefc- 2 - m e t h o x y e t h a n o l . A f t e r t h e n i t r o g e n had been pumped o u t , a d d i t i o n o f 2 - r n e t h o x y e t h a n o l t o 'B' at -196°, t h e n a l l o w e d s l o w l y t o warm t o room f o l l o w e d by w a t e r and f i n a l l y d i l u t e (initially temperature) sulphuric acid yielded M-76.5 N-cc. (0.02126 m o l e . ) o f e t h a n e ( i d e n t i f i e d spectrum), a little ether (also i d e n t i f i e d by i n f r a r e d by i t s i n f r a r e d s p e c t r u m ) and no gas t h a t was n o t condensed by l i q u i d nitrogen the ( e . g . no h y d r o g e n ) . Bulb 'B 1 was d e t a c h e d from, vacuum l i n e and i t s c o n t e n t s washed i n t o a s t a n d a r d volumetric yielded f l a s k and made up t o 2 5 0 c c . Two 5 0 c c . 0.0536 and 0.0539g- o f BeO. so b u l b aliquots 'B' h a d c o n t a i n e d 0.0107^ m o l e , b e r y l l i u m and 0.02126 m o l e , h y d r o l y z a b l e ethyl, Et:Be = 1-977:1. -96- Analysis of the i n v o l a t i l e residue. Against a countercurrent of n i t r o g e n e n t e r i n g through the gas lead attached at adaptor which connected 1 'c', cap b 1 the apparatus v i a a s t o p c o c k . When t h e n i t r o g e n had ether (about 1 0 c c , p r e p a r a t i o n ) was The apparatus the separated t i m e s and ' C . E t h e r was repeated condensed on was s w i r l e d a few r e p l a c e d by t o t h e vacuum earlier o b s e r v e d i n 'C', the w h i t e r e s i d u e i n 'A'. f r o m t h e vacuum l i n e , b u l b 'A' apparatus was the side-ann the o p e r a t i o n then r e - c o n n e c t e d t h e e t h e r removed; no w h i c h was line stage of the the ether f i l t e r e d i n t o t w i c e more- The an been pumped o u t , d r y t h e n condensed back i n 'A' and vacuum l i n e and had s t o r e d f r o m an was sealed o f f a t residue could to be 'a' a f t e r n i t r o g e n been l e t i n . Cap 'c' v/as r e p l a c e d by a d r o p p i n g f u n n e l c o n t a i n i n g d e - g a s s e d 2 - m e t h o x y e t h a n o l , t h e n i t r o g e n pumped away, b u l b 'A* was cooled As 'A' was bulb slow gas allowed e v o l u t i o n was accomplished dilute t o -1^/6° and 2-r.iethoxyethanol s l o w l y run i n . t o warm t o room t e m p e r a t u r e seer., and t h e h y d r o l y s i s was by t h e s u b s e q u e n t a d d i t i o n o f w a t e r s u l p h u r i c a c i d a t room t e m p e r a t u r e . d u r i n g h y d r o l y s i s were pumped t h r o u g h and -196° The a very mainly and finally gases evolved t r a p s a t -128°(pentane) ( t w o i n s e r i e s ) by means o f a T O p l e r pump. 2^-2 N-cc. (0.01080 m o l e . ) o f h y d r o g e n and 1.80 N-cc.(0.0000803 m o l e , -97- identified by i n f r a r e d s p e c t r u m ) o f e t h a n e were no e t h e r was d e t e c t e d . The s o l u t i o n r e m a i n i n g washed i n t o a s t a n d a r d 2 5 0 c c . Two so collected; i n 'A* was v o l u m e t r i c f l a s k and made up t o 5 0 c c . a l i q u o t s y i e l d e d 0.0272 and 0.0279g. 'A' had c o n t a i n e d BeO, 0.00550 m o l e , b e r y l l i u m , so t h e r a t i o H:Be i n t h e h y d r i d e was 1.965:1• From t h e v o l u m e s o f h y d r o g e n and e t h a n e t h e mole.^o h y d r i d e w o u l d be ZkZ.Q x 100 = 99.3% BeE^, on t h e a s s u m p t i o n ( s o o n t h e o n l y o t h e r component was o r 95-9 w e i g h t shown t o be i n c o r r e c t ) % that diethylberylliura. The r e m a i n d e r o f t h e e t h e r s o l u t i o n c o n t a i n i n g 'Et.Be-.H-,' was following left (1). t r e a t e d i n e x a c t l y t h e same way and t h e reactions carried after o u t on t h e i n v o l a t i l e pyrolysis. A f t e r r e m o v a l o f most o f t h e h y d r i d e f r o m b u l b the apparatus out. With was r e - a t t a c h e d the apparatus 'A' t o t h e vacuum s y s t e m and pumped shut o f f from t h e pump b u t open t o a manometer, t h e b u l b and i t s c o n t e n t s were h e a t e d in residue slowly a s i l i c o n e o i l b a t h . A t 280° s l o w e v o l u t i o n o f h y d r o g e n occurred and t h e w h i t e s o l i d started t o t u r n b l a c k . A t 300° 15*5 N-cc. o f h y d r o g e n were e v o l v e d o v e r a p e r i o d o f 7-8 minutes. d i d not catch air. The b l a c k powder r e m a i n i n g fire in -98- (2) . The h y d r i d e d i d n o t c a t c h f i r e n o r fume i n a i r . A f t e r two h o u r s i n a i r , s m a l l s a m p l e s o f t h e h y d r i d e h y d r o g e n "when w a t e r was added t o them b u t a f t e r three hours no e v o l u t i o n o f gas was n o t i c e a b l e even when a c i d was (3) - The i n f r a r e d raethyldecalin region. liberated added. s p e c t r u m r e c o r d e d as a m u l l i n p e r f l u o r o - showed t h e absence o f C-H v i b r a t i o n s i n t h e 3jJL (The s p e c t r u m r e c o r d e d as a n u j o l m u l l i s d i s c u s s e d elsewhere). (4) . in Diethylberylliun (0.006 m o l e , kcc. o f a. 1.5M. s o l u t i o n e t h e r ) was added t o 0.0647g.(0.0059 m o l e . ) o f t h e h y d r i d e . The h y d r i d e d i d n o t d i s s o l v e a f t e r two h o u r s a t room t e m p e r a t u r e n o r a t 90° o v e r k h o u r s a f t e r r e m o v a l o f t h e s o l v e n t by distillation. addition The h y d r i d e d i d n o t d i s s o l v e on t h e f u r t h e r o f 10cc. o f t h e s o l u t i o n o f d i e t h y l b e r y l l i u i n f o l l o w e d by r e f l u x i n g f o r s e v e r a l h o u r s . (5) . A list relative o f t h e i n t e r p l a n a r s p a c i n g s ( d ) and intensities their ( I ) f r o m t h e 3C-ray powder p h o t o g r a p h o f a sample o f t h i s h y d r i d e u s i n g c o p p e r r a d i a t i o n i s shown o v e r l e a f i n Table V I . -99Table V I . X - r a y Powder D a t a f o r t h e P y r o l y s i s Product. I n t e r p l a n a r spacings (A°) a r e r e p r e s e n t e d b y 6.. Relative intensities o f t h e l i n e s i s r e p r e s e n t e d by I . (maximum 2 0 0 . ) _d I d 1 6.178 18 1 .852 8 4.538 20 1.799 3.765 15 3.228 d I 18 1 .035 5 1 .767 13 1 .068 5 200 1.717 > 1 .024 10 3.108 8 1 .652 3 0.992 5 3.038 8 1.602 18 0.941 2.990 3 1 .568 5 0.901 1t 3 2.913 150 1-553 10 0.888 2.731 3 1.488 13 0.879 3 2.661 120 1.457 1£ 0.855 1* 2.499 5 1.439 1* 0.804 2.441 120 1.384 18 2.341 20 1 -553 1£ 2.263 5 1.327 1£ 2.168 5 1.296 5 2.078 3 1.252 5 2.049 18 1.230 10 1 .991 3 1.217 5 1.189 3 1.164 3 1 .934 1 .881 35 -100- (6). A s m a l l sample o f t h e h y d r i d e was t r a n s f e r r e d i n a g l o v e box t o a s m a l l w e i g h i n g ground g l a s s j o i n t s . filled The c a p s u l e capsule water w i t h B14. was opened i n s i d e ' a f l a s k w i t h n i t r o g e n and t h e c o n t e n t s distilled fitted f o l l o w e d by d i l u t e hydrolysed w i t h s u l p h u r i c a c i d . The h y d r o l y s i s o f 0.024°Ag. gave 44.5 N-cc. o f h y d r o g e n , and 0.5 N-cc. o f e t h a n e . Found: Na, 43; Be, 30.9; h y d r o l y z a b l e - h y d r i d e , 8.72; -ethyl, 2.6%. n e i t h e r c h l o r i d e n o r e t h e r c o u l d be d e t e c t e d . T h i s a n a l y s i s a c c o u n t s f o r o n l y 855i o f t h e t o t a l w e i g h t so some o x y g e n may have been p r e s e n t , p o s s i b l y as b e r y l l i u m oxide. EeH^ R e q u i r e s Be, 81.7; H, 13.3%- 3Na Be Hg + 5BeK 2 2 A mixture of r e q u i r e s Na, 52; Be,37-3; H, 10.6%. ( b ) M o d i f i e d p r o c e d u r e f o r 'Etj.Be-H^' p y r o l y s i s . , w i t h c o n t r o l o f the sodium content. A s o l u t i o n o f a p p r o x i m a t e l y 3«3g- o f b e r y l l i u m c h l o r i d e i n 2 5 0 c c . o f e t h e r was made up s h o r t l y (the one solution b e f o r e use t u r n s y e l l o w a f t e r 3-^ d a y s ) such t h a t only phase was p r e s e n t . The s o l u t i o n was s t a n d a r d i s e d by r e m o v i n g an a l i q u o t w i t h a p i p e t t e , h y d r o l y s i s w i t h w a t e r and titration solution. o f the free acid with standard sodium hydroxide -101- Sodium h y d r i d e (2.0g., c 0.08.33 m o l e . ) and 3 0 c - °f a 1.57K. s o l u t i o n o f e t h e r e a l d i e t h y l b e r y l l i u r n (O.C)V?1 m o l e . ) were r e f l u x e d i n 2 5 0 c c . o f e t h e r w i t h s t i r r i n g f o r three d a y s . The m i x t u r e was p o u r e d i n t o l i m b Schlenk tube 1 'A' o f t h e t r i p l e ( F i g u r e V I ) and t h e s o d i u m h y d r i d o d i e t h y l - beryllate e x t r a c t e d w i t h ether from into limb 'B . Most o f t h e e t h e r was t h e n d i s t i l l e d vacuum i n t o 1 *A' ( c o o l e j t o - 1 9 6 ° ) hydride under and t h e r e s i d u a l s o l u t i o n t o -60°(acetone-C02). The m o t h e r l i q u o r was d e c a n t e d cooled into excess s o d i u m 'A', l e a v i n g t h e c r y s t a l l i n e h y d r i d o d i e t h y l b e r y l l a t e i n 1 •B . E t h e r was d i s t i l l e d -196°) back f r o m 'A' i n t o u n d e r vacuum up t o a s t a n d a r d temperature) *E' ( c o o l e d t o mark (l80c:c. a t room and t h e s a l t d i s s o l v e d by g e n t l y s w i r l i n g and w a r m i n g t h e s o l u t i o n . Two 0 . 7 c c . s a m p l e s were removed by syringe, hydrolysed up t o s t a n d a r d these with d i s t i l l e d w a t e r and a c i d a n d made volume w i t h d i s t i l l e d water. A n a l y s i s o f s o l u t i o n s f o r s o d i u m showed t h a t t h e e t h e r s o l u t i o n i n 'B' c o n t a i n e d 0.842g.