C - Durham e-Theses

Durham E-Theses
Organic and hydride chemistry of beryllium
Bell, N.A
How to cite:
Bell, N.A (1964)
Organic and hydride chemistry of beryllium, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8894/
Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-prot purposes provided that:
•
a full bibliographic reference is made to the original source
•
a link is made to the metadata record in Durham E-Theses
•
the full-text is not changed in any way
The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.
Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP
e-mail: [email protected] Tel: +44 0191 334 6107
http://etheses.dur.ac.uk
ORGANIC
AND
HYDRIDE
CHEMISTRY
OF
BERYLLIUM
oy
N.A.
A thesis.submitted
BELL.
f o r the Degree of D o c t o r o f
P h i l o s o p h y i n the U n i v e r s i t y - o f Durham.
June
196^-.
I
Acknowledgements.
The author wishes to express h i s s i n c e r e thanks to
P r o f e s s o r G-.E. Coates, M.A.,
D.Sc., F.R.I.C., under whose
d i r e c t i o n t h i s r e s e a r c h was c a r r i e d out, f o r h i s constant
encouragement and extremely v a l u a b l e a d v i c e .
'
The author i s a l s o indebted t o the Department of S c i e n -
t i f i c and I n d u s t r i a l Research f o r a Research StudiSntshrp.
I
I
Memorandum.
The work d e s c r i b e d i n t h i s t h e s i s was c a r r i e d out
in
t h e U n i v e r s i t y o f Durham between September 1 9 b 1 and
May 196A-. T h i s work h a s n o t been s u b m i t t e d
d e c r e e and i s t h e o r i g i n a l
acknowledged by r e f e r e n c e .
f o r any o t h e r
work of t h e a u t h o r e x c e p t where
Summary.
Mixed m e t h y l - and e t h y l - b e r y l l i u m h y d r i d e s
been p r e p a r e d
have
i n e t h e r s o l u t i o n by r e a c t i o n between t h e
sodium h y d r i d o d i a l k y l b e r y l l a t e s Ha(E,,HBe), and b e r y l l i u m
c h l o r i d e . E t h e r c a n be removed from t h e p r o d u c t which h a s
the o v e r a l l c o m p o s i t i o n Ri,Be_H_
evaporation
(R= -CE_, -C...H,-). A f t e r
1
o f e t h e r from s o l u t i o n s o f we^Be.j.H^' which
p r o b a b l y c o n t a i n s many complex s p e c i e s i n e q u i l i b r i u m , h e a t i n
a t low p r e s s u r e c a u s e s
disproportionation into
volatile
d i m e t h y l b e r y l l i u m and i n v o l a t i l e b e r y l l i u m h y d r i d e
c o n t a i n i n g some methyl groups. A s i m i l a r
still
disproportionation
o c c u r s more r e a d i l y when the e t h y l analogue i s h e a t e d and t h e
i n f l u e n c e o f e x c e s s sodium h y d r i d o d i e t h y l b e r y l l a t e and
b e r y l l i u m c h l o r i d e on t h i s r e a c t i o n h a s been
Ethereal solutions containing
shown to r e a c t w i t h
sodium h y d r i d e
studied.
' Et^Se-^':^
1
to form sodium
have been
hydrido-
d i e t h y l b e r y l l a t e and a sodium h y d r i d o b e r y l l a t e which h a s n o t
been
characterised.
Although a pure a l k y l b e r y l l i u m h y d r i d e
could
n o t be o b t a i n e d
coordination
(RBeH)
from t h e above mixed h y d r i d e
compounds o f meth.ylberyllium h y d r i d e
however, been i s o l a t e d . R e a c t i o n
('R.Be-Hhave,
between t r i m e t h y l a m i n e and
'MeiBe-H-' H'ives a m i x t u r e o f t h e known compound Me_Be.NMe_.
1
and
(MeKBe.NMe-)p which have been s e p a r a t e d
pressure
and the vapour
and vapour phase a s s o c i a t i o n o f t h i s l a t t e r
have been s t u d i e d .
described
The d i a m i n e (He_,NCH_-)„ g i v e s
complex
the p r e v i o u s l y
compound ^^NCH-,-^BeMe.^ t o g e t h e r w i t h an i n s o l u b l e ,
i n v o l a t i l e and p r o b a b l y p o l y m e r i c complex ^(Me^iCH,,- ) (3eMeH ) J
2
The a n a l o g o u s e t h e r
(MeOCH,,-)^ r e a c t s i n a s i m i l a r way
f o r m i n g the p r e v i o u s l y
a colourless viscous
described
compound (i-!eOCH. -) ^BeMe^ and
3
o i l KKieOCR' - ) (BeMeH)_J
complex o f m e t h y l b e r y l l i u m h y d r i d e could
A 2 ,2 ' - b i p j r r i d y l
n o t be i s o l a t e d
since
t h i s r e d complex decomposes i n s o l u t i o n to form a brown
tarry
material.
Reaction
between t r i m e t h y l a m i n e h y d r o c h l o r i d e
hydridodiethylberyliate
i n ether
r e s u l t e d i n the e v o l u t i o n o f
both hydrogen and ethane and t h i s was t h e r e f o r e
f a c t o r y method
f o r the preparation
t r i m e t h y l a m i n e complex. However,
and sodium
not a s a t i s -
o f an e t h y l b e r y l l i u m
r e a c t i o n between
hydride-
triethyl-
s t a n n a n e and d i e t h y l b e r y l l i u m r e s u l t e d i n the f o r m a t i o n o f
e t h y l b e r y l l i u m h y d r i d e which was c h a r a c t e r i s e d
by
conversion
i n t o i t s t r i m e t h y l a m i n e complex.
H y d r i d e i o n h a s been shown to d i s p l a c e
from t h e l i q u i d
trimethylamine
complex d i e t h y l b e r y l l i u m - t r i m e t h y l a m i n e i n
b o i l i n g e t h e r , w i t h f o r m a t i o n o f the h y d r i d o d i e t h y l b e r y l i a t e
sal t.
The
infrared
gas phase and
the s p e c t r a of organo'beryllium and
berylliura hydride
and
s p e c t r u m of d i m e t h y l b e r y l l i u m i n the
organo-
c o o r d i n a t i o n complexes have been s t u d i e d
c o r r e l a t i o n s e s t a b l i s h e d f o r t h e s e compounds, w i t h
p a r t i c u l a r r e s p e c t to b e r y l l i u m - h y d r o g e n
i
frequencies.
Contents -
Introduction.
Summary o f t h e Background o f the O r g a n i c
and H y d r i d e
Hydride
C h e m i s t r y of B e r y l l i u m
Chemistry
of t h e o t h e r E l e m e n t s o f Group I I .
Some A s p e c t s o f the Hydride
o f Group
C h e m i s t r y o f the E l e m e n t s
III.
S p e c t r o s c o p i c C o r r e l a t i o n s f o r Groups
I-III
H y d r i d e s and A l k y l s
O b j e c t i v e s of the P r e s e n t Work, i n o u t l i n e .
Experimental
(a)
Apparatus
and T e c h n i q u e s
(b)
P r e p a r a t i o n and P u r i f i c a t i o n o f S t a r t i n g
M a t e r i a l s and S o l v e n t s .
(c)
Compounds P r e p a r e d m a i n l y w i t h a view to
Spectroscopic Studies
D i e t h y l b e r y l 1 i u m-1 r i m e th y l amin e
I
II
c y c l o - ^ A ^ - ' T r i s d i i i i e ti i y 1; :.:"'.> i n o t r i . ' . e t l i y l t r i b e r y 11 i u n
L i t h i u m h y d r i d o d i oheny 1 b e r y l 1 ium- e th s r a t e
Attempted r e a c t i o n o i sodium h y d r i d e
with
d i p heny1b e r y l 1 i u m d i e t h e r a t e
R e a c t i o n of sodium h y d r i d e
with
diethyl-
beryllium
Sodium d e u t e r o d i e t h y l b e r y H a t e
R e a c t i o n o f sodium h y d r i d e
with
diethyl-
b eryllium-1rime thylamin e
Reaction
of sodium hydri.de w i t h
dimeohyl-
beryllium
S od ium d e u t e ro d ime th y l b e r y l 1 a. t e
Reaction
with
of sodium h y d r i d o d i e t h y l b e r y l l a t e
trimethylamine
R e a c t i o n of Sodium
hydrochloride
Hydridodimethylberyllat
w i t h B e r y l l i u m C h l o r i d e and the Thermal
D e c o m p o s i t i o n of ' He, Be_,H„ '
Fage
(e)
P r e p a r a t i o n of M e t h y l b e r y l l i u m Hydride
Coordination
79
Compounds
N, N, N! N -Te trame t h y l e t h y l en ediamine compl ex
1
79
1 , 2 - D i m e t h o x y e t h a n e complex
80
2,2 -Bipyridyl
complex
81
T r i m e t h y l a m i n e complex
o2
1
R e a c t i o n o f t r i m e t h y l a m i n e complex w i t h
2,2 -bipyridyl
1
and d i m e t h y l a m i n e
Triznethylamine-me t h y l b e r y l l i u m d e u t e r i d e
88
So
Dime t h y l b e r y l l iu/n-N, IT, !•:; 1-i - te trame t h y l 1
90
o-phenylenediamine
(f)
R e a c t i o n o f Sodium H y d r i d o d i e t h y l b e r y l l a t e
w i t h B e r y l l i u m C h l o r i d e and the Thermal
91
D e c o m p o s i t i o n o f 'Et ,Be,H '
;
T
(g)
Reactions
between
}
d
'Et,Be-.K-,' and Sodium
Hydride
i
104
Page
(h)
Reaction
between T r i - ' e t h y l s t a n n a n e
and
Diethylberyllium
10?
Discussion.
109
D i s c u s s i o n of Experimental R e s u l t s
The
I n t e r p r e t a t i o n and
Discussion
S p e c t r o s c o p i c Data
References.
i
of
123
1 k~j>
INTRODUCTION
INTRODUCTION.
The
with
work d e s c r i b e d
the p r e p a r a t i o n
in
this
t h e s i s i s concerned
of o r g a n o - b e r y l l i u m
hydrides,
their
r e a c t i o n s w i t h donor m o l e c u l e s , and an i n f r a . r e d s p e c t r o s c o p i c
s t u d y o f t h e s e and o t h e r
b e r y l l i u m compounds.
I n t h i s i n t r o d u c t i o n , the c h e m i s t r y
r e l e v a n t to t h e s e
o f compounds
topics i s discussed. F i r s t ,
p r o p e r t i e s , and c o o r d i n a t i o n
compounds a r e c o n s i d e r e d ,
the p r e p a r a t i o n ,
compounds o f o r g a n o - b e r y l l i u m
i n c l u d i n g a review
complexes o f b e r y l l i u m which a r e c o v e r e d
o f the b i p y r i d y l
separately.
P r e p a r a t i v e methods f o r and r e a c t i o n s o f b e r y l l i u m
are included,
together
with
the r e l e v a n t h y d r i d e
hydride
chemistry
o f o t h e r Group I I and Group I I I e l e m e n t s . F i n a l l y
spectroscopic
are
data,
r e l e v a n t to the compounds s t u d i e d ,
described.
B e r y l l i u m , h a v i n g the e l e c t r o n i c c o n f i g u r a t i o n
2
2
1 s 2 s , a l m o s t e x c l u s i v e l y forms c o v a l e n t
to the s m a l l s i z e and t h e r e f o r e h i g h
the d i p o s i t i v e c a t i o n B e ^
+
high
p o l a r i s i n g power o f
. The atomic r a d i u s o f b e r y l l i u m
i s 0 . 8 9 ° and the c a l c u l a t e d i o n i c
The
compounds due
radius of 3 e ^
i o n i s a t i o n p o t e n t i a l s of b e r y l l i u m ,
+
is
0.3^2.
the f i r s t
b e i n g 2 1 5 and the second ^-20 k c a l . / m o l e , would
suggest
t h a t f r e e d i v a l e n t i o n s of b e r y l l i u m i n i t s compounds do
( 1
3 AUG 1964 )
.
-2-
not
e x i s t . B e r y l l i u m f l u o r i d e , which might be e x p e c t e d
to be the most i o n i c compound o f b e r y l l i u m , i s a poor
conductor of e l e c t r i c i t y
oxide
i n the f u s e d s t a t e and b e r y l l i u m
h a s o n l y about -+0 p e r c e n t i o n i c
character.
Compounds o f b e r y l l i u m have c o v a l e n c i e s of two,
t h r e e o r f o u r f o r the m e t a l atom but t h e r e a r e no known
compounds w i t h a c o o r d i n a t i o n number g r e a t e r than
since
four,
the atomic o r b i t a l s of p r i n c i p a l quantum number
t h r e e a r e o f too h i g h an energy to p a r t i c i p a t e i n bond
formation
and no h y b r i d o r b i t a l s i n v o l v i n g d - o r b i t a l s
can be e x p e c t e d f o r b e r y l l i u m . The c o o r d i n a t i o n
of two a r i s e s
beryllium
number
from the u s e of sp h y b r i d o r b i t a l s by the
to g i v e a l i n e a r m o l e c u l e a s i s found i n the
case of b e r y l l i u m c h l o r i d e a t high
t e m p e r a t u r e when i t
k
e x i s t s a s a monomer and, beyond r e a s o n a b l e
monomeric d i - t e r t i a r y b u t y l b e r y l l i u m
doubt, i n
The r a t h e r
unusual
c o o r d i n a t i o n number o f t h r e e i s found, f o r example, i n
d i m e t h y l b e r y l l i u m - t r i m e t h y l a m i n e ' t ' i n which the b e r y l l i u m
2
atom must make u s e o f sp
however, h a s a s t r o n g
hybrid o r b i t a l s .
tendency to form f o u r
compounds u s i n g sp"^ o r b i t a l s
The
to g i v e
Eerylliurn,
covalent
t e t r a h e d r a l bonding.
v i s c o s i t i e s , c o n d u c t i v i t i e s and f r e e z i n g p o i n t s o f
63
s o l u t i o n s of b e r y l l i u m s a l t s
i o n i s more s t r o n g l y h y d r a t e d
show t h a t the b e r y l l i u m
than any o t h e r d i v a l e n t
-3-
e a t i o n and i t s s a l t s a l w a y s have f o u r m o l e c u l e s o f w a t e r
of
crystallisation
f o r each b e r y l l i u m atom. The i o n i c
m o b i l i t i e s a t 25°C a r e :
Be
Mg
Ca
Sr
Ba
Ra
30
55-5
59-8
59.8
6k.2
67
'The p h t h a l o c y a n i n e complex o f b e r y l l i u m
in
that i t has a square-planar
i s exceptional
c o n f i g u r a t i o n due to the
shape o f the p h t h a l o c y a n i n e m o l e c u l e ^ *
Organo-Beryllium
Compounds.
B e r y l l i u m d i a l k y l s and d i a r y l s have been p r e p a r e d
i n small
q u a n t i t i e s by t h e a c t i o n o f b e r y l l i u m m e t a l on
the d i a l k y l
o r d i a r y l d e r i v a t i v e s o f mercury a t e l e v a t e d
temperatures, often with
c a t a l y s t . ^ ^>»21»22,23• ^
t r a c e s of mercuric
larger scales,
c h l o r i d e as
the r e a c t i o n
13 "1 ^ 3 7 •
between b e r y l l i u m
l i t h i u m reagent
3eCl_2Et 0
+
: 3
or
BeCl_2Et„0
c.
c h l o r i d e and a G r i g n a r d
i n ether i s better :
2RMgX
>
BeR_
+
+
2RLi
d.
\ BeR_
+
'
MgCl
'
2
MgX
2L1C1.
c.
When p r e p a r e d by t h i s method, complete
of t h e b e r y l l i u m
+
"or
compound
separation
from t r a c e s o f e t h e r i s u s u a l l y
difficult.
D i a l k y l b e r y l l i u n i compounds a r e a l s o formed when
8
a l k y l b e r y l l i u m h a l i d e s a r e c a u t i o u s l y heated
and by t h e
-k-
r e a c t i o n of f r e e methyl o r e t h y l r a d i c a l s w i t h
metallic
16
beryllium
.'
Some a l k y l - and a r y l - b e r y l l i u m h a l i d e s
have been p r e p a r e d
by h e a t i n g b e r y l l i u m meta.l w i t h the
appropriate a l k y l halide. ' '
All
and
the o r g a n o - b e r y l l i u m compounds must be
h a n d l e d i n the a b s e n c e o f oxygen, m o i s t u r e
prepared
and i n
some i n s t a n c e s carbon d i o x i d e , w i t h which they r e a c t
rapidly.