(O.O366 m o l e . ) o f s o d i u m . 1 0 8 . 5 c c . o f t h e 0.167.5M. s o l u t i o n o f e t h e r e a l " b e r y l l i u m c h l o r i d e (O.OI818 m o l e . ) were added by p i p e t t e t o t h e s o l u t i o n i n 'B' and an i m m e d i a t e w h i t e p r e c i p i t a t e f o r m e d . The m i x t u r e was g e n t l y swirled t o e n s u r e c o m p l e t e m i x i n g and t h e n t h e p r e c i p i t a t e allowed t o s e t t l e . A n a l y s i s o f a sample o f t h e s u p e r n a t a n t liquid showed t h a t o n l y a s m a l l amount o f s o a i u m was p r e s e n t AUG 1964 ngure}£l 53 The Triple Sch/enk Tube. C A -102- i n s o l u t i o n and. c h l o r i d e c o u l d n o t be d e t e c t e d . The s o l u t i o n was f i l t e r e d distilled into limb down t o a b o u t 70-S0cc. by s y r i n g e i n t o and The s o l u t i o n was t r a n s f e r r e d the p y r o l y s i s apparatus, previously described , t h e p y r o l y s i s was c a r r i e d o u t as d e s c r i b e d previous its *C a n d t h e c l e a r s o l u t i o n was experiment. infrared ?6-2 N-cc. o f e t h y l e n e s p e c t r u m . ) were e v o l v e d i n the ( i d e n t i f i e d by d u r i n g t h e p y r o l y s i s and t h e r e s i d u e was washed f o u r t i m e s w i t h e t h e r a n d pumped d r y . The h y d r o l y s i s was c a r r i e d o u t a s p r e v i o u s l y d e s c r i b e d , u s i n g a small capsule f i t t e d w i t h ground j o i n t s i n which to weigh t h e h y d r i d e . H y d r o l y s i s o f O.Ol85g. p r o d u c e d 70.4- N-cc. o f h y d r o g e n and 0.3 N-cc. o f e t h a n e . C h l o r i d e c o u l d n o t be d e t e c t e d i n the product. Found: Na. 5-7; Be, 81; h y d r o l y s a b l e - H , 17.1%. BeH_ r e q u i r e s Be, 8 1 . 7 ; H, 18.3"/°- A c o m p o s i t i o n Na_Be^H^- + 65BeH 2 o r Na^BeH^ + 6 6 B e H 2 r e q u i r e s Na, 5-8; Be, 77; H, 1 7 - ^ i . The X - r a y powder p h o t o g r a p h showed t h a t t h i s product v/ a s amo r p h o u s . (c). E f f e c t o f c h l o r i d e on t h e p r e p a r a t i o n o f b e r y l l i u m h y d r i d e . I n order t o determine t h e e f f e c t o f c h l o r i d e on t h e p y r o l y s i s , a f u r t h e r experiment was t r i e d u s i n g I.Og. (0.0417 m o l e . ) s o d i u m h y d r i d e a n d 20cc. o f a 1.57M. s o l u t i o n of ethereal diethylberyllium (0.0314 m o l e . ) i n lOOcc. o f -103- ether. After and t h e h y d r i d o d i e t h y l b e r y l l a t e had d i s s o l v e d i n e t h e r i n the t r i p l e been e x t r a c t e d S c h l e n k t u b e as a n a l y s i s o f a sample o f t h e s o l u t i o n showed t h a t solution (80cc.) contained before, the total 0.26?3g-(0.0116 m o l e . ) o f s o d i u m . 2 9 . 0 c c . o f a 0.2003M. s o l u t i o n o f b e r y l l i u m c h l o r i d e (O.OO581 m o l e . ) i n e t h e r was liquid a d d e d , and shown t o c o n t a i n no c h l o r i d e . The experiments, s o l u t i o n was b u t a t 120°, v e s s e l became l i q u i d and a f t e r mixing, t r e a t e d as i n t h e previous the c o n t e n t s o f the p y r o l y s i s did not s o l i d i f y began t o d a r k e n a f t e r a b o u t an h o u r so b e l o w 140° even A t 180 , the t h e v e s s e l was s p e c t r u m ) o f e t h a n e and e t h y l e n e were (shown by 6.9 N-cc. formed. o f e t h a n e on h y d r o l y s i s . The s o l u t i o n a f t e r h y d r o l y s i s contained I n one experiment c h l o r i d e b u t no o n l y ( o u t of about s i x or aimed a t t h e p r e p a r a t i o n o f b e r y l l i u m h y d r i d e by process, h y d r o l y s i s o f the r e s i d u e produced a s m a l l amount (30.2 infrared spectrum). N-cc.) o f i s o b u t a n e During infrared 0 . 0 2 4 l 6 g . on h y d r o l y s i s p r o d u c e d 17*6 N-cc. h y d r o g e n and solid allowed t h e r e s i d u e washed f o u r t i m e s w i t h e t h e r . t h e p y r o l y s i s , 25.0 N-cc. o f a m i x t u r e Found: supernatant s o d i u m b u t a s m a l l amount o f a f t e r several hours a t t h i s temperature. t o c o o l and the of residual sodium. seven) the p y r o l y s i s relatively ( identified by i t s -104- Reactions b e t w e e n 'Et,,Be-H~ * a n d Sodium 1 — < _ Methods f o r i n c r e a s i n g reaction Hydride. t h e h y d r o g e n : e t h y l r a t i o by o f 'EtiBe-,H_' w i t h s o d i u m h y d r i d e , w i t h a v i e w t o obtaining e t h y l b e r y l l i u m h y d r i d e o r i t s sodium h y d r i d e c o m p l e x a r e now d e s c r i b e d . Sodium h y d r i d e (2 .J;g. , 0.0958 m o l e . ) a n d 20cc. o f a 2.78M. s o l u t i o n o f e t h e r e a l were r e f l u x e d diethylberyllium (0.0556 m o l e . ) i n 100cc. o f e t h e r f o r 24 h o u r s . 2.2g.(0.0275 m o l e . ) o f b e r y l l i u m c h l o r i d e i n oOcc. o f e t h e r were added and a f t e r r e f l u x i n g f o r 1 hour, t h e m i x t u r e was f i l t e r e d . H y d r o l y s i s o f a 1.0cc. sample o f f i l t r a t e d solution liberated 6.5 N-cc. o f h y d r o g e n a n d 15-7 N-cc. o f e t h a n e . hydrogen r a t i o i s 2 . 1 : 1 , 1 thus Et^Be^H^ 1 The e t h y l : h a s been formed. 2 . 5 g - ( 0 . 0 1 0 4 m o l e . ) o f s o d i u m h y d r i d e was added t o t h e above f i l t r a t e and t h e m i x t u r e r e f l u x e d with, s t i r r i n g f o r s e v e r a l h o u r s . 2 . 0 c c . samples o f t h e s u p e r n a . t a n t were removed a t v a r i o u s i n t e r v a l s and a n a l y s e d 23 h o u r s . liquid by h y d r o l y s i s . 9-^ N-cc. o f h y d r o g e n a n d 23-0 N-cc. o f e t h a n e , e t h y l : h y d r o g e n = 2.44. 52 h o u r s . 8.8 N-cc. o f h y d r o g e n and 22.6 N-cc. o f e t h a n e , e t h y l : h y d r o g e n = 2-58. 100 h o u r s . 8.9 N-cc. o f h y d r o g e n and 24.4 N-cc. o f e t h a n e , e t h y l : h y d r o g e n = 2.73- - 105Th e e t h e r was d i s t i l l e d 75-S0 u o f f , t h e m i x t u r e heated a t f o r 24 ho u r s a n d t h e n t h e e t h e r r e p l a c e d and t h e mixture r e f l u x e d f o r 1 hour. 6.5 124 h o u r s . N-cc. o f h y d r o g e n and 13-0 N-cc. o f e t h a n e , e t h y l : h y d r o g e n = 1.99The s o l u t i o n was p o u r e d i i i t o a d o u b l e S c h l e n k and a. c r y s t a l l i n e s o l i d was e x t r a c t e d w i t h e t h e r f r o m s o d i u m h y d r i d e . The s o l u t i o n was d i s t i l l e d volume, cooled tube dowr. t o s m a l l t o -40° and t h e c o l o u r l e s s n e e d l e s o f f on t h e s i n t e r e d d i s c c o n n e c t i n g excess filtered t h e two l i m b s o f t h e S c h l e n k t u b e and pumped d r y . Be, 9-34; h y d r o l y z a b l e - e t h y l , 6 3 . 7 : - h y d r i d e , 1 . 1 : Found: C^H^BeNa ( N a B e E t H ) r e q u i r e s Be, 9-9; 2 63.7; -hydride, hydrolysable-ethyl, 1.1%. Sodium h y d r i d o d i e t h y l b e r y l l a t e was o b t a i n e d yield on t h e b a s i s o f t h e e q u a t i o n 'Et^Be^ELj' + Nal-I inseparable shown b e l o w : y NaBeEt^H + an i n s o l u b l e p r o d u c t from sodium h y d r i d e In a s i m i l a r experiment, 1 i n ^'\% (as discussed on p . the ethereal solution o f Et^Be,!-^' was added t o s o d i u m h y d r i d e i n ' d i g l y r n e ' , ether d i s t i l l e d 36 h o u r s . products o f f and t h e m i x t u r e heated diethyl- t o 80-85° f o r A t t h e end o f t h i s p e r i o d , t h e gaseous h y d r o l y s i s f r o m a sample o f t h e s o l u t i o n w h i c h was d a r k - b r o w n , were v e r y s m a l l , consequently decomposition has t a k e n place. -106- As 'Et^Be^H^' r e a c t s w i t h s o d i u m h y d r i d e as t h o u g h i t c o n t a i n s d i e t h y l b e r y l l i u m , i t was t h o u g h t t h a t r e a c t i o n o f t h i s p r o d u c t w i t h b e r y l l i u m c h l o r i d e w o u l d p r o d u c e more 'Et^Be^H^' and so o n . The o v e r a l l r e a c t i o n c a n be r e p r e s e n t e d by t h e e q u a t i o n b e l o w : 2NaH + Et„Be + E e C l d. 2 Diethylberyllium » 2JMaCl + 2Et3eH. * ( 0 . 0 3 m o l e , 2 0 c c . o f a 1.5M. s o l u t i o n i n e t h e r ) was r e f l u x e d w i t h 1-5g.(0.0625 m o l e . ) o f s o d i u m h y d r i d e i n 400cc. o f e t h e r f o r 1 day. 2.5g-(0.051 of beryllium c h l o r i d e i n 50cc. o f e t h e r was added mole.) o v e r two h o u r s t o t h e r e f l u x i n g r e a c t i o n m i x t u r e w h i c h was r a p i d l y stirred and r e f l u x e d supernatant l i q u i d f o r s e v e r a l d a y s . 5cc. samples o f t h e were removed by s y r i n g e a t v a r i o u s i n t e r v a l s and h y d r o l y s e d . 1 day. 8-5 N-cc. o f h y d r o g e n and 15*2 N-cc. o f e t h a n e 3 days. 9-1 N-cc. o f h y d r o g e n and 19-9 N-cc. o f e t h a n e . The s o l u t i o n was t h e n f i l t e r e d m o l e . ) o f s o d i u m h y d r i d e and a g a i n 1 day. 8.5 7 days. 15»0 N-cc. N-cc. on t o 0 « 9 g « ( 0 . 