D i a l k y l b e r y l l i u m compounds r e a c t w i t h hydrogen
18
peroxide i n ether s o l u t i o n producing b e r y l l i u m peroxide
and w i t h phenyl i s o c y a n a t e to form the c o r r e s p o n d i n g
1
a n i l i d e . ^*
A l k y l b e r y l l i u m compounds have been used
polymerisation
f o r the
o f a l k e n e s , and a s i n t e r m e d i a t e s a s
e x e m p l i f i e d by :Et Be
2
+
n
MePr C=CK
n
?
> MeEtPr CCE BeEt.
2
1 9
"
They r e a c t w i t h e t h y l e n e s t e p w i s e , i n a s i m i l a r manner
to aluminium and l i t h i u m a l k y l s , and Z i e g l e r has reviewed
20.
t h i s c l a s s of r e a c t i o n
The
e l e c t r o n i c u n s a t u r a t i o n of b e r y l l i u m a l k y l s
l e a d s to the f o r m a t i o n
donor
i
thoroughly.
molecules.
o f c o o r d i n a t i o n compounds w i t h
Dimethylberyllium.
S m a l l q u a n t i t i e s o f d i m e t h y l b e r y l l i u m a r e most
c o n v e n i e n t l y prepared
by t h e r e a c t i o n o f d i m e t h y l m e r c u r y
and
e x c e s s powdered b e r y l l i u m m e t a l a t 1 0 0 C.
11,12,21,22,23.
The
product
mixture
j
i
T i
-. i •
c a n be sublimed
J_ -,
,..o„
from t h e r e a c t i o n
under h i g h vacuum, and t r a c e s o f mercury can be removed
21
w i t n gold
foil.
P r e p a r a t i o n from the G r i g n a r d
or l i t h i u m reagent
p r e s e n t s some d i f f i c u l t i e s . The p r o d u c t
can be i s o l a t e d
of t h i s r e a c t i o n
f r e e from d i s s o l v e d s a l t s
by a p r o c e s s
13 15
of
but
'ether d i s t i l l a t i o n '
a t atmospheric
pressure,
complete s e p a r a t i o n from e t h e r i s d i f f i c u l t .
'
2h.
'
The u s e
s i n c e d i m e t h y l s u l p h i d e does n o t c o o r d i n a t e to d i m e t h y l of d i m e t h y l s u l p h i d e a s a s o l v e n t has been suggested,'
b e r y l l i u m ^ , b u t the method h a s n o t been examined
experimentally.
S o l i d d i m e t h y l b e r y l l i u m has
a polymeric
structure
26
similar
to s i l i c o n
d i s u l p h i d e . X - r a y d i f f r a c t i o n methods
have shown t h a t t h e r e i s an approximate t e t r a h e d r a l d i s t r i b u t i o n
o f methyl groups round ea.ch b e r y l l i u m atom w i t h a l l t h e
b e r y l l i u m - carbon bonds e q u i v a l e n t and o f l e n g t h 1 . 9 2 S . ,
the Be-C-Be a n g l e
being- 6 6 °
:
^.Me..,
y
.--Me,,
'Be:;*'
*"*:Be.'"
'Be:'*""
***;Be;"
"Me-X.
-Me-'
'•'Me-*'
-6-
The
extrapolated
sublimation
t e m p e r a t u r e , 2'17°C , and
t h e i n t e r c h a i n d i s t a n c e s i n t h e p o l y m e r , e x c l u d e an
ionic
s t r u c t u r e . B o t h b e r y l l i u m and
of
four
tetrahedral
probable
5
CCsp- )
c a r b o n atoms make use
( sp"^ ) a t o m i c o r b i t a l s and
i ti s
that three-centre molecular o r b i t a l s
+
Be(sp^)
a r e formed
Dimethylberyllium
condensed
BeCsp"^)
+
from these.
f o r m s c o l o u r l e s s n e e d l e s when
f r o m t h e v a p o u r phase b u t has n o t been o b s e r v e d
t o m e l t . The
vapour p r e s s u r e o f the s o l i d
i s given
by
27
the equations
:
100-150°C
:
log P(mm.)
=
12-530
-
^771/T.
155-180°C
:
log P(mm.)
=
13-292
-
5100/T.
1 0
1 0
Vapour d e n s i t y measurements have been made b e t w e e n
and 200°C and
of
1o0
f r o m a s t u d y o f t h e p r e s s u r e - dependence
t h e v a p o u r d e n s i t y , i t was
o f monomer, d i m e r and
shown t h a t
the vapour
trirner molecules, together
consists
with
h i g h e r p o l y m e r s w h i c h o n l y become i m p o r t a n t a t n e a r saturation
obtained
c o n d i t i o n s . H e a t and
e n t r o p y t e r m s h a v e been
f o r t h e monomer-dimer and m o n o m e r - t r i m e r
and
s t r u c t u r e s have been p r o p o s e d
and
trimer
f o r t h e monomer, d i m e r
27
"
:
monomer :
Me
- Be - Me.
dimer
Me
- Be;*"
:
equilibria
""Be - Me.
-V-
triraer
:
Me - Ee^*'
!Ee;''
*Be - Me.
'•Me'
I n these formulae, d o t t e d
l i n e s r e p r e s e n t h a l f bonds.
T h e r m a l d e c o m p o s i t i o n s t a r t s t o o c c u r a t 202°C
with
and
the formation
o f (BeCE^) as i n t e r m e d i s . t e -product
2 n
a t 220-230°C b e r y l l i u m
c a r b i d e i s formed as end
product :
2
n(CH-,)_Be
j
0
2
d.
Beryllium
> nCH,
•+
+
(BeCH-) ,
c. n
2
2
0
> n Be C + n CH,
0
m e t a l can be d e p o s i t e d by t h e e l e c t r o l y s i s
o f a m i x t u r e o f d i m e t h y l b e r y l l i u m and b e r y l l i u m
chloride
1 5.
in
ethereal
solution.
Dimethylberyllium
reacts
w i t h d i b o r a n e above room
7.
temperature, the reaction
taking place i n several
Trimethylborane, methyl b e r y l l i u m borohydride
a s an i n t e r m e d i a . t e
which are strong
will
only
n
a r e formed
coordinate with
compounds w i t h
trimethylphosphine, dimethyl-
of
(BeBH,.)
molecules
enough t o b r e a k down i t s p o l y m e r i c
forms c o o r d i n a t i o n
with
n
the reaction.
Dimethylberyllium
It
(MeBeBH^)_
p r o d u c t , b e r y l l i u m b o r o h y d r i d e and an
i n v o l a t i l e substance which i s rjrobably
during
stages.
structure.
trirnethylamine,
and d i e t h y l - e t h e r , b u t n o t
t r i m e t h y l a r s i n e o r d i m e t h y l s u l p h i d e and t h e p r o p e r t i e s
t h e s e compounds i n d i c a t e
t h a t the order o f heat o f
2
9
-8-
coordination
is
N>F>0>As,S
'. '
T h i s same o r d e r
is
30
found w i t h
31 •
t r i m e t h y l a l i i m i n i u m ' ^ ' and
when t h e a c c e p t o r a t o m i s o f t h e
coordination links without
b o n d i n g o r any
type
s i m i l a r influence of
due:
simple
to double
d-orbitals.
compound
(Me^Bef-NMe^)
a t 36°C , w i t h t r i m e t h y l a m i n e . T h i s i s s t a b l e
180°C and
i s monomeric i n t h e gas
associated
i n benzene s o l u t i o n ^ '
(Me_BeK(KMe,)_
on
t h a t forms
complications
D i m e t h y l b e r y l l i u m f o r m s a 1:1
melting
trim ethyl gallium
can
be
obtained
phase'' , a l t h o u g h
to
slightly
Below 9-10°C, a compound
but
t h i s begins
to
dissociate
warming
In
the r e a c t i o n o f d i m e t h y l b e r y l l i u m w i t h
p h o s p h i n e , complex e q u i l i b r i a
result
from the
between the a f f i n i t i e s
of dimethylberyllium
t r i m e t h y l p h o s p h i n e and
f o r each o t h e r .
A
trimethyl-
similarities
molecules f o r
considerable
r a n g e o f compounds (He_P) (Me„,Ee) where x= 2 , 3 > 1 » 2 , 2 , 2
_/ x
n.
y
ana y=
1,2,1,3,^»5-
stable
i n a c e r t a i n range of
trimethylphosphine.
r e s p e c t i v e l y are
A l l the
f o r m e d , each
t e m p e r a t u r e and
that
two
molecules of
pressure
t r i m e t h y l p h o s p h i n e can
removed i n vacuo a t room t e m p e r a t u r e . One
p h o s j i h i n e can
of
be
peculiarity
coordinate
m o l e c u l e o f d i m e t h y l b e r y l l i u m , whereas the
being-
to
is
one
analogous
t r i m e t h y l a m i n e c o m p l e x i s unknown even t h o u g h n i t r o g e n
a
stronger
d o n o r t o b e r y l l i u m t h a n i s p h o s p h o r u s , as
is
shown
-9-
by
the d i s s o c i a t i o n pressures
o f these
compounds. The
n o n - f o r m a t i o n o f Me_Be(NMe-)_ must be due t o an e n t r o p y
2
rather
than a s t e r i c
;> 2
e f f e c t since t h e phosphine analogue
w o u l d be more s t e r i c a l l y h i n d e r e d
and t h e compound
Me
2
Me Be"
I "
forms
N—CH.
Me
2
2
With
dimethyl ether,
t h e compounds Me,,Be.0Me
2
( M e B e ) ( 0 M e ) , , ( M e ^ e ^ C O M e . , ^ and ( M e 3 e ) 0 M e
2
2
been o b s e r v e d
2
2
2
?
,
have
b u t a l l a r e l e s s s t a b l e than the phosphine
complexes.
With diethylether,
compound o f d e f i n i t e
t h e r e was no i n d i c a t i o n o f a
composition
being
Colourless c r y s t a l l i n e needles,
formed.
m.p. 31-92°C , o f
d i m e t h y l d i p y r i d i n e b e r y l l i u m were i s o l a t e d
from t h e r e a c t i o n
of p y r i d i n e w i t h dimethylberyllium i n e t h e r . ^ "
B i d e n t a t e l i g a n d s f o r m v e r y s t a b l e 1:1 c h e l a t e
complexes w i t h d i m e t h y l b e r y l l i u m . ' '
N,N,N* ,N' ,- t e t r a -
m e t h y l e t h y l e n e d i a m i n e and t h e c h e l a t i n g d i e t l i e r
b o t h f o r m w e l l - d e f i n e d complexes w i t h
of t h e type
Both
Me
T)*
^Eejr" |
dimethylberyllium
where D i s t h e d o n o r a t o m .
compounds must have v e r y s m a l l d i s s o c i a t i o n
s i n c e t h e y c a n be s u b l i m e d
'Monoglyme
pressures
unchanged i n v a c u o . I n benzene
1
-10-
solutions,
the ether
c o m p l e x i s monomeric b u t t h e amine
i s about t e n per cent
associated.
Donor m o l e c u l e s c o n t a i n i n g
also
react
readily with dimethylberyllium with
o f methane and f o r m a t i o n
products.
of d i - , t r i - ,
or
D i m e t h y l amine f o r m s t h e a d d u c t
w h i c h m e l t s a t kk°C
the white
r e a c t i v e hydrogen
with
crystalline
which a c y c l i c
polymeric
I ^ ^ B e Ir-lTEite^
leaving
compound (MeBeN!'^)-
s t r u c t u r e has been a s s i g n e d
does n o t r e a c t w i t h
the e l i m i n a t i o n
t h e e v o l u t i o n o f methane,
trimeric
atoms
to
( I ) and w h i c h
C
t r i m e t h y l a m i n e below 50 C.
v
He
''e
.N—Be
Me - B e ^
Me
2
Me
?
Me
Me - Be^f
,Be - Me
Me
(I)
m.p. 55-56°C
( I I )
M e t h a n o l and d i m e t h y l b e r y l l i u m
i m m e d i a t e e v o l u t i o n o f methane
which d i s p r o p o r t i o n a t e s
forming
( B e ( 0 K e ) ) above 120 C,,
fairly
to lose
product ( I I )
and b e r y l l i u m
V~
>
"
2
D i i s o p r o ;:• y I amine"
with the
a dimeric
to dimethylberyllium
o
methoxide
react
and d i m e t h y l b e r y l l i u m f o r m a
s t a b l e monomeric a d d u c t (j>Je Be f- N E P r ^ j w h i c h
2
methane s l o w l y
a t a b o u t 100°C i n t h e p r e s e n c e
o f e x c e s s a m i n e . L o s s of" methane- was n o t q u a n t i t a t i v e
starts
— 11 —
h o w e v e r , even a f t e r r e f l u x i n g w i t h e x c e s s amine f o r s e v e r a l
d a y s , and t h i s i s p r o b a b l y due t o s t e r i c h i n d / r a n c e by
the i s o p r o p y l groups.
M e t h y l a m i n e and
methanethiol w i l l
methane f r o m d i m e t h y l b e r y i l i u m b u t
appears to d i s p l a c e t r i m e t h y l a m i n e
course
liberate
the o t h e r product
the r e a c t i o n were n o t c h a r a c t e r i s e d .
t r i m e t h y l a m i n e and
also
J
'
from
Methylamine
dimethylberyllium-
t h e r e f o r e the r e a c t i o n
follows a
t o t h e r e a c t i o n o f d i m e t h y l b e r y l l i u m and
N- m e t h y l
also y i e l d
s u b s t i t u t e d p r i m a r y and
products
i n which
of
similar
methylamine,
secondary
J
diamines
the c o o r d i n a t i v e u n s a t u r a t i o n
33 •
of beryllium i s relieved
by a s s o c i a t i o n o r p o l y m e r i s a t i o n .
N,K,N'- T r i m e t h y l e t h y l e n e d i a m i n e l o s e s a m o l . o f
methane a t room t e m p e r a t u r e
the d i m e r i c product
One
mol.
(III)
which
s o o n as
believed
methyl
is
t h e m i x t u r e m e l t s . The
heated
in tetralin
quantitatively
product
product, which
(IV),
a t 1^5°C a b o u t e i g h t y p e r
bound t o b e r y l l i u m
(V) i s
z
i s evolved
sublimes
is
slowly at
cent of the
remaining
as m e t h a n e . When ( I V )
s o l u t i o n , methane i s e v o l v e d
a t 1 fO-150°C. and
formed.
f r o m N,K' -
dimethylberylliura i n ether
t o have t h e s t r u c t u r e
9 0 ° C . and
forming
m e l t s a t 116-118°C.
o f methane i s a l s o l i b e r a t e d
d i m e t h y l e t h y l e n e d i a m i n e and
as
with dimethylberyllium,
an
insoluble
polymeric
12
" "
c«
x
(III)
c
^
j
(IV)
U n s y m m e t r i c a l N,N-
c/^—
|
(V)
dimethylethylenediamine
liberates
one m o l . o f methane f r o m d i m e t h y l b e r y l l i u m i n e t h e r
just
b e l o w room t e m p e r a t u r e , g i v i n g a p r o d u c t a n a l o g o u s t o
(IV).
T h i s p r o d u c t s u b l i m e s a t 1 1 5 ° C , and a t
melts with a vigorous evolution
a hard
170°C i t
o f methane a n d , on
glass i s produced.
Ethylenediamine l i b e r a t e s about e i g h t y
the
methyl from d i m e t h y l b e r y l l i u m
with
the formation
of a white,
m a t e r i a l . Even a f t e r h e a t i n g
of
cooling;
the methyl groups
a t room
per cent of
temperature
amorphous, e v i d e n t l y
t o k^°C,
i s retained
polymeric
about s i x per cent
but t h i s i s released
on
hydrolysis.
The r e a c t i o n
b e r y l l i u m has a l s o
b e t w e e n h y d r o g e n c y a n i d e and
been i n v e s t i g a t e d .
d i c y a n i d e i s p r e c i p i t a t e d when e t h e r e a l
is
added s l o w l y
'.3eryllium
dimethylberyllium
t o e x c e s s h y d r o g e n c y a n i d e In benzene and
t h i s does n o t r e a c t
solvents
"
dimethyl-
with, t r i m e t h y l a m i n e
w i t h w h i c h i t does n o t r e a c t ,
has a c r o s s - l i n k e d
nor dissolve i n
s i n c e i t no d o u b t
p o l y m e r i c s t r u c t u r e . E q u i m o l a r amounts o f
-13-
t h e above r e a c t a n t s
beryllium
f o r m methane and
the s o l u b l e
c y a n i d e f r o m w h i c h t h e e t h e r can
p u m p i n g a t 70°C b u t
the residue
i s no.doubt p o l y m e r i c .
was
found
was
isolated
No
does n o t
be
an
removed
redissolve
method f o r p u r i f y i n g
but i t s c o o r d i n a t i o n complex w i t h
as
involatile
methyl-
this
by
and
compound
trimethylamine
amorphous p r o d u c t
from
r e a c t i o n o f d i m e t h y l b e r y l l i u m - t r i m e t h y l a m i n e and
the
hydrogen
cyanide.
T
M
Me
- Be
- C^SN — * Be
4— NMe_
Dieitiiylberyllium.
This
compound c a n n o t be
prepared
from
diethylmercury
13 23»
and
b e r y l l i u m metal
from
but i s conveniently
t h e r e a c t i o n o f e t h y l m a g n e s i u m b r o m i d e and
obtained
beryllium
13 3 7 .
chloride i n ether.
but prolonged
gives
p u m p i n g , f o l l o w e d by
a colourless product
c o n t a i n i n g a b o u t two
material
and
by
* Separation
per
from
ether i s d i f f i c u l t
vacuum
distillation
b o i l i n g a t 63°C/0.3®w-Hg.,
cent
s o l i d i f i e s as w h i t e
ether."^''" Some o f t h e
purest
c r y s t a l s m e l t i n g b e t w e e n -13°C
-12°C.''^" D i e t h y l b e r y l l i u m has
0
r e c e n t l y been p r e p a r e d ^ "
treating beryllium chloride with triethylaluminium
at
I
100°C f o r one h o u r . The b e r y l l i u m
from
the l a t t e r
by d i s t i l l a t i o n
electron-donor complexing
The
compound i s s e p a r a t e d
after
t h e a d d i t i o n o f an
agent f o r the aluminium
vapour pressure
i s given approximately
compound.
by t h e
equation :
log
1 Q
p
(mm.)
=
7-59
-
2200/T.
37.
•o
whence t h e e x t r a p o l a t e d b o i l i n g p o i n t i s 1 9 ^ C.
Diethylberyllium
i s monomeric i n d i o x a n , b u t i s
a s s o c i a t e d i n c y c l o h e x a n e and b e n z e n e , i t s m o l e c u l a r
weight
being
t i m e d e p e n d e n t ( 1 6 0 and 14-0 r e s p e c t i v e l y two d a y s
after
t h e p r e p a r a t i o n o f t h e s o l u t i o n and 2 1 2 and 224
28
r e s p e c t i v e l y a f t e r 24-0 d a y s ) .
The
apparent
d i p o l e moment o f d i e t h y l b e r y l l i u m i n
v a r i o u s s o l v e n t s i s i n t e r m e d i a t e between those
magnesium and - z i n c .
of diethyl-
I t s moment i s 1.0D i n h e p t a n e , 1.69D
i n b e n z e n e , i n b o t h o f w h i c h i t i s a s s o c i a t e d , and 4.3D i n
,.
39,^0.
dioxan.
D i e t h y l b e r y i i i u m decomposes s l o w l y a t 85°C and
r a p i d l y a t 190-200°C. r e s u l t i n g i n t h e f o r m a t i o n o f
e t h y l e n e , and b u t e n e ,
together with
ethane,
s m a l l amounts o f 3-
h e x e n e , 1 - 3 - c y c l o h e x a d i e n e and b e n z e n e . The r e s i d u e i s a
m i x t u r e o f an o i l , w h i c h can be d i s t i l l e d
having
and
the approximate
a crystalline
j
solid
formula
a t 95-100°C/0.1-0.2mm.
( (H * Be - GR^ ~^ 2
TO
( Be(CE-,)-, )
2 3
n.
J
'
-15-
Methanol, isopropanol
and h y d r o g e n c h l o r i d e , a l l
react explosively w i t h • d i e t h y l b e r y l l i u m . "
Little
study
o f t h e c o o r d i n a t i o n compounds o f
d i e t h y l b e r y l l i u m h a s been made. I t f o r m s an o r a n g e
33
with pyridine^"
; BeFy !
(Et BeFy )
complex
2
5
2
5
forms t h e polymeric
compound
and d i p h e n y l a r n i n e
(Be(HPh ) )
2
2
n
and e t h a n e .
The
r e a c t i o n s b e t w e e n d i e t h y l b e r y l l i u m and a l s o
its
t r i m e t h y l a m i n e c o m p l e x and t h e m e t h y l h y d r a z i n e s
been i n v e s t i g a t e d .
I n general, l i b e r a t i o n
n o t q u a n t i t a t i v e and p o l y m e r i c
although
a 1:1 a d d u c t
have
formed,
(Me NNMeH.BeEt ) was f o r m e d w i t h
2
2
T
(Et Be) Me K NMe
2
2
2
2
>
tetramethylhydrazine.~ "
1
S t r o h m e i e r and c o - w o r k e r s
in
between
o f e t h a n e was
m a t e r i a l s were
t r i m e t h y l h y d r a z i n e a n d a 2:1 a d d u c t
with
crystalline
* have p r e p a r e d
recent years a s e r i e s o f e t h e r - f r e e s a l t s o f d i e t h y l -
b e r y l l i u m o f the type
alkali
metal,
MXCBeEt,,)
X represents
where M r e p r e s e n t s
an
h a l i d e o r c y a n i d e and n = 1 , 2 , o r
Potassium f l u o r i d e d i s s o l v e s i n e t h e r e a l
diethyl-
b e r y l l i u m a t 65°C o v e r t h r e e h o u r s and t h e c r y s t a l l i n e
material
KF(3eEt,,)~
2
this
c a n be i s o l a t e d .
A t 70°8 i n benzene
eL
compound decomposes t o f o r m
the insoluble material
KFBeEt, and p u r e , e t h e r - f r e e d i e t h y l b e r y l l i u m w h i c h c a n
be d i s t i l l e d o u t . E t h e r - f r e e d i e t h y l b e r y l l i u m c a n a l s o
be
obtained
by h e a t i n g
KFCBeEt-)^
:,)
2
a t 100-130°C. Rubidium
k.
-16-
and c a e s i u m f l u o r i d e s a l s o f o r m s i m i l a r compounds b u t
o i i h nr sodium c y a n i d e ,
c a e s i u m c h l o r i d e and
sodium f l u o r i d e , l i t h i u m
potassium
c h l o r i d e e i t h e r do
a p p e a r t o r e a c t o r , a t l e a s t , no
isolated
from t h e i r
the product
at
which
1 0 0 - 1 5 0 ° C i n vacuo and
forms a v i s c o u s l i q u i d
type
has
RbF >
compound c o u l d
The
KF >
A crystalline
l o s e s pure
tendency
d i e t h y l b e r y l l i u m and
hydride
forms
chloride
the o r d e r o f r e a c t i v i t y
appear t o
the
appears
NaF.
pyrophoric material
(NaBeEt_H)
d.
been i s o l a t e d
n
from the r e a c t i o n
of
s o d i u m h y d r i d e i n ether.. L i t h i u m
r e a c t s w i t h d i e t h y l b e r y l l i u m a t 110°C b u t a
p r o d u c t was
of
f o r complex f o r m a t i o n
~
m e l t i n g a t 1 9 8 ° C , has
be
diethylberyllium
tetra-ethylammonium
been i n v e s t i g a t e d , and
CsF >
not
p r o d u c t a t room t e m p e r a t u r e
Et,NCI.(BeEtp)^
t o be
pure
r e a c t i o n . Potassium cyanide
KCN.(BeEt^)^
fluoride,
not i s o l a t e d
and
pure
magnesium h y d r i d e does n o t
react.
Di-isopropylberyllium.^°"
T h i s m a t e r i a l has
been p r e p a r e d
by
the
reaction
b e t w e e n i s o p r o p y l m a g n e s i u r n b r o m i d e and
be r y l l i a i m o . c h l o r i d e
in
o b t a i n e d by
e t h e r . An
with
e t h e r - f r e e product
continuous
p r o d u c t which
can
be
refluxing
p u m p i n g f o r a l o n g t i m e . The e t h e r - f r e e
i s a colourless, slightly
viscous
liquid,
-17-
f r e e z e s a t -9.5°C and
i s dimeric.
i
O
consistent
a t 50°C and
( 0 . 1 7 ™ n . a t 20°C
extrapolated
with a dimeric
Propene i s s l o w l y
boiling point
evolved from
(280°C)
di-isopropylberyllium
the
formation
of a
isopropylberyllium hydride,
w i t h dimethylamine at
p r o p a n e and
and
structure.
r a p i d l y a t 200°C w i t h
n o n - v o l a t i l e polymer of
reacts
i n benzene i n w h i c h i t
I t s vapour p r e s s u r e ,
0.53mm- a t f 0 C ) and
are
i s soluble
hydrogen i n the
room t e m p e r a t u r e
ratio
2.5
: 1» and
viscous,
which
liberating
which
decomposes a t 2 2 0 - 2 5 0 ° C f o r m i n g p r o p a n e , p r o p e n e , h y d r o g e n ,
beryllium
is
and
an
formed w i t h
o r a n g e r e s i d u e . The
t r i m e t h y l a m i n e and
benzene s o l u t i o n . At
200°C
liquid
adduct
t h i s i s monomeric
1
in
di-isopropylberyllium-trimethyl-
amine l o s e s a m o l . o f p r o p e n e f o r m i n g f e a t h e r y
(Pr BeH.NMe-.) b u t
3 n
(Pr^Be^-NMe^)
t h i s p r o d u c t has
^
not
needles
y e t been
of
further
s tudied.
Di-isopropylberyllium
1
p r o p a n e and
( P r B e .OMe)
W i t h one
forms a mol.
beryllium
leaving
mol.
w i t h methanol
o f p r o p a n e and
1
n
the
liquid
which a t
di-isopropylberyllium
dimethylaminoisopropyl-
100°C e v o l v e s p r o p e n e
glassy product dimethylaminoberyllium
(HBe.NMe,) .
2 n
Addition
of
two
giving
m.p. 1 3 3 ° C
of dimethylamine,
( P r B e .BV.e^ )
the
reacts
mols. of dimethylamine tc
hydride
di-isopropyl-
-18-
b e r y l l i u m a t j u s t above room t e m p e r a t u r e
affords
two m o l s .
o f p r o p a n e and b i s d i m e t h y l a m i n o b e r y l l i u m w h i c h i s t r i m e r i c
i n b o t h benzene s o l u t i o n and t h e v a p o u r phase and
has the c y c l i c
probably
s t r u c t u r e as shown b e l o w :
Me
2
A
Me_NBe
3eNMe£
It
Me~N
NMe _
y
he
NMe^
m.p.
9k°C.
Pi-tertiary-butylberyllium
T h i s was p r e p a r e d
from e t h e r e a l s o l u t i o n s o f
b u t y l m a g n e s i u m c h l o r i d e and b e r y l l i u m c h l o r i d e .
s l o w l y a t room t e m p e r a t u r e
and
with
beer, o b t a i n e d e t h e r - f r e e by t r e a t i n g
affinity
than
I t has
the product
o f the
c h l o r i d e w h i c h has a h i g h e r
f o r e t h e r , f o l l o w e d by d i s t i l l a t i o n
tert.-butylberyllium.
I t decomposes
the e v o l u t i o n o f isobutene
i s t h e r e f o r e best kept a t low temperature.
above r e a c t i o n w i t h b e r y l l i u m
tert.-
of the d i -
" T h i s l a t t e r p r o d u c t i s more
volatile
t h e e t h e r complex: i t f r e e z e s a t -16°C, has a vapour
pressure
o f 35^™. a t 25°C and i s t h e r e f o r e p r o b a b l y
Di-tert.-butylberyllium
reacts with
b u t t h e p r o d u c t has n o t been w e l l
monomeric,
trimethylamine
characterised
o t h e r c o o r d i n a t i o n compounds have been s t u d i e d .
and no
-19-
Diphenylberyllium.
T h i s h a s been o b t a i n e d by h e a t i n g
and
b e r y l l i u m metal
followed
heating
f o r one t o two h o u r s
by r e c r y s t a l l i s a t i o n
9
and b y
I t m e l t s a t 244-24S°C w i t h
and i t s d i p o l e moment i s 1.64D i n b e n z e n e ,
d i o x a n and z e r o i n h e p t a n e J ^ O .
A crystalline
d i e t h e r a t e m.p. 2 8 - 3 2 ° C
isolated
f r o m an e t h e r e a l
and
compound l o s e s e t h e r
this
'
i n d r y xylene i n a sealed
tube f o r t h r e e days a t 1 5 0 ° C . "
^•33D i n
a t 210-220°C
f r o m benzene,
t h e same two r e a g e n t s
decomposition
diphenylmercury
The
has been
solution of diphenylberyllium,
i n vacuo a t 1 3 0 ° C . ^ "
c o m p l e x s a l t Li(BePh-,) can be i s o l a t e d f r o m t h e
r e a c t i o n o f p h e n y l - l i t h i u m and d i p h e n y l b e r y l l i u m
a t room t e m p e r a t u r e , f o l l o w e d
xylene. C r y s t a l l i s a t i o n
i n ether
by r e c r y s t a l l i s a t i o n
from
from dioxan y i e l d s a product
(Li(BePh^)(dioxan)^) containing
f o u r molecules
D i p h e n y l -magnesium, -cadmium, and - z i n c a l s o
of solvent.
form s i m i l a r
compounds.^"
A complex h y d r i d e ,
by
the reaction of diphenylberyllium
h a s been
etherate
formed
and l i t h i u m
5 0
hydride
at 150-165°C. "
Dessy'
h a s shown t h a t t h e r e
diphenylberyllium
in
LiCBeFlr^iOOEt.,
ether
i s no exchange b e t w e e n
and i s o t o p i c a l l y l a b e l l e d b e r y l l i u m b r o m i d e
s o l u t i o n and s u g g e s t s
t h a t t h e complex formed
may
-20-
be f o r m u l a t e d as PhpBe .BeBr-j
Since s i m i l a r
c l a i m s were
made i n r e s p e c t o f p h e n y l m a g n e s i u m b r o m i d e , now known t o
61
e x i s t as monomer P h M g B r ( 0 E t )
2
2
by X - r a y
diffraction,
t h e r e i s now some d o u b t a b o u t t h e i s o t o p i c
for
exchange
b o t h b e r y l l i u m a n d magnesium compounds.
Beryllium
Borohydride.
The most c o n v e n i e n t p r e p a r a t i o n o f b e r y l l i u m
is
results
borohydride
from t h e r e a c t i o n o f l i t h i u m , o r sodium b o r o h y d r i d e
with
beryllium halides a t elevated
It
i sa white, volatile
temperatures.
solid,
monomeric
i n the
v a p o u r p h a s e , m e l t i n g a t 123°C and i t s v a p o u r p r e s s u r e i s
7
760mm.Hg a t 9 1 . 3 ° C . "
B e r y l l i u m b o r o h y d r i d e undergoes r e a c t i o n
with
t r i m e t h y l a m i n e i n s e v e r a l s t a g e s . I t a b s o r b s t h e amine a t
-S0°C f o r m i n g t h e 1 : 1 c o m p l e x , w h i c h i s monomeric
gas phase and does n o t r e a c t w i t h
in
d i b o r a n e a t 7 0 ° C . A t 100°C
t h e presence o f t h e amine, i t r e a c t s f u r t h e r
BH-,.NMe, and BeBH NMe_,
:>
c
3
5
7
forming
T h i s l a t t e r p r o d u c t l o s e s t h e amine
3-
r e v e r s i b l y above room t e m p e r a t u r e
c a n be r e m o v e d .
i n the
*
b u t n o t a l l t h e amine
21
3ipyridyl
Complexes.
A remarkable s e r i e s
of
t h e orga.no
and h a l i d e
o f c o l o u r e d b i p y r i d y l complexes
compounds o f b e r y l l i u m has been
p r e p a r e d . These compounds, t h e i r c o l o u r s ,
wavelength absorption
coefficients
their
long-
bands ( A m a x . ) , and m o l a r
extinction
are l i s t e d below.
X i n X b i p y Be.
Colour.
White
CI
.
A max(ma).
352
M o l a r e x t i n c t i o n _,
coefficient,
xlQ^.
infl.
1.2
cream
364
2.4
I
Yellow
368
7.0
Ph.
Yellow
353
Me.
Yellow
395
2.7
Et.
Red
461
3-7
Fale
Br
The b i p j r i d y l
infl.
0.5
complexes o f d i - i s o p r o p y l b e r y l 1 i u m ,
i s o p r o p y l b e r y l l i u m h y d r i d e and d i - n - b u t y l b e r y l l i u m decomposed
readily
t o brown
tars.
n
The i n c r e a s e i n m o l a r e x t i j C t i o n c o e f f i c i e n t
electronegativity
explained
o f X d e c r e a s e s and t h e i r c o l o u r s
by e l e c t r o n - t r a n s f e r f r o m t h e Be-X
lowest unoccupied molecular o r b i t a l
Two
black
as t h e
are
bonds t o t h e
of the b i p y r i d y l .
c r y s t a l l i n e c o m p l e x e s o f b e r y l l i u m have
also
-22-
been p r e p a r e d , - b i s b i p y r i d y l b e r y l l i u m
d i l i t h i u m adduct
in
(bipy_Be) from the
o f b i p y r i d y l and d i c h l o r o ( b i p y r i d y l ) b e r y l l i u i n
'monoglyme* and c r y s t a l l i s e d
bisbipyridylberyllate
f r o m benzene;
from l i t h i u m b i p y r i d y l
lithium
and
dichloro-
( b i p y r i d y l ) b e r y l l i u m i n ether. This l a t t e r product reacts
w i t h bromine to form d i b r o i a o ( b i p y r i d y l ) b e r y l l i u m .