0 3 7 5 refluxed. o f h y d r o g e n and 18.2 N-cc. o f h y d r o g e n and 27»5 N-cc. This type o f r e a c t i o n i s t h e r e f o r e o f ethane o f ethane. unsatisfactory for t h e p r e p a r a t i o n o f e t h y l b e r y l l i u m h y d r i d e , p r o b a b l y due t o coating o f sodium h y d r i d e b y c h l o r i d e . -107- R e a c t i o n b e t w e e n ' T r i - e t h y l s t a n n a n e and D i e t h y l b e r y l l i u m . Et,SnH + Et„Be 3 CL Tri-ethylstannane of b Et.Sn + EtBeH. hr (5-2g., 0.0252 m o l e . ) and l o . O c c . a 1.57K. s o l u t i o n o f e t h e r e a l d i e t h y l b e r y l l i u m were t r a n s f e r r e d by s y r i n g e i n t o VII) (0.0251 m o l e . ) the r e a c t i o n f l a s k and h e a t e d a t 4-0° f o r 2 h o u r s , ( t h e a p p a r a t u s 'A' ( F i g u r e being- a t t a c h e d t o t h e vacuum s y s t e m v i a b a l l - j o i n t £ and j o i n t s D and E being closed with 75° d u r i n g which c a p s ) . The t e m p e r a t u r e was t h e n r a i s e d t o time e t h e r d i s t i l l e d into t h e r e c e i v e r 'B 1 and t h i s t e m p e r a t u r e was m a i n t a i n e d f o r 2 h o u r s . The f l a s k was allowed air t o c o o l t o room t e m p e r a t u r e , 'B' c o o l e d i n l i q u i d a.nd t h e s y s t e m evacuated, so t h a t a l l v o l a t i l e m a t t e r was c o l l e c t e d i n *B' o v e r 14 h o u r s . A f t e r c o n t i n u o u s pumping a t 35° f o r 2 hours, the f l a s k * A' c o n t a i n e d a v i s c o u s g l a s s y r e s i d u e , w h i c h became a w h i t e s o l i d a f t e r prolonged pumping. The d i s t i l l a t e was removed by s y r i n g e , t h e r e c e i v e r '3' washed w i t h more e t h e r , and t h e s e were combined and made up t o s t a n d a r d volume ( 2 5 c c . ) w i t h e t h e r . A p p r o x i m a t e l y 20cc. o f e t h e r was condensed on t o t h e c o n t e n t s o f 'A' and t h e c l e a t s o l u t i o n removed by s y r i n g e and s t o r e d i n a f l a s k under n i t r o g e n . Distillate. Two 5cc. a l i q u o t s were removed by p i p e t t e and FIGURE W EtaSnH-Et^Bg apparatus. B V -108- fractionated through a a t -50 trap 0.80g. of t e t r a - e t h y l t i n c o n t a i n i n g ( s h o w n by ethyltin infrared spectrum). Residue. have been Hydrolysis g a v e 31-0 N - c c . of beryl1ium The of (38.5 by trapped of syringe to the solution w h i c h was react at of one tube as sealed with O.78 the tri-ethylstannane quantity of tetra- theoretical, the residue). ethereal solution cooled the beryllium compound a double Schlenk in liquid room t e m p e r a t u r e and a i r . The then colourless sublimed p r i s m s a t ^ 0 - ^ 5 ° • The up on ether and to was excess the walls compound m e l t s a t of the 90-91° i n reacts Schlenk a vigorously effervescence. cryoscopically 193: 200, i n benzene, solutions. C .H_ Be N 1 ( 0 29.6; p o 202, 9-2; h y d r o l y z a b l e - e t h y l , The m o l e c u l a r weig;ht m e a s u r e m e n t s c o r r e s p o n d 1.97? 2 . 0 ^ , 2.06 i n O.36. ( E t H B e .NMe_ Be, of tube, mixture 3e, 9-3; h y d r o l y z a b l e - e t h y l , 29-0; - h y d r i d e , association was crystalline t u b e u n d e r vacuum, f u m e s i n a i r , and weight % 0.0155s- e t h a n e and t r i m e t h y l a m i n e were condensed r e m a i n e d , was water with Found: M, which the l i m b of a m i n e r e m o v e d u n d e r v a c u u m . The material the in of solution 500 N - c c . ( e x c e s s ) o f to total of N-cc.) and allowed 2cc. trace h y d r o g e n , 31-5 N - c c . o f remaining transferred a 4.05g.(?1% of i s o l a t e d was r e m a i n d e r may The 0.82g., which' c o l l e c t e d -hydride, respectively. 1 .0>i: 0.55) requires 1.035=: K,19o. to degrees of DISCUSSION -109- Discussion. In w h i c h may vated at readily forra methyl 20°) c o n t r a s t t o sodxum h y d r i d o d i e t h y l b e r y l l a t e crystallised compound i s o n l y s y m m e t r y . No association only e x t r a c t o r . The l o w e r compound i s e x p e c t e d i n view evidence material the analogous solubility of i t s probably but X-ray a t present being i s monoclinic with 1 . 6g/litre v e r y s l o w l y by t h e u s e h a s been o b t a i n e d of these s a l t s diethylberyllate, a t 20°), s p a r i n g l y s o l u b l e (about a n d may be c r y s t a l l i s e d of a Soxhlet this from d i e t h y l e t h e r i n u n s o l - about 3 0 g / l i t r e (solubility , o f the inethvl gr£;ater molecular f o r the degree of data f o r sodium hydrido- s t u d i e d , h a v e shown t h a t space g r o u p F2^/c (No.14). o The u n i t c e l l d i m e n s i o n s a r e , a=5»0'+, b = 1 1 . 2 , c=20.9A and t h e monoclinic angle For the salt, suspension beryllium falls, (£) i s 101° t h e p r e p a r a t i o n o f many derivatives, isolation of NaBeMe^H, i s f o r t u n a t e l y n o t n e c e s s a r y . When a o f sodium h y d r i d e ( i nexcess) i n ethereal dimethyl- i s b o i l e d , the c o n c e n t r a t i o n of the l a t t e r a s i n d i c a t e d by t h e amount o f m e t h a n e e v o l v e d samples of supernatant change appears of h a l f 15'. liquid are hydrolysed. to take p l a c e a f t e r No when further- a b o u t 48 h o u r s , a mol. e t h e r e a l b e r y l l i u m c h l o r i d e then gradually but a d d i t i o n causes -110- precipitation of together hydrolyzable in with s o d i u m c h l o r i d e and s o l u t i o n i n molar chloride and excess methyl ratio a l l the and hydrogen J>:k:2. F i l t r a t i o n sodium h y d r i d e beryllium yields to from reappear sodium a solution containing 'Me^Be-^Hj ' • S o d i u m h y d r i d o d i e t h y l b e r y l l a t e ', prepared sodium hydride reacts in similar way and with diethylberyllium + Et Be $> N a B e E t H 2 ? 2NaBeEt_H + B e C l _ 2 2 is little solutions and 1:2 mixture of evidence about the p r o d u c t methylberyllium hydride > the 'Hei,Be,H (MeBeK) reaction with amines, main s o l u t e s p e c i e s are solvated of (e.g. solvated could be a 2:1 these mixture dimethylberyllium, and On the b a s i s of a significant the their the and concentrations more c o n r a l e x s p e c i e s 5 2 " to b e l i e v e dimethylberyllium though or of dime t h y l b e r y l l i u m . 52. i s insoluble in ether 'Me.Be-,!! ') o r H 'Et,Be_H ' 4 j> 2 i t i s reasonable methylberyllium hydride trinuclear 1 n (Be^) seems u n l i k e l y . tertiary + c o n s t i t u t i o n of and beryllium hydride possibility 2NaCl r However, s i n c e b e r y l l i u m h y d r i d e latter a beryllium chloride, NaH There i n ether from could * be p r e s e n t . The c o l o u r l e s s v i s c o u s o i l y r e s i d u e o b t a i n e d when s o l v e n t i s r e m o v e d f r o m e t h e r e a l 'Ke. Be_.H • a t room t e m p e r a t u r e , H j> 2 h a s t h e a p n r o x i m a t e c o m p o s i t i o n Me. 3 e _ H „ 0 E t _ Mos '; o f t h e H j> c. 2. - ether i s lost when this oily material i s heated to about 30° -111- under vacuum. S i n c e d i i n e t h y l b e r y l l i u m i san e l e c t r o n - d e f i c i e n t 2o" polymer insoluble ora t least solvents • could with which i t does n o t r e a c t be r e g a r d e d between very s p a r i n g l y soluble i n 27. a s some k i n d dimethylberyllium ", t h e v i s c o u s o i l of electron-deficient and m e t h y l b e r y l l i u m n A containing Reactions Me the trimethylamine The complex complex complex volatile than He Be.NMe. ( I ) ofmethylberyllium ( I ) , a . p . 73-0-73-2°, i s d i m e r i c less chain. t o e t h e r e a l 'Me,,Be_H of the dimethylberylliura and considerably polymer molecules. of trimethvlamine a mixture such a s , ^ donor Addition yields hydride an element o f the d i m e t h y l b e r y l l i u m with complex Me-Be.NMe,. hydride. i n benzene and i s 'Whereas t h e v a p o u r p r e s s u r e o f Me_Be.NMe_ i s 1.8mm. a t 3 0 ° , t h a t o f 2 is 1.8mm. a t 6^° ( l o g „ _ p 0 f r o m 73-115°)» fractional hydrogen not liouid T a n d t h e two c o m p l e x e s may b e s e p a r a t e d b y condensation. r a t h e r than between 7.V38 - 2*+39 , f o r the Krmm. The h y d r i d e a methyl bridge decomposed by e x c e s s bridges (I) j> ( I ) i s formulated because the complex i s of trimethylamine b e r y l l i u m atoms with a whereas the methyl i n the dimethylberyllium polymer -112- are c l e a v e d by trimethylamine. / \ 3e Be \ / Me. Studies on r e a c t i o n s b e t w e e n d i a l k y l a l u m i n i u m donor molecules have compounds a r e l e s s shown readily Q m that the hydrogen b r i d g e s cleaved than a r e the methyl bridge 0 9 . trimethylaluminium. vaporization point i s 11.2 k c a l . 257° a n d t h e T r o u t o n constant suggests during likely that the vapour, mainly o f d i m e r . An a t t e m p t successful vapour appeared 21.1. 'The n o r m a l to measure i t i s 110°, c o n s i s t s the molecular weight o (1^5-175°) was n o t o f some d e c o m p o s i t i o n ; t o be m o n o m e r i c Trouton i n the degree of up t o a b o u t temperatures heat of boiling- of v a p o r i z a t i o n , thus at least on a c c o u n t the l a t e n t , the extrapolated constant the process a s vapour a t h i g h e r entirely mole t h e r e i s no c h a n g e association the i n these q From t h e v a p o u r p r e s s u r e e q u a t i o n , (I) h y d r i d e s and a t 175° a n d however t o become more a s s o c i a t e d a t l o w e r temperatures. A t t e m p t s t o p r e p a r e monomeric c o m p l e x e s , L^BeMeE, of methylberyllium hydride which readily Addition by t h e u s e o f d o n o r substances form c h e l a t e complexes have n o t been of bipyridyl immediate yellow t o e t h e r e a l 'Me^Be^Hp' r e s u l t s precipitate becoming deep r e d . successful o f bipy.BeHe^' i n an the solution -113- Though i t i s p o s s i b l e t h a t the r e d soon could turned be o b t a i n e d t o a d a r k brown on r e m o v a l underwent decomposition bond matter a r e d c o l o u r was p r o d u c e d w h i c h a be e x p l a i n e d tarry bipyridyl to ( I ) , may and o n l y t o bipy.BeMeH, o f t h e s o l v e n t . When was added similar t h e r e d c o l o u r w a s due to t h a t d e s c r i b e d above,These by a t t a c k o f t h e h y d r i d e of the b i p y r i d y l as occurs with across other metal, observations the azo-methine hydride 10°. complexes such as bipyridyl Reaction results with aluminium hydride. N,H,N',N'-tetramethylethylenediamine i n the formation o f t h e known c h e l a t e c o m p l e x o f d i m e t h y l b e r y l l i u m ' ^ * and t h e p r e c i p i t a t i o n amorphous carbon of substance, which ^l^eBeB.) ^/SAe^C^E^¥.Ke^^ is present below ( I I ) resulting i t appears to t h e that the a n a l y s i s formula. the hydrogen bridge c o n s t i t u t i o n a s shown M flu, ,.