The m a g n e t i c
p r o p e r t i e s o f ( b i j j y ^ B e ) and i t s deep
c o l o u r a r e c o n s i s t e n t w i t h i t s f o r m u l a t i o n as a c o o r d i n a t i o n
complex o f the b i p y r i d y l anion
Beryllium
( ( b i p y ~ ) ^Be^ ).
Hydride.
Many methods f o r p r e p a r i n g b e r y l l i u m h y d r i d e have
been i n v e s t i g a t e d , and v a r y i n g d e g r e e s o f p u r i t y have been
obtained.
52.
I t was f i r s t
r e p o r t e d by S c h l e s i n g e r and
f r o m t h e r e a c t i o n between l i t h i u m aluminium
co-workers
h y d r i d e and
d i m e t h y l b e r y l l i u m i n e t h e r . The w h i t e , i n s o l u b l e ,
m a t e r i a l which
c o n t a i n s e t h e r , decomposed
involatile
t o b e r y l l i u m and
h y d r o g e n a t 125^C and r e a c t e d v i g o r o u s l y w i t h w a t e r , b u t n o t
w i t h d r y a i r . L a t e r workers
h o w e v e r , showed
be i n s e p a r a b l y c o n t a m i n a t e d
w i t h aluminium
C o a t e s and G l o c k l i n g
di-tert-butylberyllium,
be r e m o v e d , s t a r t s
" found
t h i s product to
t h a t 63mole p e r c e n t
the r e s t being ether which
t o decompose
T
and l i t h i u m . ~ ' ~ "
could not
a t 100°C and a t 150°C a
-23-
white, apparently non-crystalline solid
products,
e t h e r and i s o b u t e n e
f o r m e d . The
volatile
were removed and t h e r e s i d u e
was shown by h y d r o l y s i s t o be 89mole p e r c e n t b e r y l l i u m h y d r i d e .
P y r o l y s i s a t 210°C, d u r i n g w h i c h t i m e a l i t t l e
hydrogen
was
f o r m e d , y i e l d e d 96-3 mole p e r c e n t b e r y l l i u m h y d r i d e , t h e r e s t
being
tertiary butyl
groups. B e r y l l i u m hydride prepared
t h i s method was r e m a r k a b l y
temperature
r e s i s t a n t to water,
by
even a t room
and a c i d was r e q u i r e d t o c o m p l e t e t h e h y d r o l y s i s .
P y r o l y s i s a t 2^0-290°C c a u s e d i n c r e a s i n g l i b e r a t i o n o f
o
h y d r o g e n w h i c h became r a p i d a t 300
C.
-8.
Pyrolysis of ether-free di-tert-butylberyllium ' * at
200°C a f f o r d e d 97 mole p e r c e n t b e r y l l i u m h y d r i d e w h i c h has
a d e n s i t y o f 0.57 g m s / c c , and an X - r a y powder p h o t o g r a p h
showed no l i n e s a t t r i b u t a b l e
to the hydride.
The d i r e c t s y n t h e s i s f r o m b e r y l l i u m and b o t h
and
atomic
been t r i e d
h y d r o g e n a t h i g h t e m p e r a t u r e and p r e s s u r e
53
.
unsuccessfully.
A surface
has
, y
r e a c t i o n b e t w e e n l i t h i u m h y d r i d e and
b e r y l l i u m c h l o r i d e has been n o t i c e d b u t no p r o d u c t
isolated.
molecular
was
*
D i m e t h y l b e r y l l i u m r e a c t s w i t h d i m e t h y l alumiiniuni h y d r i d e
52.
in
was
t h e absence o f s o l v e n t .
" Although
trimethylaluminium
f o r m e d as i n d i c a t e d by t h e e q u a t i o n b e l o w , a p r o d u c t
from methyl
g r o u p s c o u l d n o t be
obtained:
free
-24-
2Me_AlH
+
Me_Be
^ 2Me„Al
2
d.
7
+
BeH_.
2
y
T h i s may be due t o t h e i n t e r m e d i a t e o c c u r r e n c e o f a r e v e r s i b l e
reaction:
Me AlH
2
+
No b e t t e r r e s u l t s
isopentane
Me Be
}
2
than
Me^Al
+
MeBeE.
t h e above c o u l d be o b t a i n e d i n
solution.
47.
Beryllium hydride
* r e a c t s w i t h two c o l s ,
a t 1faO°C l i b e r a t i n g h y d r o g e n and f o r m i n g
b e r y l l i u m ; w i t h diborane
but f a i l s
Hydride
dimethylamine
bisdimethylamino-
a t 95°C f o r m i n g b e r y l l i u m b o r o h y d r i d e ,
t o r e a c t w i t h t r i m e t h y l a m i n e even a t 210°C.
C h e m i s t r y o f o t h e r Group I I e l e m e n t s .
A l k y l - h y d r o g e n exchange r e a c t i o n s f o r t h e p r e p a r a t i o n
o f Group I I m e t a l
h y d r i d e s have been i n v e s t i g a t e d b u t a
h i g h d e g r e e o f p u r i t y was n e v e r
L i t h i u m aluminium
obtained.
h y d r i d e r e a c t s w i t h some d i a l k y l
d e r i v a t i v e s o f magnesium, z i n c , a n d cadmium i n e t h e r s o l u t i o n s
i n a somewhat s i m i l a r , b u t a p p a r e n t l y r a t h e r more
f o r w a r d way t o
the metal
straight-
thereaction with dimethylberyllium,
h y d r i d e s as w h i t e , i n v o l a t i l e ,
Z i n c a n d cadmium h y d r i d e s a r e o b t a i n e d
forming
i n s o l u b l e powders.
e t h e r - f r e e by t h i s
method b u t c o n t a i n s m a l l amounts o f o t h e r i m p u r i t i e s . The
"
-25-
f o r m e r decomposes a t room t e m p e r a t u r e
into
the corresponding
metal
and
and
the: l a t t e r
hydrogen, w h i l s t
at^*C.
dimethyl-
mercury r e a c t s w i t h l i t h i u m aluminium hydride
a t -80°C.
f o r m i n g m e r c u r y and
hydride
l i b e r a t i n g hydrogen. Zinc
is
i n s o l u b l e i n pure ether but d i s s o l v e s i n ether c o n t a i n i n g
a l a r g e excess o f d i m e t h y l a i n c presumably w i t h the
o f a. m e t h y l z i n c h y d r i d e . Z i n c h y d r i d e
a s i m i l a r degree o f p u r i t y
hydride
and
can
t o t h e above f r o m
d i e t h y l m a g n e s i u r n and
e t h e r and
and
from
hydride,
to note
the p r o p o r t i o n
concentration of s o l u t i o n s .
t h a t the
decomposition
t h e r e f o r e t h e p u r i t y o f t h e Group I I m e t a l
v a r i e s c o n s i d e r a b l y d e p e n d i n g on
preparation
the r e a c t i o n of
o f t e n a l u m i n i u m , d e p e n d i n g on
i s of i n t e r e s t
temperatures,
hydrides,
in
dimethylaluminium
ethereal l i t h i u m aluminium
o f r e a c t a n t s , o r d e r o f a d d i t i o n , and
It
obtained
dimethylzinc.
Magnesium h y d r i d e as p r e c i p i t a t e d
contains
a l s o be
formation
t h e method
(compare above method o f p r e p a r a t i o n o f
of
r
ber3 llium
hi.
h y d r i d e w i t h C o a t e s and
seems p r o b a b l e
prepared
Glockling's preparation
t h a t these
' ) . I t
e l e c t r o n - d e f i c i e n t hydrides
as a b o v e , a r e c o n t a m i n a t e d
to various extents w i t h
o t h e r e l e c t r o n - d e f i c i e n t m o l e c u l e s s u c h as a l u m i n i u m
or w i t h l i t h i u m h y d r i d e , or t h e i r methyl
hydride,
analogues, a l l of
w h i c h may be f o r m e d d u r i n g t h e r e a c t i o n .
„.
65.
.
66.
,
/ __ v 6 6 .
Zinc
, cadmium
, ana m e r c u r y t i l ;
. ,. ,
,
l o d i a e s as w a l l
-26-
as d i p h e n y l m e r c u r y
but pure hydrides
" are
r e d u c e d by l i t h i u m a l u m i n i u m
were n o t o b t a i n e d .
A third
s a t i s f a c t o r y preparation of zinc hydride
but
hydride
less
i n v o l v e s the
use
6 '-i
o f z i n c c h l o r i d e and
aluminium
chlorohydride..
A l k y l - h y d r o g e n exchange r e a c t i o n s b e t w e e n t h e
d e r i v a t i v e s o f magnesium, z i n c , cadmium and
diethylaluminium
hydride
67
been i n v e s t i g a t e d .
mercury
diethyl
and
i n t h e absence o f s o l v e n t , have
' Although
i n every case, the o n l y h y d r i d e
i n a p u r i t y o f 97%. ( No
t r i e t h y l a l u m i n i u m was
i s o l a t e d was
isolated
t h a t o f magnesium
m e n t i o n o f t h e i m p u r i t y was
The
z i n c and
and
d e p o s i t i n g t h e m e t a l u n d e r t h e r e a c t i o n c o n d i t i o n s used
(temperatures
cadmium compounds decomposed l i b e r a t i n g
made).
i n the range 25-50°C). D i e t h y l r n e r c u r y
w i t h d i e t h y l a l u m i n i u m hydride w i t h the formation
h y d r o g e n and
products
hydride
m e r c u r y . The
reflects
and
t h i s mainly
formation of
hydride
An
apparently
polymeric
( HZnBH, ) i s f o r m e d f r o m
n.
>
hydride
hydrogen.
hydride-borohydride
68.
d i m e t h y l z i n c and d l b o r a n e .
form anionic
" f o r m s an
hydride
e t h e r c o m p l e x L i ( Z n P h K)OEt.
c
with l i t h i u m hydride
i n a s i m i l a r way
b e r y l l i u m compound. R e c e n t l y
or
mixed
O r g a n o - z i n c compounds a l s o
complexes. D i p h e n y l z i n c
mercury
to give mercury
w h i c h s u b s e q u e n t l y b r e a k s down t o m e r c u r y and
reaction
ethylmercury
b r e a k s down t o e t h a n e and
reacts with diethylaluminium
reacts
o f ethane ,
presence o f ethane i n the
the i n t e r m e d i a t e
hydrogen
to the
t h e compound
analogous
(NaH(Et_Zn)„)
t
-27-
has
been f o r m e d by t h e r e a c t i o n o f s o d i u m h y d r i d e w i t h
d i e t h y l z i n c i n 'monoglyme' o r ' d i g l y m e ' b u t a t t e m p t s t o
i s o l a t e i t r e s u l t e d i n i t s decomposition.
No r e a c t i o n was
observed i n e t h e r , t e t r a h y d r o f u r a n , aromatic
or aliphatic
h y d r o c a r b o n s . Sodium h y d r i d e a l s o r e a c t s w i t h , z i n c c h l o r i d e
in glycol
ethers forming
(NaH(ZnCl^)^)
w h i c h c o u l d n o t be
i s o l a t e d , b u t two c o m p e t i n g r e a c t i o n s a p p e a r t o t a k e
s i n c e s o d i u m c h l o r i d e and z i n c m e t a l
with
together
some gas e v o l u t i o n w h i c h i s more r a p i d a t e l e v a t e d
temperatures
'
The G r i g n a r d
has
are deposited
place
reagent
(HHgX ) d e r i v e d f r o m hydrogen-
been o b t a i n e d as b i s - t e t r a h y d r o f u r a n and e t h e r
complexes from
diborane
crystalline-
t h e r e a c t i o n s o f ethylmagnesium h a l i d e s w i t h
i n the appropriate solvent a t -25°C.^'
B Hg
2
+
6EtMgX
V&EMgX
Analogous s o l v e n t - f r e e p r o d u c t s
the p y r o l y s i s o f Grignard
C^H^MgBr
+
2Et.^B.
have been o b t a i n e d
reagents.
from
71 72.
'
2
~ ° °> C H
2
Zf
+
EMgBr.
73 •
L a t e r workers
have d e s c r i b e d
this
compound,
p o s s i b l y i n c o r r e c t l y , as an e q u i m o l a r m i x t u r e o f magnesium
h y d r i d e and b r o m i d e s i n c e a t 300-350°C. i t decomposes
into
magnesium, h y d r o g e n and magnesium b r o m i d e .
Some d i a l k y l m a g n e s i u m compounds decompose a t e l e v a t e d
temperatures
e v o l v i n g o l e f i n and l e a v i n g magnesium h y d r i d e as
residue, although
side reactions also
take place
resulting
75 7^ •
in
t h e f o r m a t i o n o f some p a r a f f i n .
'' " Magnesium
hydride
p r e p a r e d by t h i s method decomposes i n t o i t s e l e m e n t s a t 280300°C.
The r e a c t i o n s b e t w e e n d i b o r a n e and d i e t h y l m a g n e s i u m
•74 111 112 113.
a p p e a r t o be r e l a t i v e l y c o m p l e x . ' '
'
'
I n ether
s o l u t i o n and w i t h e x c e s s d i e t h y l m a g n e s i u m , magnesium h y d r i d e
is
formed; w i t h excess d i b o r a n e ,
magnesium b o r o h y d r i d e
is
1-
f o r m e d , s u r p r i s i n g l y as a w h i t e m i c r o c r y s t a l l i n e
but
t h e r e a c t i o n s a p p e a r t o go t h r o u g h
several
precipitate'
intermediate
s tages.
P u r e d i e t h y l m a g n e s i u m ( c o n t a i n i n g no a l u m i n i u m )
a b s o r b s d i b o r a n e v / i t h t h e f o r m a t i o n o f MgH_(BEtH_)_
d
d
w h i c h r e a c t s w i t h more MgEt^ f o r m i n g EtMgH._,BEtH
t h i s r e v e r t s t o I on r e a c t i o n w i t h d i b o r a n e .
are
c o l o u r l e s s a i r - s e n s i t i v e viscous
polymeric
( I I ) and
B o t h I and I I
and t h e r e f o r e p o s s i b l y
l i q u i d s a t room t e m p e r a t u r e w h i c h
above 80°C, i n t o magnesium h y d r i d e
(I)
d
decompose
and EtBK„ and Et^BH
r e s p e c t i v e l y . The m i x e d b o r o n - m a g n e s i u m compounds I and I I
111.
a r e f u r t h e r d e - a l k y l a t e d by r e a c t i o n w i t h Et^BH;
MgH (BEtH )
+ Et.BH
>Mg(BH )
+• 2 E t _ B .
2
2EtMgH BHH
2
2
+
2
6Et,,BH
i f
> 2MgH (BRH )
When a l u m i n i u m i s p r e s e n t
2
( as
2
2
2
+
*fEt B.
triethylaluminium),
more c o m p l e t e d i s p r o p o r t i o n s t i o n i s c a t a l y s e d ,
producing
-29-
e t h e r - i n s o l u b l e EtMgBH^ and MgK-.BEt^. The f o r m e r i s s t a b l e
in
but
t h e presence
o f t r i - e t h y l a l u m i n i u m and d i e t h y l m a g n e s i u m
decomposes above 100°C. p r o d u c i n g MgCEH^}^ and Et^Mg
which
recombine
f o r m i n g 2MgH,,
+
2EtBH
2
or i f s u f f i c i e n t
EtpMg i s p r e s e n t :
Mg(BKi,)The l a t t e r
+
JEt-Mg
2
of
2
2Et-JB.
into
o f a l u m i n i u m , EtMgH^BEtH and
t o f o r m MgR^BEt^ and EtMgBH^. A d d i t i o n
tri-ethylaluminium
initiates
if
recombine
+
(MgH-^BEt-^) decomposes above 80°C.
HgH„, and Et-,B. I n t h e p r e s e n c e
HMgH BEt
> 4MgH_,
t o a s t a b l e s o l u t i o n o f EtMgH BEtH
0
t h e r e a c t i o n and t h e same p r o d u c t s a r e o b t a i n e d as
a l u m i n i u m were p r e s e n t d u r i n g t h e r e a c t i o n o f E t M g and
2
„ .. 112.
B^h^
c o.
in
formed
but
is
the presence
o f a l u m i n i u m a l k y l s , MgCBH^)-, i s
by t h e r e a c t i o n o f Et-^Mg and 3.pHg a t room t e m p e r a t u r e ,
when a l u m i n i u m i s a b s e n t , a s e r i e s o f c o m p l e x i n t e r m e d i a t e s
formed which
r e q u i r e h e a t i n g t o 100°C. t o decompose t h e
113.
intermediates i n order to give the borohydride.