-3e.<— A l — C « 2 — O k — N—>6e & r corresponds apparently benzene, tetrachloride. Since i n a polymeric rfea H i s insoluble i n ether, d i s u l p h i d e and c a r b o n the i n s o l u b l e product o f a v/hite fee y \ en*. -114- This nor does involatile complex (II) i sneither pyrophoric i t fume i n a i r . Reactions evaporation -with 1 , 2 - d i r a e t h o x y e t h a n e a n d of ether gives a mixture of solid i s heated 1 ,2-diinethoxyethane complex o f d i m e t h y l b e r y l l i u r . r ^ " the reaction insoluble to 2 similar complex (II). Reactions hydrochloride ? to t h a t and a b e r y l l i u m 'amine-methylberyllium liberating a mixture reaction o f the o i l corresponds i t s constitution i s n between a secondary a s gaseous sublimes of the tetramethylethylenediamine and h y d r i d e groups, hydrocarbon vacuum, t h e a very v i s c o u s o i l which i s £(MeBeH) Ke0C H^0iyieJ probably the leaving i n benzene. S i n c e the a n a l y s i s the formula alky! vessel, 50° i n and l i q u i d p r o d u c t s . When t h i s from to about subsequent amine o r a t e r t i a r y compound produces containing a mixture both o f hydrogen and p r o d u c t s . Dimethylamiine and hydride react a t about room o f methane and h y d r o g e n . T h i s between, the s e c o n d a r y amine crimethyltemperature resembles amine and i s o p r o p y l b e r y l 1 i u m hi hydride which e v o l v e d p r o p a n e and hydrogen A mixture o f ethane liberated from and hydrogen trimethylamine hydridodiethylberyllate This l a t t e r for reaction i n the r a t i o i n the ratio 2.5:1 1.1b:1 w a s h y d r o c h l o r i d e and sodium i n ether solution was n o t c o n s i d e r e d a t room temperature. t o be a good the preparation of trimethylamine-ethylberyllium method hydride -115- since, no d o u b t , an diethylberylliurn method for hydride the by corrrplex i s a l s o preparation another Reaction in ether and route solution ethane left and formed. A s a t i s f a c t o r y i s discussed results in hydride; hydrogen in takes the place tri-ethylaluminium the trimethylamine-ethylberyllium the below. of the of triethylstannane of tetra-ethyl tin the involatile tetra-ethyltin r a t i o 1.016:1. when and formation hydrolysis a f t e r evaporation exchange which with of e q u i m o l a r amount o f between d i e t h y l b e r y l l i u r n ethylberyllium residue approximately yielded hydrogen-alky1 The tri-ethylstannane i s heated ( g i v i n g E t p A l H ) i s i n h i b i t e d by ethers 1 10^ or tertiary with amines. tri-ethylalu.min.ium intermediate, be character of the there of remove by trimethylamine been like that the the exchange that in exchange coordination electron-deficient the presence surprising Ethylberyllium by should electron-deficient forming reaction characterised complex solution i t i s not exchange diethylether. method h a s benzene expect i s evidence that electron-deficient p e r s i s t in dimethylberyllium hydride-alkylberyllium this an to aluminium a l k y l trimsthylphosphine,^" presence assumption involves r e a g e n t s which complexes. Since bridges the i t i s reasonable i n h i b i t e d by and " On takes that place of ethers the tin in the hydride prepared conversion into i t s by ( E t H B e .IfMe_)» w h i c h i s d i m e r i c i n i 2 i t s methyl analogue ( I ) . I t i s p o s s i b l e -116- that this range.of method could be organoberyllium used hydride can be i f more than one by p u m p i n g a t -k0° forms a s t a b l e 1:1 complex with complex d of a wide complexes. complex amine whereas with coordinates, i t dimethylberyllium"''' t r i m e t h y l a t v i i n e and (Ke_.Be) ( r I H e _ ) _ w h i c h d liquid mol. o f removed 2:J preparation coordination f o r m s a 1:1 Diethylberyllium trimethylamine; f o r the readily loses an unstable a mol. of d j amine. N,N,WjN'-tetramethyl crystalline to the these and complex w i t h o-phenylenediamine dimethylberyllium can be sublimed In the beryllates, ordinated unchanged preparation of i t i s probable ether H" Hydride compounds a r e ion also (used as monouieric in sodium hydride k1 7 — n + R-Be.OEt, 2 2 displaces reaction very i n benzene solution hydriaodialkylion displaces co- n (R BeH) ~ 2 n + n OEt, 2 trimethylamine, * N a B e E t - H + Me,N. J> d a c o m p l e x . ^ "Both solvent): NaH + E t „ B e . N M e _ in s i m i l a r to 2 7 the formation of sodium aluminium 96. hydride from sodium h y d r i d e NaH + E_Al.NMe, 5 way vacuo. the that a in a similar N,M ,N' , K ' - t e t r a m e t h y l e t h y l e n e d i a m i n e cryste-lline forms t> and trimethylamine-alane. kKaAlH, ' ^ + Me,Is. t> -117- Thermal decomposition of a l k y l b e r y l l i u m hydride-dialkyl- beryllium Attempts to prepare s u b l i m a t i o n under reduced from the s o l i d (from pressure slow sublimation methylberyllium (detailed below), extensive sublimation continued with thermal formation until i n the range experiments 170-210° resulted \ Me „Be .H -:- Me_Be . w n-2 n + m -1 m 2 2 more t h a n a t higher temperatures decomposition o f some 2 ratio 10:1. A t t e m p t s a greater hydride:methyl ratio i n the residue to o b t a i n by means o f were n o t s u c c e s s f u l of d i n e t h y l b e r y l l i u m , on account shown b y t h e methane. viscous residue, l e f t solutions to a r e s i d u e o f In several the hydride:methyl Diethyl beryllium the corresponding 2 (m:n-2) w a s a l i t t l e of i s apparent disproportionation, 2 reactions 1 o f any pause i n the e v o l u t i o n was o b t a i n e d . Me Be H n n + m m products 'MeiBe-H4- 'j 2 A t a b o u t 10~^mm. of d i m e t h y l b e r y l l i u m a t a stage hydride by of dimethylberyllium 2 dimethylberyllium which hydride r e s i d u e o f amoroximate convoosition f r o m 6 0 ° , b u t no i n d i c a t i o n in methylberyllium 2NaBeMe H + B e C l g ) w e r e n o t s u c c e s s f u l . pressure of mixtures. o f approximate separates after r a t h e r more e a s i l y -when the evaporation composition of e t h e r 1 from ' Et^Be-.Hp , i s h e a t e d . -118- For example, a g l a s s y ethylberyllium 70-80°. is The greatly hydride course of affected ethylberyllium In residue was the hydride some e a r l y excess The with determined half by at higher c o m p o s i t i o n of experiments, the of beryllium solutions were p r e p a r e d the hydrolysis mol. of of of by small chloride in sodium stirring sodium diethylberyllium supernatant a of liquid was s a m p l e and ether was from mixture sodium h y d r i d e and gave composition experiment, 1 solutions Et^Be-H^ i n which 1 originally , who.se p y r o l y s i s was the residue after way, from a s o l u t i o n prepared in this 60° and at 110-120° for residue This k hours was result then obtained which indicated that Et^Be^H had taken hydride, is 18.3??- place since Later giving the a product hydrogen sodium of studied. heated the In of one ether i n vacuo for 2 hours; 17.8% h y d r i d e 2Et Be p + BeH an at involatile hydrogen. 2 c o n s i s t i n g mainly content work s u g g e s t e d Filtration reaction } p be evaporatisn was coiitained the to one without precipitated believed ether. then added, sodium h y d r i d e . liydrid in exactly from u n r e a c t e d chloride at diethylberyllium- filtration of of temperature previous the mainly 8hours h e a t i n g after reaction boiling solutions NaBeEtpH c o n t e n t consisting solution. hydridodiethylberyllate in obtained further by evidently this of of pure b e r y l l i u m was a misleading beryllium hydride result -119- which i s now attributed to t h e p r e s e n c e of a very T amount o f 3\ aBeEt_H i n t h e 'Et,Be_K., *. F u r t h e r £ -r _'; d showed that solutions 1 of EtiBe,H ' 0 •t and that dissolve t h e p r e s e n c e o f soiiie a l k a l i m e t a l disproportionation described i n the Experimental s e c t i o n as pyrolysis ethyl. This crystalline 280° residue w a s shown but f a i l e d I n one a t 180°) photograph); to r e a c t experiment (p.93 ) , t h e r e s i d u e c o n t a i n e d ky-}i s o d i u m t o be c r y s t a l l i n e T h o u g h some o x y g e n w a s p r o b a b l y accounted hydride i s necessary for 8.7% h y d r i d e h y d r o g e n , ( X - r a y pov/der i n vacuo more s o d i u m to t a k e p l a c e - ( f i n a l l y 8 hours a s 31% b e r y l l i u m , well experiments ? C extensive after small with 2.6% and or mainly i t decomposed a t about diethylberyllium. p r e s e n t , as the a n a l y s i s f o r only Sj/i of the t o t a l weight, the composition o f t h e r e s i d u e r o u g h l y c o r r e s p o n d e d t o a m i x t u r e o f drools. B e E _ + 3 m o l s . N a _ B e _ H o r 8 m o l s . B e E _ + 3 m o l s . Na_BeH, 2 2 2 6 2 2 '4. r As reaction with is probably p r e s e n t a s a complex sodium b e r y l l i u m rather than a s f r e e Further hydride, several the w a t e r was r e l a t i v e l y sodium evidence evidently experiments boiled cold f o r the existence i n ether, solutions The h y d r o l y s i s ethyl:hydride ratio hydride o f a sodium was o b t a i n e d of 'Et^Be^H^' w i t h an e x c e s s o f sodium h y d r i d e days. the sodium hydride. insoluble i n which slow, of samples beryllium from i n e t h e r were f o r p e r i o d s up t o of solution ( i n s o l u t i o n ) was a l w a y s showed at least that 2:1, -120- but since concentration NaBeEt^H. showing of the f i l t e r e d t h a t sodium had entered evident that hydride must h a v e l e f t complex hydride. formation salts Beli^nLiH h a s been Having sodium of The found hydride, ethereal oxide, salt and with these and alkoxide i n a preliminary ' EtiBe-.H i^ocedure modified to a l l o w sodium h y d r i d e . or f a i l u r e apparatus were could before be found; the p r e p a r a t i o n s i n c e no ether-soluble oxidation been p r e p a r e d ; and finally, the p r e p a r a t i o n The Schlenk {k) thus beryllate the re-use without f o r the drying of of VI of once i n the unnecessary i t has o f t h e same removal from t u b e shown i n F i g u r e removing formed the avoidance of the h y d r i d o - d i e t h y l throughout triple O) of Conse- method or h y d r o l y s i s products of the p r e p a r a t i o n : transferences sodium ethereal, d i e t h y l b e r y l l i u m of the h y d r i d o d i e t h y l b e r y l l a t e , step both by t h e p r e s e n c e necessary of of beryllium e x a c t l y the (2) i s o l a t i o n first f r e e from ( 1 ) the r i g o r o u s u s e by w a s h i n g w i t h with preparation i n s o l u b l e m a t e r i a l s i n the r e s i d u e . of pure b e r y l l i u m hydride purification ' react The p r e s e n c e to b a l a n c e the f o l l o w i n g p r e c a u t i o n s preparation communication f o r the and t h e b e r y l l i u m c h l o r i d e i s shown involatile, quently reported N a B e E t ^ H o f known c o n c e n t r a t i o n diethylberyllium some i n s o l u b l e of e t h e r - i n s o l u b l e l i t h i u m the e x p e r i m e n t a l was solution, i ti s s o l u t i o n as that s o l u t i o n s of beryllium hydride solution yielded the ( i n the ether apparatus. Experimental -121- Section) fitted In was added excess one the such which product after 870 but no amount o f followed ether by filtration (180°) of beryllium hydride containing strong at 1760 and examined (approximately there cm appears proportions of i n having . The in than infrared sodium theoretical NaBeEt^H, (X-ray 91 w t . % ) . that of powder Na^Se^^H^ + The mainly infrared of b e r y l l i u m h y d r i d e relatively broad i n s t e a d of spectrum absorption has of and absorptions this latter i n t h e 5jU, r e g i o n been o b t a i n e d 91 w t . % ) t h a n no of the amorphous from of product. composition a the when perfluoromethyldecalin. hydride t o be A trace evaporation 175^ cm on apparent as a mull A purer differed centred s h o w e d no gave an of chloride, (approximately more s o d i u m 1629 (180°) BeR^) e v i d e n t l y c o n s i s t i n g product absorption product in this 1fb l e s s approximate 65 BePI,, ( o r Na^BeH^ *• 66 this 1 mol. c h l o r i d e i n o n l y 2.55:1* detected from sodium chloride chloride yielded a was a d d i t i o n of about pyrolysis of beryllium of b e r y l l i u m c h l o r i d e to a s o l u t i o n and spectrum amount o f sodium ratio s o d i u m was photograph) product of an above. inols. b e r y l l i u m . P y r o l y s i s the H:Et Finally, listed i n the p r e s e n c e s e p a r a t i o n of i n which chloride experiment resulted f o r every filtrate requirements reason by other to doubt (or better s t i l l by this method known p r e p a r a t i o n s that still and smaller l i t h i u m ) i n excess of -122- the exact stoichiometric proportion formation of pyrolysis products pure b e r y l l i u m h y d r i d e . the reaction would result more c l o s e l y in approaching P r e v i o u s l y o t h e r "workers between l i t h i u m the aluminium hydride had and studied dimethyl- 52 beryllium large ' forming extent with a hydride w h i c h was aluminium hydride, contaminated lithium to hydride a and 45 ether low and this decomposition pyrolysis was no doubt (125°) temperature of d i - t e r t i a r y - b u t y l mole % b e r y l l i u m h y d r i d e (71 and relatively i t s reactivity. beryllium etherate wt.?:.-) ' " and compound y i e l d e d 97 ether-free r e s p o n s i b l e f o r .its yielded pyrolysis mole % b e r y l l i u m The of 9c.5 the hydride 43. (So \'it.%).~ ' R e c e n t l y has been T react in xylene ( s o l u b l e ) and by (S0.7 the therefore hydride a t 140° precipitating wt.?<). forming and beryllium triphenylphosphine- 99-1 m o l e %• b e r y l l i u m " A negligible triphenyiphosphine-borane, and triphenylphosphine 110 n hydride s y n t h e s i s of b e r y l l i u m hydride e x t e n s i v e l y examined; borohydride borane a new use be of b o i l i n g occluded polymer chain. was amount o f r e m o v e d by b e n z e n e and this o r bound i n some way the prolonged impurity impurity, sublimation must i n the b e r y l l i u m -123- The I n t e r p r e t a t i o n and D i s c u s s i o n o f S p e c t r o s c o p i c D a t a . Section I . Dimethylberyllium. The u n s a t u r a t e d and s a t u r a t e d v a p o u r phase infrared s p e c t r a o f t h i s compound were r e c o r d e d b e t w e e n 100° and 200° u s i n g t h e h e a t e d gas c e l l . 2000cm i n typical and V I I I . The f r e q u e n c i e s o b s e r v e d spectra are l i s t e d I t i s perhaps o f i n t e r e s t band a t 1307cm below below i n Tables VIl t o n o t e t h a t -whenever a , due t o methane ( p r e s u m a b l y f o r m e d by a c c i d e n t a l h y d r o l y s i s i n t h e c e l l ) was o b s e r v e d , a band a t 842-847cm was a l s o o b s e r v e d . The 3^2-8V7cm band i s t h e r e f o r e due t o h y d r o l y s i s o r o x i d a t i o n p r o d u c t s and i s i n t h e e x p e c t e d for region yBe-0. Table V I I Dimethylberyllium Temperature Frequency(era (unsaturated 150° 175° 185° Assignment. 1266mw 1266m 1266ms CE.„$sym. 108>5mw 1086m 1087rns ) 1062m The vapour) CH,. p 1033ms 1033s 1033s 8l5mw 31om 816s VBeC^ u n s a t u r a t e d v a p o u r c o n s i s t s m a i n l y o f monomer and has a r e l a t i v e l y s i m p l e s p e c t r u m i n t h e 5 - 1 S ^ . r e g i o n . Beyond -124- r e a s o n a b l e d o u b t monomeric d i m e t h y l b e r y l l i u m has s t r u c t u r e and w i l l a linear t h e r e f o r e have symmetry D^^, and by a n a l o g y w i t h d i m e t h y l z i n c and d i m e t h y l m e r c u r y , t h e m e t h y l g r o u p s may be assumed t o r o t a t e 116. " The freely. odd feature iH-C'Ucm ^ o f t h i s s p e c t r u m i s t h e absence o f 0 CH_. m i n zne t h e 1480cm asyin 6'J r e g i o n , and t h i s i s c o n s i s t e n t w i t h t h e s p e c t r u m o f s o l i d v d i m e t h y l b e r y l l i u m i n which t h i s a b s o r p t i o n i s a l s o a b s e n t . 29. O t h e r m e t h y l - m e t a l compounds i n which. £ a s v r CH,. i s a b s e n t r e l a t i v e l y weak a r e d e s c r i b e d i n t h e s e c t i o n o f t h e dealing with The or introduction spectroscopy. spectrum of the s a t u r a t e d vapour o f d i m e t h y l - b e r y l l i u m i s f a r more c o m p l e x t h a n t h a t o f t h e u n s a t u r a t e d vapour. T h i s i s t o be e x p e c t e d , s i n c e t h e s a t u r a t e d c o n s i s t s o f monomer, d i m e r and t r i m e r molecules, but the p r o p o r t i o n o f monomer i n c r e a s e s as according to the e q u i l i b r i u m 1 1 - 1 5 ^ r e g i o n , the spectrum t h e t e m p e r a t u r e was vapour the temperature increases c o n s t a n t s K_ and ^ " I n the became i n c r e a s i n g l y c o m p l e x as r a i s e d . The assignments o f CH_ft (terminal.) v sym and •j> t o t h e v e r y s t r o n g band o b s e r v e d a t 1259-12'64cm ( b r i d g e ) t o t h e medium s t r o n g band a t 1211-12l4cm~' 3 sym i s due t o t h e o b s e r v a t i o n t h a t as the temperature i n c r e a s e s , t h e r e l a t i v e i n t e n s i t y o f t h e 1259-1264cm and 1 t h e 1211-12l4cm band d e c r e a s e s and band i n c r e a s e s the p r o p o r t i o n of monomer ( i e . t h e number o f t e r m i n a l m e t h y l g r o u p s ) i n t h e Table VIII. Dimethylberyl1ium (saturated ;mperature Calculated saturated vapour) 150 180 17.8 109.9 1484m 1 484m 1479m 1456m 1460m 1453m 1304mv/ 1307mw 1305m 1259a 1264ms 1259vs 1211ras 1214ms 1212ms 120 1 Assignment. v.p.(mm) o f vaioour. 27. 