The h i g h p r e s s u r e and t e m p e r a t u r e r e a c t i o n o f magnesium
and h y d r o g e n
i n t h e presence
o f magnesium i o d i d e a l s o
75 •
r e s u l t s i n t h e f o r m a t i o n o f magnesium h y d r i d e . .
A s l o w r e a c t i o n b e t w e e n d i e t h y l m a g n e s i u m and s i l a n e
i n ether results i n the gradual deposition of c r y s t a l l i n e
(HMgOEt) w h i c h i s s t a b l e t o 2 0 0 ° C . '
n
7 6
-30-
A comparison
of decomposition
h y d r i d e s , whatever
their stability
temperatures of
these
t h e i r method o f p r e p a r a t i o n , shows
decreases
considerably with
that
increasing
a t o m i c w e i g h t o f t h e m e t a l a t o m . However, i t i s a p p a r e n t
t h a t t h e i n v e s t i g a t i o n o f t h e Group I I m e t a l h y d r i d e s
been somewhat i n a d e q u a t e , and
f u r t h e r study i n t h i s
Hydride Chemistry
that
t h e r e i s much scope f o r
area.
o f t h e Group I I I
Much w o r k has
has
elements.
been done on t h e h y d r i d e s and
on r e a c t i o n s
o f a l k a l i m e t a l h y d r i d e c o m p l e x e s o f t h e o r g a n o compounds
o f b o r o n and
aluminium,
v e r y much l e s s h a v i n g been r e p o r t e d
c o n c e r n i n g t h e r e m a i n i n g Group I I I
L i t h i u m h y d r i d e and
t r i p h e n y l b o r a n e f o r m a 1:1
a t 180°C, t h e p r o d u c t r e t a i n i n g
recrystallised
when h e a t e d
formed
and
elements.
f i v e m o l s . o f d i o x a n when
from t h a t s o l v e n t but l o s i n g
t o 100
o
C.
complex
three
mols.
78
in_ v a c u o . " S i m i l a r compounds a r e
u
f r o m s o d i u m h y d r i d e and
f r o m s o d i u m h y d r i d e and
triphenylborane i n ether
triethylborane i n ether,
"',
'diglyme'
80
o r hexane,
" but these l a s t
of c r y s t a l l i s a t i o n .
The
p r o d u c t s r e t a i n no s o l v e n t
l a t t e r p r o d u c t , NaBEt.,H, w h i c h i s
a colourless viscous o i l ,
s o d i u m h y d r i d e and
two
decomposes a t 135°0. i n v a c u o .
t r i e t h y l b o r a n e , and
into
disproportionates i n
' d i g l y m e •' a t 170°C. i n t o s o d i u m b o r o h y d r i d e and
sodium
t e t r a - e t h y l b o r a t e . T r i a r y l b o r a n e - a l k a l i m e t a l compounds
r e a c t w i t h methanol also
forming
an a n i o n i c b o r o n
hydride
d e r i•v a t i v e . 79.
2Ph„B' H a
+
+
+
MeOE
» N a (Ph,B. OMe ) ~
y
+
+
l!a (?h_BH)~
y
The r e s t o f t h e v e r y
extensive
o f boron i s l e s s r e l e v a n t t o t h i s
y
hydride
chemistry
t h e s i s , and i s n o t
discussed
further.
A l k a l i metal hydrides
react with
organo-aluminium
compounds i n a s i m i l a r way t o t h o s e o f b o r o n and b e r y l l i u m .
Sodium h y d r i d e
reacts w i t h both
t r i e t h y l a l u m i n i u m and
o 81 .
i n h e p t a n e a t 80 C.
' and l i t h i u m
o 82
diethylaluminium hydride
hydride
r e a c t s w i t h t r i p h e n y l a l u m i n i u m a t 250-260 C.
forming
1:1 c o m p l e x e s . Two p r o d u c t s ,
from
h o w e v e r , can be
t h e r e a c t i o n o f t r i e t h y l a l u m i n i u m and l i t h i u m
The l i q u i d 1:1 complex i s f o r m e d by h e a t i n g
at
1j50°C. and when t h i s p r o d u c t
this
i s mixed w i t h
y
obtained
hydride.^"
mixture
triethyl-
a l u m i n i u m , two phases a r e f o r m e d , t h e l o w e r l a y e r
the coirujosition LiK(AlEt_)-,
",
having
H y d r i d e c o m p l e x e s NaAl-Et_.H,
<^ •
y
NaAlEt-jE^ b u t n o t N a A l E t H - can be p r e p a r e d by h e a t i n g
t e t r a - e t h y l a l u m i n a t e and s o d i u m a l u m i n i u m h y d r i d e
in
sodium
together
t h e r i g h t p r o p o r t i o n s a t b0-1C0 C.
The r e a c t i o n s b e t w e e n a l k a l i m e t a l h y d r i d e s
and
a l k y l a l u m i n i u m h a l i d e s have been used f o r t h e p r e p a r a t i o n
of alkylaluminium
hydrides
and t h e i r
a l k a l i metal
hydride
.
85,86,37,88.
adducts.
MH
+
R A 1 C 1 — > MCI
2
«f
IfE»ME AlH
R A1H
2
2
( M r e p r e s e n t s an a l k a l i m e t a l
3EtAlCl
?
+
7NaH
> Et AlH
2
2 >
)
+
EtAlF_
+
2
NaAlH,.+- 6NaCl
Dimethylaluminium h y d r i d e i s obtained from the
r e a c t i o n between l i t h i u m aluminium
h y d r i d e and t h e t r i m e t h y l
89.
d e r i v a t i v e s of boron,
trimeric
of
aluminium
i n hydrocarbon
and g a l l i u m .
s o l v e n t s , b u t i t s vapour c o n s i s t s
a m i x t u r e o f d i m e r and t r i m e r m o l e c u l e s .
ethers d i s s o c i a t e the trimers with
c o m p l e x e s and an i n f r a r e d
these
" I t is
Amines and
the formation
ofcoordination
spectroscopic i n v e s t i g a t i o n of
compounds haS? l e d t o t h e s u g g e s t i o n
that the trimers
a r e a s s o c i a t e d by means o f h y d r o g e n b r i d g e s and t h e h e a t o f
d i s s o c i a t i o n i s e s t i m a t e d as 15-20 k c a l s . p e r h y d r o g e n bond
39 90.
as compared w i t h 10 k c a l s . f o r a m e t h y l
Recently
bridge.
d i a l k y l a l u m i n i u m h y d r i d e s have been
f r o m t r i a l k y l a l u m i n i u r a compounds and t r i - a l k y l .
at
and
80°C. E t h e r s
and t e r t i a r y
amines i n h i b i t
prepared
t i n hydrides
the r e a c t i o n
thus the e l e c t r o n - d e f i c i e n t s t a t e o f the aluminium
i s important since a t r a n s i t i o n state i n v o l v i n g
and
'
aluminium
compounds i s p r o b a b l y
first
the t i n
108
formed.
J
*
A l k y l a l u m i n i u m h y d r i d e t r i m e t h y l a m i n e -complexes
can
a l s o be p r e p a r e d
by t h e a l k y l a t i o n o f t r i m e t h y l a m i n e -
a l a n e w i t h d i a l k y l r a e r c u r y compounds o r t h e e q u i l i b r a t i o n o f
-33-
trimethylamine-alane w i t h organo-aluminium
trimethyiamine
91
complexes.
The
especially
c o o r d i n a t i o n compounds o f als.ne ( a l u m i n i u m
t h e t r i m e t h y i a m i n e c o m p l e x e s have been
subject of several studies i n recent years.
i n v e s t i g a t i o n o f t h e mono- and
has
hydride)
the
Spectroscopic
b i s - trimethyiamine
complexes
shown t h a t b o t h compounds a r e monomeric i n t h e gas
phase
93 •
and
t h e b i s compound a l s o i n t h e s o l i d
the f i v e
co-ordinate
been c o n f i r m e d
prepared
state,
" i n which
trigonal biprismatic structure
by X - r a y a n a l y s i s . The
from l i t h i u m
aluminium
has
mono-amine c o m p l e x i s
h y d r i d e and
trimethyiamine
h y d r o c h l o r i d e i n e t h e r b e l o w room t e m p e r a t u r e
and
this
r e a c t s r e v e r s i b l y w i t h t r i m e t h y i a m i n e f o r m i n g the b i s
c ompound.
LiAlH
+
e^KHCl
j
'
S i m i l a r l y a 1:1
LiCl
t h e d i a m i n e and
i s d i m e r i c i n t h e gas
T
c o m p l e x i s f o r m e d w i t h N,N,NJN|-
t h e amine as s o l v e n t and
from
he_N (Me-jOpAlK
Ne-EA1H
3
3
d
t e t r a m e t h y l e t h y l e n e d i a m i n e from
in
+
the diamine
lithium
dihydrocnloride
aluminium
hydride;
b i s - 1 r i m e t h y l a m i n e ..alane. T h i s
phase, a s s o c i a t i o n p r o b a b l y
or
compound
occuring
by means o i h y d r o g e n b r i d g e s .
Dialkylammonium h a l i d e s r e a c t w i t h l i t h i u m
ydride forming
tertiary
N,-dialkylamino-al^nes
95
aluminium
which l i k e
a m i n o - a l a n e s ,9S i-eact w i t h m e t a l h y d r i d e s
the
(Li,Ma,
-34-
Ca, b u t n o t Mg.) f o r m i n g m e t a l
Me,NAlH-,
+
2AlH„NMe„
d
+
NaH
NaH
Soluble aluminium
mols. o f l i t h i u m
> NaAlH..
+
» NaAlH.
hydrides.
96.
Me,N
HAl(NMe„)_
£
2.
h y d r i d e i s prepared from three
*
cL
aluminium
aluminium
+
H-
h y d r i d e a n d one m o l . o f a l u m i n i u m
c h l o r i d e i n ether, b u t q u i c k l y polymerises
into
an i n s o l u b l e
97
product.
When t h e above r e a c t i o n i s c a r r i e s o u t i n t h e •
presence o f donor molecules,
s u c h as d i o x a n ,
tetrahydrofuran
o r amines, t h e c o r r e s p o n d i n g
a r.e f o r m e dj . 9 8 , 9 9 'i 1 0 0', 1 0 1 .
c o o r d i n a t i o n compounds o f a l a n e
QV
C o o r d i n a t i o n compounds o f a l u m i n i u m
h a l i d e s c a n be p r e p a r e d
a l k y l s , a r y l s , and
froir- t h e c o o r d i n a t i o n compounds o f
102.
alane
and an o r g a n o m e t a l l i c
H_AlNMe
R represents
3 / 2 R Hg
?
?
+
6BuLi
L i t h i u m aluminium
of
the f i f t h
> R_AlNMe_
+
3 / 2 Kg
+
3/2 H
2
a r y l , a l k y l o r halogen.
3H AlNMe
2
+
3
compound.
} (3u AlNMe ),
?
p
+
6LiH
hydride reacts w i t h the hydrides
g r o u p o f e l e m e n t s , l i b e r a t i n g h y d r o g e n and
forming L i A l ( E H ) ^
2
( w h e r e E = N.P o r A s ) b u t c o r e
hydrogen
atoms c a n be r e p l a c e d , d e p e n d i n g on t h e r a t i o o f t h e r e a c t a n t s .
The above compounds r e a c t w i t h w a t e r
107.
group h y d r i d e s .
,
j
.
r e l e a s i n g 'the f i f t h
*
Mono- and b i s - t r i m e t b y l a m i n e g a l l a n e s a r e p r e p a r e d
from l i t h i u m
gallium hydride i n a similar
way t o t h e a l a n e s .
1 0 * 104
^'
-35-
Boron t r i f l u o r i d e
a c t s as a s t r o n g e r a c c e p t o r
amine and removes i t f r o m
trimethylamine-gallane leaving
g a l l i u m h y d r i d e w h i c h decomposes
room t e m p e r a t u r e .
to trimethyl-
i n t o i t s elements a t
When t h i s r e a c t i o n i s c a r r i e d
out i n
the presence o f o t h e r donors, d i f f e r e n t c o o r d i n a t i o n
f-
n
.105,106.
!
01 g a l l a n e c a n be
Spectroscopic
compounds
prepared.
Background.
The i n f r a r e d
s p e c t r a o f b e r y l l i u m compounds
have
n o t been s t u d i e d t o a n y g r e a t e x t e n t . The i n f r a r e d and Raman
s p e c t r a o f s o l i d d i m e t h y l - b e r y l l i u m have shown, t h a t
polymeric
m a t e r i a l has
this
symmetry w i t h s i x v i b r a t i o n s
a c t i v e i n t h e i n f r a r e d and s i x i n t h e Raman s p e c t r u m . The
assignment o f frequencies
decomposition
Table I
product,
beryllium carbide, are l i s t e d i n
. Significantly,
14-00-1500 cm"
f o r t h i s m a t e r i a l and i t s t h e r m a l
t h e r e was no a b s o r p t i o n
r e g i o n where most compounds
containing
g r o u p s a b s o r b s t r o n g l y on a c c o u n t o f t h e m e t h y l
deformation
(S^
—1
and 1255 cm
to deformations
methyl
asymmetric
CE, ) b u t t h e r e were two v e r y s t r o n g bands
1
a t 124-3 cm"
i n the
—1
( Raman 1255 cm
o f the b r i d g i n g methyl
compounds , M e Z n
1 1 6
2
a b s o r p t i o n s due t o o
, Me^B
1 1 7
) w h i c h a r e due
groups. I n r e l a t e d
1 8
, M e ^ A l ^ and M e ^ A l - . C l ^
CH-, a r e much weaker t h a n
asym.
3
'
1 1 9
' ,
t h o s e due
-36-
to
O
CH,.
sym.
?
The s p e c t r a o f o r g e u i o - a l u m i n i u m compounds have been
*i i 3 "11Q
extensively studied.
'
I n t r i m e t h y l a l u m i n i u m the methyl-
m e t a l s t r e t c h i n g v i b r a t i o n does n o t d i f f e r g r e a t l y i n
frequency
f r o m t h e m e t h y l r o c k i n g v i b r a t i o n , and t h i s
has
made t h e i n t e r p r e t a t i o n o f s p e c t r a more d i f f i c u l t t h a n m i g h t
have been e x p e c t e d . The r e l a t i v e weakness o f &
CH-, a t
a sym. y
*\kkO cm"' i n (CH_)/-A1., and 11 +0 c m
i n (CD_).A1_ c o n t r a s t s
5 o d
5> 'o 2
1
;
with
t h e s t r o n g a b s o r p t i o n due toS
- 1
m
CH^ a t 1255
cm ^
-1
( b r i d g i n g ) and 1208
955
and
part
cm
cm
-1
( t e r m i n a l ) w h i c h move t o 1036
cm
r e s p e c t i v e l y on d e u t e r a t i o n . 'This r e s u l t s i n
from t h e symmetric
d e f o r m a t i o n h a v i n g some o f t h e
c h a r a c t e r o f the aluminium-carbon s t r e t c h i n g v i b r a t i o n s
which
a r e s t r o n g and a r e l i s t e d b e l o w :
V* asym. ( ~ ' ^
CCE )gAl
772
)
c m
3
5
4
2
2
(CD^AlgClg
v
Vsym.
= ™ (cm
616
2
(CD,)^A13 o
2
(CH ) A1 C1
/
v
677
570
720
585
664
530
^
v
A4m
N
- 1
-371
J
\
\ T
,_
O
>
o
O
9
«
0
Modes e x h i b i t i n g s h i f t s
on d e u t e r a t i o n
w e r e c o n s i d e r e d t o be p r i m a r i l y
of
t h e methyl group
itself.
in
which
group
the methyl
i n t h e range
associated with vibrations
S t r e t c h i n g v i b r a t i o n s v(Afc-Me)
moves as a u n i t s h o u l d
much l e s s on d e u t e r a t i o n .
1.2-1.3
change
I f t h e CH^ and CD_ g r o u p s a r e
r e g a r d e d as atoms o f a t o m i c w e i g h t 15 and 18 r e s p e c t i v e l y ,
t h e n Vg/vp s h o u l d be / 1 8 / 1 5 = 1.096 i f t h e mass o f t h e
aluminium
27-
i s r e g a r d e d as i n f i n i t e
o r 1.06*
v
v
ma
Thus a r e l a t i v e l y l o w v a l u e o f g / j - , -J
i n d i c a t e a metal-methyl
i f i t i s t a k e n as
be t a k e n t o
s t r e t c h i n g v i b r a t i o n , and h i g h e r
v a l u e s 1 . 2 - 1 . 3 may be t a k e n t o i n d i c a t e r o c k i n g
or deformation
modes o f t h e m e t h y l
*
x 2?