2.4 frequency(cm -1 5 ) CH, 3 8 asym. CH,0 (t erminal) 3 sym CP" C (bridge) 3 Osym 1182W 1152w 1096-w 10?2w 105';s 980m 957s 957vs 940vs 861 B!S 864vs 870vs( 790ms 790m 801ms 758m 719w 719w 692w 668ow 690w fa68w v Be-CE. -126- v a p o u r i n c r e a s e s as t h e t e m p e r a t u r e i n c r e a s e s ""'"(and the p r o p o r t i o n o f b r i d g i n g methyl groups d e c r e a s e s ) . r e s p e c t , b e r y l l i u m appears t o d i f f e r Hoffmann and c and In this from aluminium since " has assigned CH_A ( t e r m i n a l ) a t 1201cm~ J> sym CE-.A ( b r i d g e ) a t 1255cm ^ i n M e A l _ Goubeau '•''" has 3 sym ^ o 2. -1 c & assigned £ similarly v £ t h e two s t r o n g a b s o r p t i o n s a t 1243 and 12;?5cm CH^ i n t h e s p e c t r u m of solid t h e s e must u n d o u b t a b l y dimethylberyllium as (Table I ) be b r i d g e v i b r a t i o n s as s o l i d d i m e t h y l b e r y l l i u m has a p o l y m e r i c s t r u c t u r e , a l l . t h e m e t h y l groups occupying observed b r i d g i n g p o s i t i o n s . The s t r o n g a b s o r p t i o n s i n t h e 7'00-yOOcm. rocking region are probably methyl vibrations. Although the assignments l i s t e d f o r dimethylberyllium are p u r e l y s p e c u l a t i v e , a study o f the deutero analogue under s i m i l a r c o n d i t i o n s should p r o v i d e c o n c l u s i v e to enable Section u n a m b i g u o u s a s s i g n m e n t s t o be made. II. In this section the infrared and spectra of organoberyllium o r g a n o b e r y l l i u m h y d r i d e c o o r d i n a t i o n compounds, t h e s o d i u m h y d r i d o d i a l k y l b e r y l l a t e s and t h e i r d e u t e r o and evidence b e r y l l i u m hydride are discussed. given suggested I n Tables analogues, IX-XVII are assignments o f the c h a r a c t e r i s t i c a b s o r p t i o n bands b e l o w 2500cm to the various s t r u c t u r a l features of -127- t h e compounds examined and p h o t o g r a p h s o f t h e i n f r a r e d s p e c t r a o f these compounds a r e shown a f t e r Beryllium-hydrogen The of the Tables. vibrations. 0*1 v i b r a t i o n a l t r a n s i t i o n o f t h e ground s t a t e t h e Be-H m o l e c u l e d e r i v e d f r o m band heads o f emission 7 1 o. electronic and s p e c t r a and band o r i g i n s a t 2087-7cm f o r the f i r s t ^ " i s a t 2058.6cm excited state. Be-H g r o u p c o u l d t h e r e f o r e be e x p e c t e d n e a r 2100cm t o cause a b s o r p t i o n number o f t h e s t r e t c h i n g ; the hydrides of the f i r s t vibrational A terminal and a s i m i l a r c o n c l u s i o n i s r e a c h e d by c o n s i d e r i n g t h e changes w i t h a t o m i c of -1 modes, o f m a i n l y s h o r t p e r i o d e l e m e n t s . The s t r e t c h i n g character o f the b r i d g i n g h y d r o g e n atoms i n a BeK Be g r o u p s h o u l d -1 0 a b s o r p t i o n a t f r e q u e n c i e s w e l l b e l o w 2100cm with and frequencies cause , by a n a l o g y t h e v i b r a t i o n a l modes o f t h e BH^B g r o u p i n d i b o r a n e the v a r i o u s methyl and e t h y l d i b o r a n e s . Whereas t e r m i n a l B»H bonds u s u a l l y cause a b s o r p t i o n i n t h e 2200-2500cm region, t h e two modes due t o t h e EH B b r i d g e i n c.ibcrar.e -1 , _i a r e a t 1915cm s y m m e t r i c a l o u t - o f - p h a s e ) and IcOocm 13G ./ "* n r (v se , a s y m m e t r i c i n p h a s e ) ' " ^ . ^ v i b r a t i o n a l modes a r e illustrated on p - ^ 1 ^ The a l k y l d i b o r a n e s provide a closer a n a l o g y t o t h e b e r y l l i u m compounds f o r m u l a t e d as ( I ) and ( I I ) w i t h BeH_Be b r i d g e s . I n t h e f o r m e r , t h e weak a b s o r p t i o n s -128- corresponding to i s o b s e r v e d a t 1972 (Xe^3.,Hp) , 1880 (Me^E^Hj) ond 1852cm (Et^B_,Hp) , vmereas t h e v e r y absorption corresponding to and strong i s o b s e r v e d a t 1b05, 1o05 5 1p82cm ^ i n t h e t h r e e compounds, c h a n g i n g t o 1186, 1183, -1 and 1 3"T 1166cm on d e u t e r a t i o n . ' The s p e c t r a o f (aeHBe.NMe )^, 7 (MeDBe.NMe^),, and (EtHBe .NMe^)~ examine d i n c y c l o h e x a n e solution a r e compared i n F i g u r e V I I I . Figure V i l l a , in c o n t a i n s a s t r o n g - a b s o r p t i o n a t 1344cm shaded t h e F i g u r e , w h i c h i s c l e a r l y due t o one o f t h e Beh^Be stretching modes, s i n c e i n t h e s p e c t r u m o f t h e d e u t e r o (i-ieDBe.NKe,)-., F i g u r e V l l l b . (also of The s p e c t r u m o f ( I ) , -1 s h a d e d ) and e v i d e n t l y analogue i t moves t o a b o u t 1020cm overlaps t h e a b s o r p t i o n a t 1007cm 1 ( I ) which i s almost c e r t a i n l y due t o v (NC.,) o f t h e " asym 3 t r i m e t h y l a m i n e , ( s e e a l s o F i g u r e V I I I c . ) . A b s o r p t i o n due t o --1 v(jse-EpBe) i s c l e a r l y e v i d e n t a t 13^3c:"» i n the spectrum o f t h e e t h y l d e r i v a t i v e , (EtHBe .NI-ie_. )„, F i g u r e V I I I c . I t i s quite possible that t h e band a t 948cir. i n (HeHBe .NMe,) _ j ^ -1 ( m o v i n g t o 710cm bridge vibration absorptions The on d e u t e r a t i o n ) may a l s o be a. BeE„Be although correspond i t i s n o t known whether to v ^ or v ^ 1 o f diborane. s p e c t r a o f t h e N ,N ,N ' , j i ' - t e t r a m e t h y l e t h y l e n e d i a m i n e c o m p l e x e s o f d i m e t h y l b e r y l l i u m and m e t h y l b e r y l l i u m (Table X I I I that these hydride ) examined as N u j o l m u l l s a r e v e r y s i m i l a r b u t o f the hydride complex c o n t a i n s a v e r y s t r o n g absorption Figure VIII (Me H 10 • it BoNMe,) la HI 14 i (Me D 10 i•s BeNMv,) 13 1a I 14 13 13 14 IS is 14 i\Xl (£"/ H Be A/Me.) IO la ii I Be H> to i i II u ta U -129- at 1331cm - , which i s almost certainly a v i b r a t i o n of the BeH Be b r i d g e , and a weak one a t 1754cm ^ , b o t h a b s e n t the spectrum o f the dimethylberyllium from complex. A c o m p a r i s o n o f t h e s p e c t r a o f NaBei-je^H and NaBeMe^S, b o t h as K u j o l m u l l s (Table XIV) i n d i c a t e s t h a t absorptions due t o Be-H b r i d g i n g modes a r e a t 1328 and 1165cm \ due to.Be-D b r i d g e s b e i n g a t 917 and 869cm at 1328cm i n the spectrum by the p a r a f f i n o i l , but i t i s s i g n i f i c a n t of this those . The a b s o r p t i o n o f NaBeMe K i s somewhat o b s c u r e d p that the spectrum compound c o n t a i n s no p r o n o u n c e d f e a t u r e s b e t w e e n 800 —1 and in -1 1000cm so t h e v e r y s t r o i i g a b s o r p t i o n s a t 869 and 917cm t h e spectrum of the deutero 3e-D mode. The r a t i o s former i s unexpectedly doubtful v v p/ £ a r large, e compound must be due t o a 1.45 and 1.34, and t h o u g h t h e the s i g n i f i c a n c e o f t h i s i s on a c c o u n t o f t h e d i f f i c u l t y i n m e a s u r i n g t h e -1 a b s o r p t i o n a t 1328cm . The s p e c t r a o f N a 3 e E t H and N a 3 e E t D n a r e more c o m p l i c a t e d , as e x p e c t e d , ? but a comparison o f the - 1 two shows V(Be-H) a t 1294s and 10o5vs. c m and v(Be-D) a t -1 931s and 8 3 5 s . cm , v /\' b e i n g 1 .36 and 1.28. The r e m a i n i n g n' D v D a b s o r p t i o n s a r e v e r y s i m i l a r f o r t h e two compounds e x c e p t for a band a t 912cm ^ i n t h e s p e c t r u m The spectrum 10cm. h e a t e d similar o f t h e h y d r o g e n compound o f ( I ) as s a t u r a t e d v a p o u r u s i n g a gas c e l l has a l s o been r e c o r d e d t o a s o l u t i o n i n cyclohexane and i s . v e r y (Table X I ) . I n the vapour -130- vCBeH^Be) i s a t 13^-2cm , very close to the frequency f o r a s o l u t i o n i n c y c l o h e x a n e . A t 50° ( v a p o u r ca.0.9mm.) t h e r e was and recorded pressure no a p p r e c i a b l e a b s o r p t i o n b e t w e e n 1500 - 2500cm '', b u t a t 65° and C p a r t i c u l a r l y at S0 , a sharp _i a b s o r p t i o n band a t 2141cm i 21 f'1cm~ appeared. This a b s o r p t i o n a t i s b e l i e v e d t o be due t o t e r m i n a l v ( B e - H ) i n monomeric MeHBe. NMe., s i n c e v a p o u r d e n s i t v measurements i n d i c a t e d 3 extensive d i s s o c i a t i o n w i t h increasing- temperature Between 65° and 80°, t h e amount o f monomer i n s a t u r a t e d vapour could begin unsaturated t o be s i g n i f i c a n t . U n f o r t u n a t e l y vapour a t h i g h e r temperatures on a c c o u n t o f d e f e c t s i n t h e h e a t e d The (1^5-175°) • infrared gas the c o u l d n o t be studied cell. spectrum of b e r y l l i u m h y d r i d e , examined as N u j o l m u l l i s shown i n F i g u r e V H I d . T h i s p r o d u c t was a p p r o x i m a t e c o r n - p o s i t i o n (BeH„)_, NaH. The most characteristic f e a t u r e of the spectrum (Table X V I I I ) i s a r a t h e r _1 a b s o r p t i o n c e n t r e d on X-ray d i f f r a c t i o n l i k e di 1750cm . The has by bands i n ( I ) and relatively p o s s i b l y analogous to the a r e a t 1090, 1016, as sharo -1 1333-13^cm s i m i l a r compounds i s n o t e w o r t h y . pronounced a b s o r p t i o n s are probably the p y r o l y s i s o f commonly been r e g a r d e d a c r o s s - l i n k e d d i s o r d e r e d p o l y m e r . The -1 a b s o r p t i o n a t 12b3cm broad m a t e r i a l i s amorphous by that obtained t e r t i a r y - b u t y l b e r y l l i u m and of and The 799cm associated w i t h beryllium-hydrogen other and deformations. -131- The s p e c t r u m o f a p r o d u c t c o n t a i n i n g much s o d i u m , c a . (BeH_)„ . (KaH),- ( T a b l e X V I i : ) i s v e r y s i m i l a r b u t d i f f e r s 2 11 o _1 i n t h a t t h e b r o a d a b s o r p t i o n a t 1750cm i s r e p l a c e d by _ i two s h a r p e r a b s o r p t i o n s a t 