I 1 8 + 27
-
groups.
1
15 x 27 \
= 1.059
15 + 27 /
2
Monomeric d i m e t h y l b e r y l l i u m , w h i c h p r e s u m a b l y i s
linear, will
zinc
no d o u b t have a s i m i l a r s p e c t r u m
and d i m e t h y l m e r c u r y w h i c h
essentially
b o t h have
f r e e r o t a t i o n o f methyl groups.
two compounds a r e l i s t e d
i n Table
to dimethyl-
, symmetry w i t h
The
assignments
for
these
and
C-Zn s t r e t c h i n g f o r c e c o n s t a n t s have been c a l c u l a t e d
1
2.4-5 x 10^ and 2 . 3 9 x 10"" dynes/cm.
The a b s o r p t i o n band a t 83O cm
I I and t h e C-Hg
t o be
respectively.
i nberyllium acetyl-
-38-
acetonate
and s u b s t i t u t e d d e r i v a t i v e s h a s been a s s i g n e d t o
the s t r e t c h i n g v i b r a t i o n
o f t h e b e r y l l i u m - o x y g e n bond, w i t h
a f o r c e c o n s t a n t o f 2 . 3 x 1 0 ^ dynes/cm.
e'ther c o m p l e x e s o f b e r y l l i u m c h l o r i d e
t h e r a n g e ( 7 5 0 - 9 0 0 cm
includes
a study o f the
f r o m 1SOO-650 cm
) i n which
the s t r e t c h i n g
v i b r a t i o n s o f t h e b e r y l l i u m - o x y g e n bond a r e s t a t e d
found
and t h e s e
frequencies are l i s t e d
Cl-,Be(0Me-,)
- Be(0Me )
Po
888
s
Cl Be(0Ht )
2
860
ra
2
2
2
2
2
887
s
Cl Be(tetrahydropyran)
2
864
s
Cl Be(dioxan)
2
Cl Be(0H )
2
2
906
2
s
8 9 0 , 9 0 5 , 927-
Z f
—1
The
121 .
below
s=strong
m=medium
Cl_,Be( t e t r a h y d r o f u r a n )
2
t o be
v e r y s t r o n g bands a t 8 0 0 cm
—1
and 1 0 9 0 cm
i n beryllium
9
h y d r o x i d e have been a s s a y e d as v(Be-OH) and £(0H)
122
respectively.
No b e r y l l i u m - n i t r o g e n f r e q u e n c i e s have been
assigned
-1
but
these a r e s t a t e d
t o o c c u r b e l o w 65O cm
i n Cl Be(KNMe )
2
p
2
123
and
CI Be(NMe-j)
2
2
I n boron
c o o r d i n a t i o n compounds o f
t h e t y p e R^E.NR,, t h e 3-N s t r e t c h i n g
in
t h e 7 0 0 - 8 0 0 cm"
t h e 3-N f r e q u e n c y
—1
( 1 3 3 0 - 1 5 3 0 cm
frequency
usually
occurs
r e g i o n b u t i n compounds o f t h e t y p e FLjB.NK
i s found
a t considerably higher wavelengths
124
).
" The v a r i a t i o n i n t h e s e
f r e q u e n c i e s has
g e n e r a l l y been i n t e r p r e t e d as b e i n g m a i n l y due t o a change
in
the m u l t i p l i c i t y
1 5 5 2 era
Ph^B.NH
o f t h e B-N bond so t h e h i g h
o b s e r v e d i n t h e case o f t h e d i m e r i c
2
compound
i n w h i c h t h e B-N bond must s u r e l y be s i n g l e , seems
remarkably
h i g h . However v i b r a t i o n a l modes due t o t h e
s t r e t c h i n g o f b o r o n - n i t r o g e n bonds i n a r i n g
expected
frequency
t o be c l o s e l y c o m p a r a b l e t o t h o s e
can s c a r c e l y be
due t o an i s o l a t e d
12^.
B-N bond i n a monomeric compound.
"
s t r e t c h i n g frequencies would probably
to lower
similar
Beryllium-nitrogen
n o t be f a r d i s p l a c e d
wavelengths from b o r o n - n i t r o g e n
frequencies i n
t y p e s o f compounds.
F o u r bands were o b s e r v e d i n t h e a b s o r p t i o n s p e c t r u m a t
5 0 0 ° o f b e r y l l i u m c h l o r i d e ( m o s t l y d i m e r ) o f w h i c h o n l y two
were observed i n t h e e m i s s i o n
—1
bands a t 1 1 1 3 cm
s p e c t r u m a t 1 0 0 0 ° . These two
-1
and k&2 cm
were assigned
t o t h e asymmetric
s t r e t c h i n g and b e n d i n g modes r e s p e c t i v e l y i n monomeric
b e r y l l i u m c h l o r i d e , b u t i t i s p o s s i b l e t h a t o t h e r polymer
bands a r e masked by t h e monomer band a t 4 8 2 err..
-1
p a r t i c u l a r l y by t h e 1 1 1 jj cm
Examination
and
126 .
band.
o f the spectra o f b e r y l l i u m s a l t s c o n t a i n i n g
f l u o r i n e has l e d t o t h e c o n c l u s i o n t h a t v ( B e - F ) o c c u r s i n
the 800-1000 cm
- 1
region.
The i n f r a r e d
a broad
1 2
^"
s p e c t r u m o f magnesium h y d r i d e
band ( 9 0 0 - 1 6 0 0 cm
-1
contains
—
) w i t h a maximum a t 1 1 6 0 cm
1
w h i c h has been i n t e r p r e t e d as b e i n g due t o h y d r o g e n b r i d g i n g
127-
LI
i.n t n e convcouna:
"
The
1.1
M
*'
primary
feature of the absorption spectra of t h i n
f i l m s o f l i t h i u m h y d r i d e and d e u t e r i d e a t room t e m p e r a t u r e i s
a broad
a b s o r p t i o n c e n t r e d on 5 8 8 c m
f o r t h e h y d r i d e and 446cm
f o r t h e d e u t e r i d e , and t h e s e a r e p r o b a b l y due t o l a t t i c e
128
vibrations.
at
" The i n f r a r e d
spectrum of l i t h i u m hydride
1000° consists o f r o t a t i o n a l
vapour
fine structure extending
1 6 0 0 - 1 'lOOcrrT ' . The p o s i t i o n o f t h e n o n - e x i s t e n t
from
Q branch i n
t h i s s p e c t r u m has been c a l c u l a t e d (from, d a t a on t h e P and R
b r a n c h e s ) as 1 4 0 6 c m
The
infrared
'.
s p e c t r a o f t r i m e t h y l a m i n e c o m p l e x e s have
been q u i t e e x t e n s i v e l y s t u d i e d ; t h e f r e q u e n c i e s o b s e r v e d and
t h e a s s i g n m e n t s made b o t h
trimethylamine-borane
f o r t h e f r e e base '-- -' ^ 1 •
l
" are l i s t e d
>(
>
i n Tables I I I
a n c
,
£
o r
and I V
respectively.
In
t h i s w o r k , a s s i g n m e n t s o f t h e b e r y l l i u m - m e t h y l and
-hydride infrared
f r e q u e n c i e s have been made. An a g u i d e t o
t h e r e g i o n s where t h e s e
found
f r e q u e n c i e s may be e x p e c t e d
t h e two g r a p h s shown i n F i g u r e
graph o f t h e s t r e t c h i n g
t o be
I have been d r a w n . The
frequencies d e r i v e d from
s-pectra f o r t h e m o n o - h y d r i d e s o f t h e f i r s t
oericd
the electronic
FIGURE I,
Mono-hydrides
of the first
period
elements.
Atomic No. Freouencv(cm~!)
Atomic
Number.
m
6(q-
3
4
5
6
7
8
9
1406
2059
2366
2861
3300
3735
4138
5(B)3fLi)
IOOO
2000
3000
Frequency (cm'')
4000
Methyl compounds of the first period e/ements.
Stretching
Atomic Atomic No. Force
x 10 {dynes/cm)
Constant
Number.
9(F)
5
6
8(0H
7
7H
8
6fc)
9
s
5(&)1
3(Li)-1
I
2
3
4
5
6
7
Stretching Force Constant (dynes/cm) xto*
-41-
elements approximates c l o s e l y
which
is
to a straight line
the extrapolated beryllium-hydrogen
188O cm '' a l t h o u g h
-
expected
stretching
frequency
t h e c a l c u l a t e d v a l u e i s 2 0 5 9 cm"^ . ^ '
Thus t h e t e r m i n a l b e r y l l i u m - h y d r o g e n
is
from
stretching
i n t h e r a n g e 18S0-2100 cm
frequency
. Association
i n v o l v i n g h y d r o g e n b r i d g e s w o u l d cause t h e b e r y l l i u m - h y d r o g e n
frequencies t o occur a t ' l o w e r frequency
as i s f o u n d
i n the
13^.
Doron h y d r i d e s :
v ,(cm~' )
v^vcm
1915
1606
1972
1605
1880
1605
1850
1582
1
1
B
H
2 6
Me^B H
2
2
.3 ^ .5
E
t
B
H
4 2 2
where v ^
)
and v^^, a r e t h e s y m m e t r i c o u t o f phase and t h e
a s y m m e t r i c i n phase r i n g s t r e t c h e s r e s p e c t i v e l y .
13
The t e r m i n a l b o r o n - h y d r o g e n s t r e t c h i n g f r e q u e n c y u s u a l l y
occurs
a t a b o u t 2 5 0 0 cm
From t h e g r a p h
o f the f o r c e constants o f the methyl
d e r i v a t i v e s o f the f i r s t p e r i o d o f elements,
methylated
compounds) t h e e x t r a p o l a t e d b e r y l l i u m - m e t h y l
f o r c e c o n s t a n t i s 3 » 0 dynes/cm. f r o m w h i c h
s t r e t c h i n g frequency
methyl
( i n fully-
i s calculated
the
t o be 9 5 0 cm
approximate
(the
g r o u p i s c o n s i d e r e d as an atom o f mass 1 5 ) •
TABLE
INFRARED (cm" )
I.
RAMAN (cm )
ASSIGNMENTS
DIMETHYLBERYLLIUM. 2 9 .
s
g3e C
n
455")
510 ,
535
567
835
s
m
vs
?
J
\
P
}
S CH
923J
12^3
1255
2885
2912
V Be C
vs
vs
s
vs
J
2912
C H
3
3
v
CH,
v ^ -CH^
sym.
3
aS
i:i
BERYLLIUM CARBIDE
A-30 vs
s
555
1 1 2 5 vs
combination
band(2x555)
-44-
TABLE
II.
DIMETKYLMERCURY
I.R.(cm
)
DIMETHYLZINC
Raman(cm
)
1
I.E.(cm" )
1
Raman(eg
)
2898
1158
504
2910
1182
515
v G-H
CH., b e n d i n g
v C-M-C
v C-H
8
CH,
v e-M-c-^
v C-H
2870
1185
615
2940
1444
2880
1205
559
2966
1475
"asym
j>
p CH_
C-M-C b e n d i n g
v C-H
« CHj
p CH
3
707
787
144
2833
1388
620
156
2869
1443
700
TABLE
III,
TRIMETHYL AMINE 3 0 , 1 3 1
1
INFRARED
1
(cm" )
ASSIGNMENT,
2967,2777,2822
1466,1402
1272,1183,1104
v C-H
CH., bend i n <r
1043
?
v
826
v
cf.
6 h
B T B .
C
-
N
^
9
3
0
C
E
3
asym.
sy:?i.
I n dirnethylamine v
C-N o c c u r s a t 1024 C-TI
asym.
-1
V
16
ASSIGNMENTS . '
C-N
C-N
and
-45-
TABLE I V .
Me,N.BH~
, .?
'J
132
Me_N.BD,
•
3
ASSIGNMENT '
3•
2270 s
1340 v s
1255 m
1117 m
1656 m
1355 si
1248 m
840 s
850 s
850 s
p CH_
2372 s
1480 ms
1780 v s
1480 ms
v B-H(D)
6
1450 ms
1460 ms
1402 m
1402 w
$ CH^
1169 vs
860 s
$ BE_(D )
1115 m
1115 w
p
1005 s
995 s
w CH,
1005 s
995 s
913 m
720 ('Raman )
v CN
p EH ( D _ )
v B-E(D)
S CEj
v B-N
S BH-.CD-.)
C
3
Oil-,
3
t h e above T a b l e s , t h e f o l l o w i n g a b b r e v i a t i o n s
In
H
CH
have
been u s e d .
$
=
deformation
vs = v e r y
strong
p = rocking
s = strong
v =i
ms = medium
stretching
v; = w a g g i n g
m = medium
w = weak.
strong
-46-
Object of the I n v e s t i g a t i o n .
T h i s was p r i n c i p a l l y
of
the r e c e n t l y prepared
to explore
the p o t e n t i a l i t y
compound, s o d i u m h y d r i d o d i e t h y l -
45
beryllate
and i t s a n a l o g u e s , as i n t e r m e d i a t e s f o r t h e
p r e p a r a t i o n o f some a l k y i b e r y l l i u m h y d r i d e s , b e r y l l i u m
h y d r i d e and t h e i r c o o r d i n a t i o n compounds.
As t h e r e was a p a u c i t y o f i n f r a r e d d a t a
to organo-beryllium
establishment
the present
appertainin
compounds, i t was hoped t h a t t h e
o f such c o r r e l a t i o n s w o u l d be d e r i v e d
work.
from
I
EXPERIMENTAL
-47-
Apparatus
Nitrogen
and
Techniques.
supply.
As most o f t h e compounds s t u d i e d
o x y g e n and
m o i s t u r e , a l m o s t a l l t h e w o r k was
an a t m o s p h e r e o f d r y , o x y g e n - f r e e
The
react
nitrogen
h y d r o g e n gas,
nitrogen.
used f o r t h i s w o r k was
first
sieve
freejfrom
copper a t
by r e d u c i n g c o p p e r o x i d e w i t h a s t r e a m
and
t i i e n t h r o u g h a column p a c k e d w i t h
t o d r y t h e gas.
The
with
c a r r i e d out i n
o x y g e n by passage t h r o u g h a column c o n t a i n i n g
350°) p r e p a r e d
rapidly
m o l e c u l a r s i e v e was
of
molecular
regenerated
o
p e r i o d i c a l l y by p u m p i n g a t 200
.
Techniques f o r h a n d l i n g b e r y l l i u m
As
beryllium
compounds.
oxide i s very t o x i c ,
compounds must be h a n d l e d
with
beryllium
great care,
particularly
when fumes o f b e r y l l i u m o x i d e a r e f o r m e d on e x p o s u r e t o
the
a i r . Many r e a c t i o n s
fume c u p b o a r d ,
and
were t h e r e f o r e
volatile
compounds were h a n d l e d
vacuum s y s t e m . Compounds were u s u a l l y
vessel
c a r r i e d out i n a
t o a n o t h e r i n a g l o v e box
transferred
filled
with dry
i n the
from
one
nitrogen.
-48-
S t a r t i n g m a t e r i a l s s u c h as d i m e t h y l b e r y l l i u m were s t o r e d as e t h e r
flasks
fitted
solutions
then
hypodermic s y r i n g e
to
s o l u t i o n s i n two-necked
with a nitrogen lead
could
and d i e t h y l -
and serum c a p . These
be c o n v e n i e n t l y
and n e e d l e , t h u s
transferred using
preventing
a
any e x p o s u r e
the a i r .
Many r e a c t i o n s were c a r r i e d o u t i n w h i c h
o r g a n o b e r y l l i u m compounds r e q u i r e d
As g r e a s e s w i l l
refluxing
f o r many h o u r s .
d i s s o l v e u n d e r such c o n d i t i o n s ,
s l e e v e s were used a t t h e g r o u n d g l a s s
joints
ethereal
' Teflon '
but these
w e r e n e v e r u s e d w h e n e v e r vacuum w o r k was i n v o l v e d .
G l o v e Box.
The
glove
box ( L i n t o t t
a way t h a t a f t e r p u r g i n g
the m a t e r i a l s
recycled
t h e t r a n s f e r t u b e and i n t r o d u c i n g
required into
f o r several
hours
the n i t r o g e n p u r i f i c a t i o n
a small
traces
from
pump f i t t e d
t h e box, t h e n i t r o g e n c o u l d
( o r days i f n e c e s s a r y )
system. This
The
involved
i n s i d e the box, thus
o f o x y g e n and m o i s t u r e
the transfer
I I I E) was s e t up i n s u c h
be
through
t h e use o f
r e m o v i n g srr.all
w h i c h may have been
introduced
tube.
b o x was f o u n d
t o be c o n t a m i n a t e d w i t h an
amount o f w a t e r , so a l i q u i d
a i r t r a p was f i t t e d
appreciable
i n the
r e c y c l i n g system b e f o r e
this
water
( a n d on some o c c a s i o n s o r g a n i c
may h a v e d e s o r b e d
liquid
from
t o remove
vapours) which
f l a s k s i n s i d e t h e box. A second
a i r t r a p was i n s e r t e d a f t e r
molecular
flow
the nitrogen p u r i f i e r
the p u r i f i e r
s i e v e d i d n o t a p p e a r t o be e f f i c i e n t
rates required f o r purging
as t h e
a t the high
the t r a n s f e r tube.
Vacuum A p p a r a t u s .
Many r e a c t i o n s w e r e c a r r i e d o u t i n a vacuum a p p a r a t u s
w h i c h was a l s o d e s i g n e d
The
flask
of
could
the l i n e
t o be used f o r gas
a p p a r a t u s had a s e c t i o n t o -which a r e a c t i o n
be a t t a c h e d
through
and t h i s
gases, - t h e s m a l l e r
and
gases ( n o r m a l l y methane
bulbs
attached
nitrogen
to a
f o r t h e measurement o f c o n d e n s a b l e
one f o r v o l u m e s up t o a b o u t
t h e l a r g e r one f o r v o l u m e s g r e a t e r t h a n
c.c,
to the rest
c o n d e n s e d by l i q u i d
be m e a s u r e d . Two c a l i b r a t e d
manometer w e r e i n c l u d e d
this,
100N-cc.
(a normal
w r i t t e n as N - c c , i s one c . c . a t N.T.F.). An i n f r a r e d
spectrometer
mixtures
to
so t h a t
hydrogen) n o t completely
could
was c o n n e c t e d
t h r e e t r a p s . A T H p l e r pump and gas
b u r e t t e were a l s o i n c l u d e d
and
analyses.
cell
o r a combustion bulb
f o r a n a l y s e s o f gas
( n o r m a l l y methane and h y d r o g e n ) c o u l d
be a t t a c h e d
t h e a p p a r a t u s as r e q u i r e d . The w h o l e a p p a r a t u s c o u l d be
GQS measurement bulbs.
Q
bulb
f
float
valve
float
valve
N
N
manometer^
300
c
'secondary
bulb
ISJ
Kg
|j
n
-50-
filled
w i t h n i t r o g e n l e t i n through a needle v a l v e .
Infrared
Spectroscopy.
Infrared
GS
1
s p e c t r a were r e c o r d e d u s i n g a G r u b b - P a r s o n s
2 A p r i s m - g r a t i n g s p e c t r o p h o t o m e t e r h a v i n g a range
o f 2-
25^
Specimens o f a i r - s e n s i t i v e compounds w e r e
for
s p e c t r o s c o p i c e x a m i n a t i o n i n t h e g l o v e box.
of i n v o l a t i l e
volatile
heated
range
compounds a t room t e m p e r a t u r e b u t
prepared
The
spectra
sufficiently
b e l o w 200° were r e c o r d e d u s i n g a P e r k i n - E l m e r G....3.H.
gas
cell,
h a v i n g s o d i u m c h l o r i d e windows w i t h
2-V-jyi. o r p o t a s s i u m
a
b r o m i d e w i n d o w s , 2-25yU .
Analyses.
Beryllium
analyses.
B e r y l l i u m was
e s t i m a t e d by
t r e a t i n g an aqueous a c i d
s o l u t i o n o f each compound w i t h e x c e s s ammonium h y d r o x i d e .
The
white gelatinous p r e c i p i t a t e of b e r y l l i u m hydroxide
s e p a r a t e d by f i l t r a t i o n u s i n g a
and
'Whatman 5 ^ 1 ' f i l t e r
was
paper,
i g n i t e d t o b e r y l l i u m o x i d e i n a weighed c r u c i b l e w i t h
pumice u n t i l
a c o n s t a n t w e i g h t was
a c h i e v e d . The
purpose o f
-51-
the
pumice
produced
Gas
was
in
to
the
during
finely
the
divided
oxide
ignition.
e v o l v i n g gases on h y d r o l y s i s
r u n n i n g degassed
was
cooled
warm s l o w l y t o
evolution
vigorous
under
gas
Sometimes
evolution,
conditions.
sulphuric
the
acid
in
infrared
spectra.
Mixtures
liquid
as
nitrogen.(Both
combustion
through
products,
was
platinum
carbon
and
was
is
therefore
ignited
not
excess
and
place
with
fractionated
be
separated
condensable
oxygen
the
were
in
described
s t r i c t l y correct)
by p a s s i n g an
water,
prevent
their
hereafter
adopted.
filament inside
dioxide
gases were
completely
gases are
to
completed
cannot
to
gas
take
i d e n t i f i e d by
hydrogen
is
this
mixed w i t h
b u l b and
the
these
was
liberated
neither
although
f o l l o w i n g procedure
gas
the
time
can
sample
allowed
required
reactions
analysed
a weighed
d u r i n g which
The h y d r o l y s i s
and
to
were
T h e m i x t u r e was
side
o f methane and
vacuum l i n e
of
as
on
c o o l i n g was
vacuum l i n e ,
uncondensable
volume
air.
room t e m p e r a t u r e
measured
the
2-methoxyethanol
in liquid
occured.
these
dilute
as
very
analyses.
which
in
the
crucible
Compounds
by
retain
The
A measured
inside
electric
bulb.
The
separated
the
current
combustion
and
the
-52-
carbon
was
dioxide
estimated
hydride
Amine
and
measured.
by
condensing
measuring
the
i t
on
produced
to
hydrogen
in
lithium
the
combustio
aluminium
produced.
analyses.
These were
alkaline
acid.
with
The w a t e r
solution
The
excess
standard
estimated
by s t e a m d i s t i l l a t i o n o f
containing
acid
was
the
amine
determined
into
by
excess
an
standard
back-titration
alkali.
Sodium.
Estimation
flame
sodium
photometer
sulphate
compared
with
of
s o d i u m was
w h i c h had
solutions,
a standard
been
and
cs_rried
out
calibrated
the
solution
unknown
of
using
with
an
'EEL'
standard
solution
approximately
was
equal
strength.
Cryoscopic
molecular
'Analar'
days,
was
used
benzene were
weight
benzene,
as
recrystallised
dried
so&.vent.
determined
measurements.
sodium w i r e
Cryoscopic
using
from ethanol
with
biphenyl
and
dried.
constants
w h i c h had
for
several
for
the
been
-53-
i-reparation
All
solvents
atmosphere
Diethyl
And P u r i f i c a t i o n
purified
and
stored
under
an
of nitrogen.
Ether.
•Anhydrous
v/ire
were
Of S t a r t i n g M a t e r i a l s And S o l v e n t s
f o r several
Methylated Ether'
days,
a n d was
aluminium hydride just
'Monoglyme'
before
was
dried
distilled
over
from
sodium
lithium
use.
(1 ,2-Dimetho:-:yethane
or Ethylene Glycol
Dimethyl
Ether.)
This
for
several
was
repeated
Final
was p u r i f i e d
hours,
refluxing
followed
a second
purification
with,
by r e f l u x i n g
by d i s t i l l a t i o n .
the
distillate
carried
out
just
distillation
from,
potassium
The
t i m e and
was
and
i t with
process
stored.
b e f o r e use
lithium
by
aluminium
hydride.
'Diglyme'
(Diethylene Glycol
Dimethyl
Ether
or
2,5,05-
Trioxanonane.)
T h i s was p u r i f i e d
using
sodium instead
of
in a similar
potassium.
way t o
1
Monogly/ne
1
Benzene.
' Analar*
over
b e n z e n e was
sodium w i r e
dried
f o r several
by a l l o w i n g i t
to
stand
days.
Pentane.
D r y i n g was
diethyl
carried
out
in
exactly
the
same w a y
as
ether.
Trimethylamine.
Triiaethylamine
was
and
subsequently
stored
off
as
The
with
a
required.
'Teflon'
greater
than
tap
dried
over
vessel
and
with
this
used
phosphorus;
d r y i n g agent
f o r storage
would withstand
pentoxide
and
was
pressures
distilled
fitted
slightly
atmospheric.
NiN,M' ,H' ,-Tetramethylethylenediamiii8.
This
followed
by
amine
was
fractional
purified
by r e f l u x i n g w i t h
distillation.
sodium,
-55-
Dirnethylamine.
Me_iTH Cl
+ NaNO-
0
Dimethylamine
of
ammonium
obtained
hydrochloride
chloride,
triraethylamine
by
following
An a q u e o u s a c i d
was
then
oil
which
with
combined
fractional
with
separated
was
ether.
and
dried
until
was
the
liberated
by
with
dried
potassium
hydroxide
for
and
and
a 96%
pellets
was
was
heated
two h o u r s . .
carbonate:
the
the
The
pale
aqueous
extracts
and
of
the
at
solution
yellow
solution
the
carbonate.
yield
o i l
Subsequent
pale
yellow
148-150°-
^ K0C1 + " . ' I e N E C l .
2
with
two m o l e s
became v e r y
by p a s s a g e
salt
potassium
b.p.
treatment
solution,
traces
dimethylamine
the
ethereal
refluxed
solution
of
isolated
2
acid
pure
nitrite
i-le NNO + 2HC1
was
contains
3
sodium
The
N,-dimethylnitrosamine.
nitrosamine
usually
method. ^"
d i s t i l l a t i o n gave
This
so
solution
sodium
saturated
extracted
were
excess
+ Ke-NKO + H . O .
methylamine h y d r o c h l o r i d e ,
hydrochloride,
the
75-80° with
WKaCl
with
aqueous
through
and
pale
a
of
-H'l
coloured.
potassium
column
stored
?
in a
hydrochloric
The
amine
hydroxide
packed
with
vacuum
apparatus.
-56-
2 2'-Bipyridyl.
S
As b i p y r i d y l
period
just
at
of
time,
before
goes brown i n a i r
p u r i f i c a t i o n was
use
to
obtain
and
light
effected
a white
over
a
by vacuum
crystalline
sublimation
solid
melting
70-71°.
f
N,H,N',N ,-Tetramethyl-o-phenylenediamine.
o - P h e n y l e n e d i a m i n e was
concentrated
stannous
whilst
hydrochloric
chloride
hot.
and
form colourless
in
about
dry
in
90% y i e l d ,
removed
of
solution
of
and
then
f i l t r a t e was
filtered
brought
f o l l o w e d by c o o l i g g
o-phenylenediamine
about
i n ice
to
dihydrochloride
f i l t e r e d o f f and
dihydrochloride
from the
treated
After
potassium
boiled
was
the
of
aqueous
charcoal
w h i c h were
i n a bomb a t
solution.
with
this
of
an
a mixture
pumped
vacuot"
methanol
quently
animal
crystals
The a m i n e
was
acid,
Concentration
by d i s t i l l a t i o n and
boiled with
over
with
175-185°
bomb,
for
pumped
hydroxide,
of
the
heated
eight
dry
excess aqueous
extracting
a range
was
hours.
i n vacuo
sodium
product
with
with
excess
The
and
mixture
subse-
hydroxide
ether
and
drying
a c o l o u r l e s s o i l was i s o l a t e d w h i c h
,o
57.
215-256
and whxch s l o w l y went b l a c k .
-57-
This
further
iodide
220
mixture of N-methylated
treated
at
with
180-1S5°
) isolated
presence
chloride,
the
treated
with
with
ether,
the
to
of
and
this
free
50-60°
caustic
the
and
product
product
N-H,
methyl
(B.p.218-
with
pure
colourless
tends
stored
As
to
under
showed
w h i c h was
p-toluene
o i l which
the
removed
sulphonyl
The
s o d a s o l u t i o n and
i n 50% y i e l d .
i t was
o f methanol
by vacuum d i s t i l l a t i o n .
o-phenylenediamine
of
hours
amount
amine
was
light,
ten
examination of
followed
isolated
volumes
was
above.'
of a small
by h e a t i n g
was
for
as
Infrared
equal
o-phenylenediaraines
distillate
after
extraction
boiled at
36°/lO
^'-M?- H g .
1
N,N,N ,N',-tetramethyl
go d a r k - c o l o u r e d
vacuum a t
-20°
in
in air
the
and
absence
light.
Trimethylamine Hydrochloride.
Equal
were
volumes
condensed
ether,
which
allowed
into
was
of
an
taken
to
below
atmospheric
vacuum and
the
evacuated
cooled
t o warm s l o w l y
ensure
trimethylamine
that
the
air.
hydrogen
pressure
The
The m i x t u r e
inside
ether
chloride
containing a
room t e m p e r a t u r e ,
pressure.
white,
flask,
in liquid
to
and
was
care
the
l i t t l e
was
being
f l a s k was
removed
c r y s t a l l i n e , hygroscopic
kept
under
amine
hydrochloride
-58-
which
remained
Sodium
was
stored
was
obtained
50% s l u r r y i n o i l a n d
washing
under
Sodium
the
hydride with
Schlenk
tube.
n i t r o g e n and
and
purified
sample
actually
in
removed by
dry pentane
under
h y d r i d e was
transferred,
the
a
repeatedly
nitrogen in
pumped d r y ,
when r e q u i r e d ,
Shot
A 200-2^0°
i n o i l from
same way a s
a
stored
i n a glove
box.
then
as
one
'Metal
gram
Kydrid.es
sodium h y d r i d e .
the
samples
Incorporated
Mass
gaseous h y d r o l y s i s
showed
that
it
products
was
deuterated.
Preparation.
petroleum f r a c t i o n
concentrated
hydrocarbons
obtained
of sodium d e u t e r i d e ,
96 a t o m %
with
was
investigation of
for Lithium
times
& Co. L t d . , as
Deuteride.
spectrometry
Oil
o i l was
The g r e y
atom % d e u t e r a t e d ,
from a
from L.Light
the
Sodium d e u t e r i d e
97
nitrogen.
Hydride.
This
double
under
sulphuric
twice with
was w a s h e d
acid
water,
to
remove
followed
several
unsaturated
by d r y i n g
with
1
potassium hydroxide.
between
200°
and
On d i s t i l l a t i o n ,
2 ^ 0 ° was
the
fraction
boiling
collected.
1
Preparation
of Lithium
Weighed
apparatus
with
The
the
o i l described
when
hea.ting
heated
the
was
lithium
was
continued
dirt
lithium
metal
to
until
and
a
the
break
the
corrosion
products
which
o i l , were
r u n o f f . The l i t h i u m
all
solvents,
was w a s h e d
counter
and
then
current
During
kept
as
is
the
s l o w as
appreciably
of
rinsed
was
refluxing
U
180 ).
sink
shot
The
to
globules.
The o i l
to
which
to
cause
Stirring
together
the
bottom
floats
be
nitrogen
used
with
the
solvent
into
the
reaction
f l a s k against
the
nitrogen
flow
preparation
possible
since
molten
consequently
lithium
an
argon
must
is
of
on
in
the
nitrogen.
by n i t r o g e n ;
preferable.
of
vigorously
tiny
the
half-filled
i t
(m."D.
solidified.
the
reaction
until
o i l stirred
shot
in
atmosphere
melted
down i n t o
placed
almost
an
burner
have
were
was
under
ring
will
and
metal
I I which
above,
with
stopped
the
with
of lithium
shown i n F i g u r e
o i l was
well
pieces
Shot.
be
attacked
atmosphere
a
' Lithium shot a p p a r a t u s .
FigureR
i
i
N
stirrer
N
u
lightly
creased
flpsk
IO
•ntn.
tap
-60-
Lithium
Keagents.
Methyl-,
in
ethyl-,
80-90% y i e l d s
and
lithium
Grignard
from
shot
in
magnesium
Beryllium
in
was
about
of
alkyl
or
aryl
halide
wool
I I I . The p r o d u c t
needles
in
the
bromides
dried
gas
was
in
beryllium,
the
sublimed
f l a s k w h i c h was
off
then
tube.
was
supplied
by p a s s a g e
o n w h i c h some a n h y d r o u s
sublimed.
by h e a t i n g
chloride
aiTimonium c h l o r i d e
was
alkyl
ether.
i n 90-95?<' y i e l d
chloride
and
in
of
2
The h y d r o g e n
acid
reaction
^ '
reaction
sulphuric
been
7
o f f from the
containing
the
dry hydrogen
white
apparatus
glass
3
i n Figure
as
from
90% y i e l d
prepared
shown
collected
sealed
prepared
i n a stream
apparatus
and
corresponding
ether.
Chloride.^'
This
flakes
the
prepared
Reagents.
These were
with
and p h e n y l - l i t h i u m were
and
of
from a
Kipp's
concentrated
the
gas
through
aluminium chloride
had
Beryllium chloride apparatus.
Figure M
glass wool
plug
AlCl on
3
glass wool
beryllium
T
collecting flasF
-61-
D ime t h y 1 b 6 r y l 1 i u m .