1o37 and 1771 cm Methyl vibrations. In t h e s n e c t r a o f Me_.3e.KKe-,, (MeHBe .NK'.e^) _ , (MeDBe.NHe,) 2 the s y m m e t r i c and a s y m m e t r i c 3' methyl deformations ;> 2' ;> vibrations can a l m o s t c e r t a i n l y be a s s i g n e d t o t h e a b s o r p t i o n s o c c u r i n g above 1200cm . Eov/ever, w h i c h a b s o r p t i o n s a r e due t o m e t h y l g r o u p s a t t a c h e d t o b e r y l l i u m and w h i c h a r e due t o m e t h y l attached to nitrogen w i l l o n l y be d e t e r m i n e d by s t u d y i n g t h e s p e c t r u m o f an i s o t o p i c a l l y the groups s u b s t i t u t e d a n a l o g u e o f one o f above corn-pounds. The c o m p l e x (CD_ )„Be .NMe,, w i l l be p r e p a r e d i n due c o u r s e and e x a m i n a t i o n o f t h e s p e c t r u m o f t h i s compound s h o u l d c l a r i f y the o r make i t n e c e s s a r y t o r e v i s e a s s i g n m e n t s d i s c u s s e d h e r e . The CH_ r o c k i n g vibrations of t h e t r i m e t h y l a m i n e p a r t o f t h e m o l e c u l e a r e f o u n d a t 1115 —1 1 32 and 850cm i n Me^N.BHand t h e a b s o r p t i o n bands a t 5 3 1101m(35°) (1105m i n c y c l o h e x a n e ) and 8 4 0 s h . ( 3 5 ° ) (824sh.cm~' in c y c l o h e x a n e ) i n Me^Be.NMe^ a r e a s s i g n e d t o t h e s e modes o f vibration. to The Be-CH_ r o c k i n g v i b r a t i o n i s more assign but i t i s f e l t difficult t h a t t h e band a t 941s(35°) (951 v s . c y c l o h e x a n e ) may be due t o t h i s v i b r a t i o n and i f t h i s i s a 1 •132- c o r r e c t assignment, t h i s a b s o r p t i o n w i l l 660crn of be f o u n d i n t h e s p e c t r u m o f t h e d e u t e r o compound. (MeHBe.NMe^Jj ^ s rather complicated a t about The s p e c t r u m i n t h e 6-l4yU. r e g i o n b u t q u i t e a l o t o f i t i s common t o t h e s p e c t r u m o f he^Be.NMe_. Thus i t w o u l d a p p e a r t h a t t h e K-CE^ r o c k i n g v i b r a t i o n at 1107m and t h e Be-CH, v i b r a t i o n a t 922vs i n t h e h y d r i d e 3 _i c o m p l e x and 1104m and 928s cm coavplex • Carbon-nitrogen In v asym at in occurs respectively i n the deuteride vibrations, o t h e r t r i m e t h y l a m i n e c o o r d i n a t i o n complexes, G - IN i s a l w a y s f o u n d -1 i n t h e 1000cm region., o c c u r i n g 1 1005s i n Me-N.EH,, .? 3 " 1003 i n Me_N.GaH„ and 955cm"' 3 3 137. t h e tetramethylammoniiium i o n . ' " Thus v C-K c a n be asym assigned fairly certainly t o t h e bands o c c u r r i n g a t 1000s (35°) (1006 v s . c y c l o h e x a n e ) i n Me-Be.NMe-.. 100?vs i n (KeHBe .KMe,) „ 2 p• _? 2 ( c y c l o h e x a n e ) , 101ovs i n (MeDBe.KMe_)_, 1001vs i n Et_Be.NMe_ 3 2 2 j and of 1007vs i n ( E t H B e - H M e ^ ) . O t h e r a s s i g n m e n t s f o r t h e s p e c t r a p t h e e t h y l compounds these compounds have n o t been made s i n c e are complicated the spectra o f by -CH - v i b r a t i o n a l 0 modes. No d e f i n i t e a s s i g n m e n t s have been made f o r b e r y l l i u m c a r b o n and b e r y l l i u m - n i t r o g e n a b s o r p t i o n s beryllium-carbon oOOcm 1 since although the s t r e t c h i n g v i b r a t i o n s probably occur about t h e s t r o n g band a t 816cm ^ i n d i m e t h y l b e r y l l i u m ( u n s a t u r a t e d v a p o u r ) h a s been a s s i g n e d t o t h i s mode o f v i b r a t i o n . •133- Table IX. Infrared s p e c t r u m o f M e . j X ' K e _ as s a t u r a t e d v a p o u r . 21 Assignment. l4?5vs 14?7VS 1464vs 1466vs 1 4 o6w & (CH ) ( d ) 1302W 1242ms 12'+5vs 1232ms 118SVS 1101m 1103m 103?sh 1041sh 1000s 1000v 941s =>40vs p(N.C3 ) ( 1 ) v (CN) ( d ) asym p(Be-0H_) ( t ) 874vw 840sh 841 sh p ( MGR..) 800vs 8o3vs v(Be-C) ( t ) ( f ) 709m 714vs 671 vw ouow ?06!T1 50?w In these t a b l e s , the degree o f c e r t a i n t y o f these a s s i g n m e n t s i s shov/n by t h e f o l l o w i n g a s s i g n m e n t s : d = definite, f = fairly certain, t = tentative. T a b l e X. Infrared Contact f i l m s p e c t r u m o f Me_Be.NMe (36 ) Cyclohexane solution Assignment, 1464VS 1443 s S (CH„) ( d ) 1405W 1255s 1219s 1186s 1100m f(KCH ) ( f ) 3 103?vw 995vs v (CN) ( d ) asym p(Be-CH ) ( t ) 7) 937w 840m pCHCEj) ( 1 ) SOOvs v(Be-C) ( t ) 730m(broad) ?13vs -135- Table X I I n f r a r e d s p e c t r a o f Q-ieHBe.NMe-,^ i n t h e gas p h a s e , and i n c y c l o h e x a n e s o l u t i o n and M e D B e . T T H e i n c y c l o h e x a n e T (MeHBe.MMe,)_ t)—<r05 Solution solution (HeDBe.A he_) 3Solution 2141 m Assignment. v(3e-H) ( f ) 148 Os 1484s 1481s 1458 s 1470s.h 1466m 1400m 140?vw A S(CH,) ( d ) 1370vw - J 1342 s v(BeH Be) ( d ) 1344vs 2 1317vw ^ 1304s 1299m 1286s 1267m 126?sh 1254s 1255s 1256s 1235m 1233m 1200s 1214vs 1215s 1l87sh 1200s 1203vs (CH„) ( d ) S(C 3 J 1143VW 1104m 1107m 1104m (NCH.,) ( f ) 1o86vw 1046vw 1035vs 1032vv; 1002s 1007vs 1047sh 1016 965 m v(BeKpBe) ( f ) 955s 948s 931 sh 922vs 92os 896s 896m 875s 8?0s 870s v(BeD_Be) & v (NC) 2 asym 3 «CBe-CH^) ( t ) -136- Table X I contd. 65 c 848vs Solution Solution 84?vs o^ovs Assignment• 831 sh 826 vs 820vs(broad) SlOvs 772vs ?72s 747s 746m 710ms 722sh 699sh 667m 676m v(Be-C) ( t ) v(BeD Be) ( f 2 -137- Table X I I . Infrared s p e c t r a o f d i e t h y l b e r y l l i u m - t r i m e t h y l a m i n e and e t h y l b e r y l l i u i n h y d r i d e - t r i m e t h y l a m i n e examined as c o n t a c t f i l m and a s a s o l u t i o n i n c y c l o h e x a n e Et^Be.NMe v 14?9VS 1466s 1451 m 1409m 1245m 1236m 1193ms 1105mw 10?6w 1001vs 954w 919w uoOr.i 822vs 778m 730s(broad) 66 ?m (EtHBe . NMe_ )., Assignment. 1484s I468sh 1372m I333vs 1299s 1250m 1235m 1206vw 1190w 1176sh 1109m 10o0m 1050m 1007vs 981 s 943vs 917sh 897s 851 sh 826vs 79-4sh 709m 635m 621 vw 571 vw respectively. v(BeH„Be) ( d ) c v asym (CN) ( d ) v(Be-C) ( t ) Table X I I I . I n f r a r e d s p e c t r a o f d i m e t h y l b e r y l l i u m and me t h y l b e r y l l i u m h y d r i d e N,N,N;N'-tetraraethyletfiyIenediaraine complexes examined as N u j o l m u l l s . He^Ee complex HeEeli complex assignment. 1 —<— 17>4w 1?42sh 1361vs 1331vs 1289vs 1302s 1263W 1264m I 1247m 1236m 1190sh 1200w * 116SVS 1183s 1122ms 1131m 1098m 1099-TI 1053- " 1C86s 1042vs 1038m 102?vs 1020vs 1006vs S95vs 951 vs 961 vs 856vs 902s r 8l4vs 799sh ?6?vs 785m 701 vs 694s 66?w 659P- 8 (CH,) ( d ) J? v(BeH Be) ( d ) & (CH,) (CH ( d ) 3 Table XIV. I n f r a r e d s p e c t r a o f sodium h y d r i d o d i m e t h y l b e r y l l a t e and i t s deutero analogue examined as N u j o l NaBeMe_,H NaBeMe_D d 1323s Issignment, v(BeH Be) ( d ) 2 1255ms 126lm 1189s 1199ms 1165s v(3eH Be) (d) 0 113Svs 11 V-i-s 1O06s 1075sh 1018VS 1015vs 91?vs v(BeD Be) ( d ) 869vs v(BeD Be) ( d ) 789VS 797vs 75^??. 777s 612 vw 595vw 557vw — mulls. p 2 Table XV. I n f r a r e d s p e c t r a o f sodium h y d r i d o d i e t h y i b e r y l l a t e and i t s d e u t e r o analogue examined as N u i o l m u l l s . NaBeEt, UaBeEt_D Assignment. c 16o5w 129^s v(BeH Be) ( d ) 2 1253s 1256ms I235sh 1233vw 1178s 117osh 1lV?sh 11o7ms 1117sh 1091vs 1080ms v(BeK Be) ( d ) 1065vs 2 1021vs lOl^s 978 vs 982vs 951s 956vs v(BeDpBe) ( d ) 928s 912m 358sh 831 vw 835vs 792w SOOsh 672m 667w 657ms 6i?6mv; v(BeD Be) ( d ) -141- Table XVI. I n f r a r e d spectrum o f the o i l o f arjoroxi.mate c o m u o s i t i o n Me ,Be^H„..OEt„ Be^H .0"Et examined as a c o n t a c t ;i f 2 2 1555".' l479sh 1468 m 1449m 1337s 1372sh 1295* 12o1s I 240inw 1212s 1199m I I ?6m 1089m 1033vs 1002sh 962s 917s 848s 800s 784m 676w 663w film -142- Table X V I I . I n f r a r e d s p e c t r a o f b e r y l l i u m h y d r i d e o f approximate compositions shown below examined as M u j o l m u l l s . (BeH_)_,NaK (.ae'f-^)^ (NaH)^ 1750s(broad) 17?1m As signment. 1c37s 1263vs 1259vs v(EeH Be) ( t ) 0 1211vw 1090m 1086m 10V7m 1016VS 1013vs 886 ( b r o a d ) 799s 795vs s (Be-H) ( t ) M^Br (untotvrattd vapour 185'J M^B* (saturated vapour ISCT) i IO II 12 13 14 6 (saturated vapour 120") 8 <W#,f* ipoturottd vapour ISO ) AA 7 IO 12 13 i 5 v J MtAtMMr, (crc*>Ac«mr toMnn) ^ J; ij • V 3 e « »o 12 | '4 (vapour 36; c a 3 14 17 6 • \ 6 C 5 '3 5 17 2C tB«fHM<, MtHBtf+Jtj {e/cHttrnxon* t&utton) Ifyciohrmnt toJut/on) I A L/' i • II 10 13 /Wt/rsv/VMe, [vapour 65'J n V X hv7 8 II 12 13 14 ii la 14 NoBtet^H (Mtfo/ mull) nfu/a Nu/Ol 5 6 7 • 9 K) II 12 13 14 15 n NvBte^D 12 pujol mull} '\ 3 6 7 8 9 IO II 12 13 14 15 iO 12 13 Mr/0/ Nujol 0 !5 f^t^lCr\-^lu/ol mill) ip*H^Hot\ {Nujol mut) 1S ..i i • • • ! 6 10 i? 14 19 It 17 REFERENCES -143- BEFERENCES. (1) COATES G.E. (2) Organic Syntheses (3) FETTER N. P.., (4) NILS OS L.F. and PETTERSSON 0 . , (5) COATES G.E. and HUCK N.D., (6) L INSTEAD P..P. and ROBERTS OH J.14., (7) BURG A.B. and SCHLESINGER H . I . , J . Aner. Chem. S o c , 'Organo-Metaliic Compounds' p.4.(Methuen,1960) V o l . 1 1 p.502. Canad. J . Chem. , 1 9 6 4 , 42, 861 . J . , 1952, 4 5 0 1 . 1940, (8) GILMAN H. and SCHULZE F., Ber., 1 8 8 4 , 1_Z, 987- 62, J . , 1936, 1736. 3425. J.Amer. Chern.Soc, 1 9 2 7 , 49, 2904. (9) WITTIG G., MEYER F.J. and LANGE G., Annalen, 1 9 5 1 , (10) CAHOURS A.. Compt. rend.,1873, 7 6 , 1 3 8 3 . (11) LAVROFF V., Zhur. f i z . Khim., 1884, 1j>, 9 3 - (12) LAVROFF V., Bull.Soc . chini .France • 1 8 8 4 , 4l_, 548. (13) OILMAN H. and SCHULZE F., (14) KRAUSE E. and VJENDT B., (15) WOOD G.B. and BRENNER A., J.. 1927, 2663. Ber., 1 9 2 3 , 5 6 , 466. -J .Electrochem.Soc. , 1 9 5 7 , 104, 2 9 . (16) PANETH F. and LOLEIT H., J . , 1935, 366. (17) ZAKKARKIN L . I . , OKHLOBYSTIN 0 . Yu. and STRUNIN B.N., l a v e s t . Akad. Nauk S.S.S.R., Otdel.khim.Nauk, 1 9 6 1 , 2 2 5 4 . -1M+- (13) PEEKINS T., J . , 1929, 1687. (19) ZIEGLEH K., B.Patent 763,82.4 ( 1 9 5 6 ) : Chem.Abs., 1953, (20) ZIEGLEE K., Angew.Chem., 1 9 5 6 , 6 8 , 721 ; UspekhiKhim., (21) 52, 1203. 1957, 2 6 , 1189. RABIDEAU S . W . , ALEI H. and HOLLEY C.E., 1956, (22) MUXABT R., MELLET E. and JAWORSKY E., Chem.Abs., 5 0 , 3992. B u l l . S o c . chim. France, 1 9 5 6 , 4-'+5. (23) S6HULZE F., (24) GILMAN H. and BROWN E.E., J.Amer.Chem.Soc.,1930,52,kk8o. (25) BAHR G. and T H I E L E K.H., (26) SNOW A . I . and BUNDLE B.E., (27) COATES G.E., GLOCKLING F. and HUCKN.D., (28) STSOHMEIEE W., HUMPFNEE K., KILTENBERGEE K. and SEIFEET F., Iowa S t a t e C o l l . J . Science, 1 9 3 3 , S, 2 2 5 - Chem.Ber., 1 9 5 7 , 9 0 , 1 5 7 8 . A c t a . C r y s t . , 195'), 4, 3 4 3 . J. ,1952 ,4496 . Z.Elektrochem. , 1959, 6 3 , 537- (29) GOUBEAU J . and WALTER K. , Z .anorg-.Chem. , 1 9 6 3 , 5 2 2 , 5 8 . (30) BROWN H.C. and DAVIDSON N.R., J.Amer.Chem.Soc., 1 9 4 2 , 64, 3 1 6 . (3D COATES G.E., J., 1 9 5 1 , 2003. (32) GREEN S.I.E., (33) COATES G.E. and GREEN S.I.E., (3^) COATES G.E., GLOCKLING F. and HUCK N.D., (35) COATES G.E. and MUKEERJEE 3.U., Ph.D. Thesis. (DURHAM) 1 9 6 2 . J . , 1962, 3340. J., 1963, J., 1952,4512. 229- -145- Z.Chem. , 1 9 6 3 , 3 , 269. (36) MASTHOFF E., (37) GOUEEAU J . and RODEWALD B., Z.anorg.Cfaem., 1 9 4 9 , 2 5 8 , 1 6 2 . (38) SCHREIBE G. , BAUMGAETNER F. and GENZER >!., Angew.Chem. , 1955, 67, 512. (39) STROHMEIER W. and HUKPFNEE K., Z . E l e k t r o c h e m . , 1 9 5 6 , 6 0 , 1 1 1 1 (40) STROHMEIER >/. and HUHPFNER K . , Z.Elekrochem.,1957,61 , 1 0 1 0 . (41) LONGI P., MAZZANTI G. and BERNARDINI F., G a z z e t t a , 1960, 90, 180. (42) STROHMEIER W. and GEKNERT F. , Z . N a t u r f o r s c h , 1961 ,l6b,7oO. (43) STROHMEIER W. and GERNERT F., Z . N a t u r f o r s c h , 1 9 6 2 , 1?b,128. (44) STROHMEIER V/. and GERNERT F. , Chem.Ber. , 1 9 6 2 , 6 , 1420. (45) COATES G.E. and COX G.F., Che in. and I n d . , 1 9 6 2 , (46) COATES G.E. and GLOCKLING F., J . , 1954, 2 2 . (47) COATES G.E. and GLOCKLING F., J . , 1954, (48) HEAD E.L., HOLLEY C.E. and RABIDEAU S.W., J.Amer.Chem.Soc. 269. 2526. 1957, 79, 3687. (49) WITTIG G. and WITTENBERG D., Annalen, 1 9 5 7 , 6 0 6 , (50) WITTIG G. and HORNBERGER P., Annalen, (51) DESSY R.E., (52) BARBARAS G.D., 1952, 577, J.Amer.Chem.Soc., 1960, 8 2 , DILLARD C , 15. 11. I58O. FINHOLT A.E., WARTIK T., WILZBACH K.E. and SCHLESINGER H . I . , J.Amer.Chem.Soc.1951,75,4585(53) POWERS J.C., VOSE D.W. and SULLIVAN E.A., Chem.Abs., 1963,58,219. (54) PIETSCH E., Z.Elektrochem., 1933, 5 7 7 , 3 9 - -146- (55) WI.BERG E. and BAUER R., S.Naturforsch,1951,6b,171- (56) HUMPIDGE T.S., (57) FINNOWJ., (58) FISCHER 0., (59) GILMAN H. and 3AENETT h . M . (60) 'Organic Syntheses' (61) STUCKY G.D. and RUNDLE E.E., J . Anier. Chem. Soc.1965,85,1002 . (62) SCKLESINGEP. H . I . , BROWN H.C. and HYDE E.K., Proc-Roy.Soc. 1 8 8 5 , 5 9 , 10. 3 e r . , 1899, 1401 . Ber., 2 5 , 2826. Rec .Trav.chirn. , 1956 , 5 5 , 5 6 5 . Vol.11 p.211 and p.290. J .Arner.Chem.Soc. 1955, 75, 209- (63) FSICKE R. and SCHUTZDELLER H., Z.anorg.Chem.,1925,131,132- (64) 'M4NTECATINI' M i n e r a r i a e Chimica, (65) S o c i e t a Generale p e r l ' I n d u s t r i a Chem.Abs. 1 9 6 3 , 5 9 , 4058 and 14022. WIBERG E., HEtfLE H. and BAUER R., Z . N a t u r f o r s c h , 1 9 5 1 , 6b, (66) WIBERG E. and HE'NLE W. , (67) ZAKHARKIN L . I . and KHORLIKA I.M. 393- Z .Ha t u r f orsch , 1 9 5 1 , 6 b , 461 . Zhur.obsh&hei Khim., 1962, 3 2 , 2783. (63) SCHLESIMGER H . I . and BURG A.B., Chem.Rev.,1942,51,3o- (69) KOBETZ P. and BECKER W.E., Inorg.Chem.,1963, 859- (70) VJIBEHG E. and STREBEL F. , (71) CLAFP D.P. and VJOODWARD S.B.. Annalen , 1957 , 6 0 7 , J .Amer.Chem.Soc . , 1 9 3 8 , 60, (72) JOLIBCIS P., (73) V/IBERG E. and BAUER R., 9- Compt.rend., 1912, 1 5 5 , 1019- 353- Chem.Ber. 1 9 5 2 , 8 5 , 593- -147- (?4) h'IBE'fiG E. and BAUER H. , Z .Uaturf orsch , 1 9 5 0 , 5 b , 5 9 6 , 3 9 7 • (75) WIBEEG E., GOELTZER H. and BAUER S., 1951, Z.Naturforsch, 6b, 3 9 ^ - (76) BAUER R. , Z . N a t u r f o r s c h , 19&2, 1 7 b , 2 0 1 . (77) BARTON D . H . R. and ROSENFELDEE W. J . , J . , 1 9 5 1 , 2381 . (78) WITTIG G. and EUCKERT A., Annalen, 1 9 5 0 , 5 6 6 , 1 0 1 . (79) WITTIG G., KEICHER G., EUCKERT A. and RAFF F.. Annalen, 194-9, 563. 110. (80) HONEYCUTT J.B. and RIDDLE J . K . , J.Amer.Chem.Soc., 1961, (81) 8 3 . 369. ZIEGLEE K., LEHMKUHL H. and LINDNER E., 1959, Chem.Ber., 92, 2320. (82) WITTIG G. and BUB 0.. Annalen, 1 9 5 0 , 5 6 6 , 113- (83) ZIEGLER K., KOSTER R., LEHMKUHL H. and REINEHT K., Annalen, 1 9 6 0 , 6 2 9 , 3 3 . (84) KOBETZ P., BECKER W.E., FIriKERTON R.C. and HONEYCUTT J . 3 . , Inorg.Chem., 1963, (85) 359- ZAKHARKIN L . I . and KHOELIN A I.H., laves 1:. Akad . Nauk S.S.5.H, Otdel.khim.Nauk, 1 9 6 1 , 1 8 9 4 . (86) ZAKHARKIN L . I . and GAVEILENKO V.V.. Zhur.obshchei Khim., 1962, (87) 52, 639- ZAKHAEKIN L . I . , GAVRILEI7K0 V.V. and KHORLINA I.M., I z v e s t . Akad .ITauk S.3.5.R., Otdel .khim.Nauk, 1962 , 438 . (88) ZIEGLEE K., GELLEET E.G., SCHNEIDER J . , MARTIN H. , NAG; EL iC. and Annalen, 1 9 5 ^ , 5 8 9 , 91- -148- (89) WARTIK T. and 3CHLESINGER H . I . , J.Amer.Chem.Soc., 195.5, 7 5 , (90) HOFFMANN E.G. and SCHOMFJRG G. , 2 . S l e k t r o c h e m . . 6_1, 1957, (91) 855- 1101 . PETERS F.M. , 3ART0CHA 3. and BILBO A.J., Canad .0 . Chem. , 1963 . 4 l , 1051 • (92) FRASER G.W., GREENWOOD N.N. a n d STRAUGHAN B.P., 1963, (93) K E I T S C E C.W. , NORDMAN C.E. and PARRY R.W., Inorg.Chem., 1963, (94) DAVIDSON J.M. and 'WARTIK T . , 3506. RUFF J.K. a n d HAWTHORNE i t f . F . , J.Araer.Chea.Soc., 1960, 82, (96) 508. J .Amer.Chem.Soc . , 1960, 82, (95) 3742. 2141. RUFF J.K. and HAWTHORNE H.F., J.Amer.Chem.Soc., 1961, 83, 535- (97) WI BERG E . and SCHKIDT I I . , Z . K a t u r f o r s c h , 1951 , 6 b , (98) EHRLICE R., YOUNG A.R., LICHSTSIN B.M. and PERRY D.D.. I n o r g • C h e a . , 1963, 333. 65O. (99) SCHOMBURG G. and HOFFMANN E.G., Z . E l e k t r c c h e r n . 1957 , 6 1 , 1 1 1 0 . (100) Z E I L W. , DAUTEL R. and HOLTS BERG W. , Z . E l e k t r o c h e m . , 1956, 60, 1131• (101) DAUTEL R. and Z E I L W., Z•Elektrochem.,196O, 64, 1 2 3 4 . (102) RUFF J.K., J.Amer.Chem.Soc., 1 9 6 1 , 83. 1798. -149- (103) GREENWOOD N.N. , STORK A. a n d WALLBRIDGE Ki.G.H. , Proc.Chem.Soc., 1 9 6 2 , 2 4 9 . (104) SHRIVES D.F. a n d PARRY E.W. , Inorg.Chem. , 1 9 6 3 , (105) GREENWOOD N.N., STORE A. a n d WALLBRIDGE H.G.H., 1039- Inorg.Chern. , 1 9 6 3 , 1 0 3 6 . (106) GREENWOOD N.N. and WALLBRIDGE M.G.H., J . , 1 9 6 3 , (10?) FIKHOLT A.E., HELLING C., IMHOF V . , NIELSEN L. a n d JACOBSON E., (108) Inorg.Chem.,1963, 504. NEUMANN W.F. , NIERMANtJ H. and SCHNEIDER B. , Angew.Chem. , 1963, 2, ohl. (109) MUKHERJEE R.N., (110) BANFORD L . a n d COATES G.E., (111) BAUER R. , Z . N a t u r f o r s c h , 1961 , l 6 b , 3 57 • (112) BAUER R., Z . N a t u r f o r s c h , 1 9 6 1 , 16b, 839- (113) BAUER R., Z . N a t u r f o r s c h , 1962, (114) L U10' TEN J.G.A. a n d VAN DER iCERK G.O.M.. in the f i e l d 19&3. Ph.D. T h e s i s , Durham, o f Organotin Chemistry unpublished 1 2 observation. : VTa, ' ?'• p.95:96. 'Investigations ( T i n Research Institute. (115) 5912. 1959)- DILLARD C.R., McNEILL E.H., SIMMONS D.E. a n d YELDELL J.B., J .Amer.Chem.Soc:. , 1 9 5 8 , 8 0 , 5 6 0 7 - (116) GUTOWSKY H.S., J . Chem.Phys. , 1 9 4 9 , (117) LEK'MANN W .J . , WILSON C.C. and SHAPIRO 7.. , J .Chern.Phys. , 195C (118) HOFFMANN E.G., 17, 128. ; Z.Elektrochem. • 1960, 2 8 , 77764, 6 1 6 . -150- (119) GRAY A. P.. (120) KORSHAK V.V., ivOf-i.AP.OVA L . I . and SIDOROV T.A., Canad.J .Chem. . 1963, f±l, Izvest. 1963 , 8 1 3 • Akad .Nauk S.S.S.R. , O t d e l khim.Nauk. . (121) 151 - TJBOVA N.YA., SEKENENKO K.M. and N0V0SEL0VA A.V., ; 1963 , +52. ( E n g . ) Russ . J . I n o r g . Chem. • (122) KOLDITZ L. and BAUER K. , Z.Cfaem. , 1 9 6 3 , 3, (123) RAKINTZIS N.Th., Stuttgart. (12*0 BECHES H.J. and TAYLOR R.C. Duke U n i v e r s i t y , Diss.Techn.Hochschule 3"'2. International Symposium. 19&3-) Durham, N o r t h C a r o l i n a . ( A p r i l (125) CGATES G.E. and LIVINGSTONE J.G., J . , 1 9 6 1 , (126) EUCHLSR A and KLEMPERER W., J.Chem.Fhys.1958, 2 9 , (12?) MAL'TSEVA N.N. and KHARITOKOV Y.Y., Z h u r . n e o r g . K h i m . , 7, 1962, (128) ZIMKERMAK W.B. and MONTGOMERY D.J. . 121. 9^7. Phys.Rev., 196O, (129) 1000. 120, k05. JAMES T.C., NORSIS W.G. and KLEMPERER W., J.Chem.Phys.• 32, 1960, T 728. (130) BARCELO J . P.. and BELLA1\ ATO Spec t r o c h i m . Ac t a . , 1956 ,8 , 2 ? . (131) SIEBERT H-, (132) RICE B., GALLIANO R.J. and LEHHANN W.J., J .Chem.Phys. , Z.anorg.Chem., 1 9 5 3 , 273, 161. 1957, (133) 61, KERZBERG G. , ' S p e c t r a o f D i a t o m i c M o l e c u l e s 1 1222. p.500. (D.Van N o s t r a n d Company I n c . 1 9 5 0 ) . (13^) LEHMANN W.J . , WILSON C O . and SHAPIRO I . J • Chem.Phys. , 1961, 34, 733. (135) SIE3ERT H . , Z .an.org.Chem. , 1 9 5 3 , 2 7 3 , 1 7 0 . (136) SHRIVES D.F., AMSTER E.L. and TAYLOR E.G., J . Arner. Cheai. Soc . , 1962 , 8 ^ , 1 3 2 1 . (137) EDS A I L J.T. (138) NAKAMOTO K., Coordination J .Chem.Phys. , 1 9 3 7 , _5_, 2 2 5 'Infrared Spectra o f Inorganic Compounds' p . 1 2 0 . ( W i l e y , New Y o r k , 1963) and BELL R.F . and LONGUET^HIGGINS, F r o c .Roy.Soc . , 19^5 , A183 , 5 5 7 .
© Copyright 2026 Paperzz