Ethereal
in
70-80% y i e l d
li'thium
to
addition
mol.
of
of
of
of
two m o l s .
most
the
of
addition
beryllium
of
'ether
25 h o u r s
in
ether.
i t
analysed
by h y d r o l y s i s
and
1
prepared
of
by
rnethyl-
the
to
solution
one
was
washed
with
by d i s t i l l a t i o n .
achieved
a mole
from dissolved
The
which were
removed
distillation
separate
two r n o l s .
chloride
salts,
ether
for half
of
were
methylmagnesium bromide
chloride
the
dimethylberyllium
d i m e t h y l b e r y l l i u m was
continuous
(about
mol.
by
of
from precipitated
and
the
both
beryllium
decanted
ether
one
solutions
by a p r o c e s s
of
at
200°
of
dimethylberyllium),
salts.
f o r many
Purification
The
f o r methane
and
solution
hours,
to
was
beryllium.
Diethylberyllium."
This
of
was
two m o l s .
chloride
bromide
and
to
solution
washed
with
remaining
:
i n 70-809: y i e l d
of
ethyl-lithium
by
the
one
was
prepared
mol.
addition
of
decanted
ether
ether
and
was
to
of
one
both
mol. of
by
the
addition
beryllium
two m o l s .
of
etjylmagnesium
chloride
in
ether.
beryllium
The
from p r e c i p i t a t e d
salts
which
distilled
small
volume.
removed
down
under
to
vacuum
followed
by
were
The
distillation
-62-
of
the
was
diethylberyllium
analysed
by h y d r o l y s i s
There
or lithium
at
was
l i t t l e
reagent
is
preferable
in
the
as
was
the
preparations
6 0 - 5 5 / 0 . 3mm.
f o r ethane
difference
used.
involving
and
the
salts
Grignard
solution
beryllium.
in yield
However
precipitated
H E . The
when a
lithium
settle
Grignard
reagent
better
than
reagents.
Diphenylmercury.
A good y i e l d
reduction
in
of
boiling
of
diphenylmercury
phenylmercuric
ethanol
f o r one
was
chloride with
hour,
followed
obtained
hydrazine
by
by
the
hydrate
filtration
59
from mercury
and
subsequent
c r y s t a l l i s a t i o n and
sublimation.'
Bii^henylberyllium.
It
product
in
of
ether
found impossible
diphenylberylliuni
of
beryllium
by
was
two m o l s
chloride.
tube
by
allowing
to
was
stand
activated
i n an
crystalline
the
with
However a c r y s t a l l i n e
''' '-3
method.
a
from
of phenyl-lithium
powder
i t
isolate
etherate
a modification of Wittig's
Beryllium
to
one
reaction
;;ol . o f
product
was
obtained
''
i n a double
ethereal
Schlenk
solution
of
diethylberyllium
was
removed
dry.
and
for a while.
the
powder
D i p h e n y i m e r c u r y was
under n i t r o g e n
which
time
and
of
d i e t h y l b e r y l l i u m solution-
washed w i t h
added
heated
droplets
The
at
to
the
200°
mercury
f o r one
f o r m e d on
vacuo
the
diphenylberyllium
p u r i f i e d by
from benzene.
Diphenylberyllium
dietherate
crystalline
diphenylberyllium
solid
removed
the
(m.p.
from ether
32°)
pumped
powder
hour,
diphenyimercury
a v/hite
and
beryllium
Unreacted
and
was
ether
during
beryllium.
by s u b l i m a t i o n
in
crystallisation
was
isolated
as
by c r y s t a l l i s a t i o n
of
solution.
Tri-ethylstannane.
^EtMgBr + SnCl^
Anhydrous
added
dropwise
bromide,
stannic
to
an
w h i c h had
addition
complete,
the
flask
reagent
followed
the
the
( w h i c h was
was
ether
reactants,
then
and
by bOOcc.
solutions
of
became
clear,
the
of
o f magnesium.
was
ethylmagnesium
mole.)
When
returning
ether
the
excess
ice-cold
10% h y d r o c h l o r i c
layer
the
was
of
the
to
of
ether
was
distilled off
in ice)
125c.c.
ice-cold
0.07& m o l e . )
solution
after
cooled
decomposed w i t h
(I25g-,
-r M g B r C l .
from 375g-(3-^
75g-(3-09 m o l e . )
the
Et^Sn
ether
been p r e p a r e d
and
concentrate
chloride
ice-cold
ethylbromide
was
>
to
Grignard
water
acid.
When
separated,
the
-64-
aqueous l a y e r
combined
removal
extracted
extracts
twice
dried
o f the ether
over
with
calcium
was d i s t i l l e d u n d e r
57°/l1aim.Hg.)
and then
bromide
shaken
a n d 5% h y d r o c h l o r i c
into
of ether
chloride,
and t h e
before
b y d i s t i l l a t i o n . 'The t e t r a - e t h y l t i n
thus prepared
solution
150cc.
reduced
pressure
i n turn with
acid
the corresponding
3% s o d i u m
to convert
chloride,
( b . p . 55hydroxide
any t r a c e s o f
before
being
11 4 .
extracted,
dried,
and d i s t i l l e d
3Et,,Sn + S n C l ,
HA mixture
stannic
heated
at
*
-+
fitted
with
packed w i t h
glass
at
was d i s t i l l e d
helices
at
freshly
distilled
of tetra-ethyltin
an a i r - c o n d e n s e r
1 0 0 ° , f o l l o w e d by two h o u r s
chloride,
yield.
_p
and 91g-(0.39 m o l e . )
in a flask
i n c1%
4Et-.SnCl.
o f 35'6g.(0.13 mole.)
chloride
ethyltin
as b e f o r e
200°.
f o r one
were
hour
The p r o d u c t , t r i -
through
a short
column
0
82 . 0 - 8 2 . J ' / " ' O m n i . a n d
collected
11 4 .
as
a c o l o u r l e s s l i q u i d i n S0% y i e l d .
4EUSnCl + L i A l H .
9> 4 - E t , S n H + L i C l
Tri-ethyltin
of
ether
lithium
eth^-r.
was a d d e d
dropv/ise
aluminium hydride
This
temperature
through
chloride
mixture
and t h e n
a short
(I02g.,0.423 mole.)
t o an i c e - c o o l e d
(I0g.,
was s t i r r e d
most
column,
+ A1C1-.
the r e s t
suspension o f
0.264 m o l e . )
i n 300cc. o f
f o r three hours
o f the ether
being
i n 200cc.
at
room
removed
by d i s t i l l a t i o n
removed
under
reduced
-65-
pressure
The
d i s t i l l a t i o n of
tri-ethylstannane
collected
It
before
was
i n an
thought
over a long
ice-bath
that
period
under n i t r o g e n
was
this
of
a t -20
as
a
11 -
at
colourless
compound
c
.
product
redistilled
time,
o
the
might
consequently
at
23
/2.5nim.
44°/'l6mm.
liquid
deposit
i t we.s
and
i n 66%
yield.
metallic tinstored
Compounds p r e p a r e d
mainly
with
a view
t oSpectroscopic
Studies•
The f i r s t f e w compounds d e s c r i b e d , a n d t h e d e u t e r i d e s
which a r e d e s c r i b e d immediately i .fter the analogous h y d r i d e s ,
were prepared w i t h a view t o e s t a b l i s h i n g i n f r a r e d c o r r e l a t i o n s
f o r o r g a n i c a n d h y d r i d e compounds o f b e r y l l i u m .
j
Nearly
a l l the beryllium
v/ork a r e s e n s i t i v e
were
to
carried
exclude
t oa i randmoisture,
a i randmoisture
Diethylberyllium
solution.)
was p l a c e d
apparatus.
The s o l u t i o n
so p r e p a r a t i o n s
and care
cooled
(0.0273
i n a flask
Et Be.Uhe_
p
10cc. o f a 2.7cH.
mole,
attached
was pumped
fifteen
be s e e n ,
the pressure
appreciably.
The f l a s k
warm u p t o e n s u r e
were
andalthough
removed
under
no v i s i b l e
i n the apparatus
was a g a i n
complete
reduced
cooled
reaction.
pressure
minutes
trimetbylamine
o n t o t h e compound
a i r . The m i x t u r e was a l l o w e d
room t e m p e r a t u r e
ethereal
t o t h e vacuum
f o r about
672 N - c c . ) w a s c o n d e n s e d
i n liquid
was t a k e n
a ta l l stages.
r e m o v e a s much e t h e r a s p o s s i b l e , a n d t h e n
(0.030 m o l e . ,
to
involved i n this
out i n a n i t r o g e n atmosphere,
Die thylbe ryl1ium-1rime thy1amine,
to
compounds
t o warm
slowly
r e a c t i o n could
d i d not increase
and then
Ether
after
allowed t o
and excess amine
passage
through
a
-67-
a t -40
. The c o l o u r l e s s l i q u i d
receiving
flask
distilled
s l o w l y a t room t e m p e r a t u r e
The c o m p l e x f u m e s s t r o n g l y
air,
this
receiver.
when exposed
to traces of
below - 4 0 ° and r e a c t s v i g o r o u s l y w i t h
melts
with
into
remaining
water
effervescence.
Be, 7-25,
Found:
45.1.
7-23;
Me.JM, 4 5 . 8 ;
hydrolysable
Be, 7-15;
C H gBeN (EtpBe.NMe_) r e q u i r e s
7
1
hydrolyzable
ethyl,
ethyl,45.5,
Me N,
46-5;
k^.S%.
cyclo-^ij*J*"~Trisdime t h y l a m i n o t r i m e t h y l t r i b e r y l l ium. ^ '
Dimethylberyllium
v
a 0.929i ione
solution
( 9 6 . 3 TT-cc . , 0 . 0 0 4 3
i n e t h e r . ) was t r a n s f e r r e d
linab o f a d o u b l e
Schlenk
tube
(166.5 N - c c ,
m o l e . ) was c o n d e n s e d o n t o t h e b e r y l l i u m
and
a i r . The m i x t u r e was a l l o w e d
then
melted
bO
until
sublimed
55"'-
compound, c o o l e d i n
t o warm t o room
a t room t e m p e r a t u r e
a n d more g a s was e v o l v e d
methane c o l l e c t e d ,
at
0.00742
temperature
t h e e x c e s s a m i n e ( 7 1 - 2 N - c c . ) w a s r e m o v e d . Some
methane was e v o l v e d
compound
by s y r i n g e t o
a n d t h e e t h e r w a s then-
removed u n d e r vacuum. D i m e t h y l a m i n e
liquid
mole.,4.6cc.of
90.5 N - c c ) .
gas e v o l u t i o n
(literature
and then
as w h i t e
value, 55-56°) •
(total
The t e m p e r a t u r e
ceased
i n vacuum a t 4 5 - 5 0 °
and a t 4 4 ° t h e
volume o f
was m a i n t a i n e d
t h e compound was
crystals
melting a t
-68-
Lithium
hydridodiphenylberyllium
Diphenylberyllium
intimately
(0.8g.,
hydride
with
with
mortar
/
until
yielded
tube
tube w i t h
a glove
t ocool
lithium
t o a powder
b o x . The m i x t u r e was
mass b e c a m e a h a r d
and several
rhombic
disc
m o l e . ) was
h a d been ground
the liquid
colourless
on t h e s i n t e r e d
Schlenk
inside
LiBePi^H.OEt-,
(5.1g.,0.01
Schlenk
mole.) which
m i x t u r e was a l l o w e d
filtered
the
0.1
a t 160-165"
ether
dietherate
i n a double
a. p e r c u s s i o n
heated
The
mixed
etherate,
extractions
c r y s t a l s , which
connecting
cake.
were
t h e twolimbs o f
a n d pumped d r y .
r
Attempted
reaction
o f sodium h y d r i d e
with
diph&nylberyllium
ctie t h e r a t e .
Excess sodium h y d r i d e
beryllium
for
t w o d a y s o r when
solvent
the
dietherate
a t 165°
products
d i d not react
e i t h e r when b o i l e d
with
t h e two were h e a t e d
f o r twohours,
with
r e f l u x i n ether
i n t h e absence o f
( t h esupernatant
i n ether d i d n o t evolve
diphenyl-
hydrogen
solution of
on h y d r o l y s i s ) .
45
Reaction
o f sodium h y d r i d e w i t h
NaH
Diethylberyllium
+ E t Be
diethylberyllium.^
^ N a B e E t K.
(0.0417 mole . , 15cc.
o f a 2 .?SM..j^solution)
-69-
was
of
t r a n s f e r r e d by s y r i n g e
to a flask
2 . 1 g . (0.0875 m o l e . ) o f s o d i u m h y d r i d e
The
mixture
was s t i r r e d
hours during which
formed.
limb
The m i x t u r e
time
v i g o r o u s l y under
a colourless
o f a double Schlenk
tube
hot
ether
( t h e same e t h e r w a s u s e d
was
recovered
reduced
small
volume
and
by d i s t i l l a t i o n
pressure).
thecrystalline
sintered
disc
from
into
i n 90?* y i e l d
needles melting
cooled
to the other
t o about
-50°(acetone-C0_,)
b y f i l t r a t i o n on t h e
o f t h efjchlenk
diethylberyllium,
and f i n a l l y
as c o l o u r l e s s , p y r o p h o r i c ,
decomposition
explosively with
B e , 9-86: h y d r o l y z a b i e - e t h y l ,
no
ether
at
2 0 ° . C H B e N a (NaBeEt.,H) r e q u i r e s
ethyl,
was d e t e c t e d
/ f
slightly
1 1
1.10-%.
tube
pumped
was
crystalline
i na
sealed
soluble i n
water.
62.5; - h y d r i d e ,
i n t h e compound. S o l u b i l i t y ,
63.7; - h y d r i d e ,
with
one l i m b
u n d e r vacuum. The c o m p l e x i s o n l y
Found:
limb
e x t r a c t i o n and
t h e two l i m b s
a t 1970° w i t h o u t
benzene and r e a c t s
material
f o r each
m a t e r i a l separated
connecting
t o one
theother
The c o m p l e x , s o d i u m h y d r i d o d i e t h y l b e r y l l a t e ,
obtained
tube
deposit
T h e s o l u t i o n w a s puiirped d o w n t o
10cc),
remove any u n r e a c t e d
dry.
for eight
crystalline
excess sodium h y d r i d e
(about
reflux
and t h e c r y s t a l l i n e
from
under
i n 70cc. o f e t h e r .
was t r a n s f e r r e d u n d e r n i t r o g e n
extracted
to
containing a suspension
B e , 9-90;
1.08,
0.25mole/litf.t-
Kydrolyzable
-70-
Sodium
deuterodiethylberyllate.
NaD + E t B e
>NaBeEt D.
2
Sodium
2
d e u t e r o d i e t h y l b e r y l l a t e was o b t a i n e d
n e e d l e s , m e l t i n g a t 200-201° i n a s e a l e d
in
tube under
a s i m i l a r way t o t h e a n a l o g o u s h y d r i d e
0.2655g.(0.010b m o l e . ) o f s o d i u m d e u t e r i d e
a
in
1,5M.
as c o l o u r l e s s
compound,
vacuum,
using
and 7.0cc. o f
solution o f ethereal diethylberyllium
(0.0105
mole.)
bOcc. o f e t h e r .
Found:
Hydrolyzable-ethyl,
hydrogen deuteride
evolved
63.1j - d e u t e r i d e ,
o n h y d r o l y s i s w a s s h o w n b y mass
spectrometry
t o be 4 8 . k
on
o f t h e sodium d e u t e r i d e
thebasis
being
2.19. T h e
atom % d e u t e r a t e d
96.0 a t o m % d e u t e r a t e d ) .
( r e q u i r e d , 48.0
used i n t h e r e a c t i o n
C^E^BeDNa
(NaBeEt^D)
requires
h y d r o l y z a b l e - e t h y l , 63.0; - d e u t e r i d e ,
Reaction
of
sodium h y d r i d e
with
Et Be.NMe_, + NaH
0
Diethylberyllium-trimethylamine
sodium hydride
diethylberyllium-trimethylarnine.
* N a B e E t _ H + NMe,
(l.6g.,
0.013 m o l e . ) a n d
( 2 . 0 g . , O.O83 m o l e . ) w e r e b o i l e d i n 1 0 0 c c .
of
ether
by
hydrolysis o f a small
ethyl
2.17%.
f o r twelve
i n theratio
hours.
The s u p e r n a t a n t
sample
liquid
was shown
t o c o n t a i n h y d r i d e and
1:2.9» T h e e t h e r e a l
s o l u t i o n v/as t r a n s f e r r e d
-71-
to
a double Schlenk
(identified
isolated
tube,
by i n f r a r e d
by ether
and sodium
spectrum
from
ether
the
were
pasBed
preparation
which
on e v a p o r a t i o n
trimethylamine
through
yielded
R e a c t i o n o f sodium h y d r i d e
Heating
about
this
NaBel
beM
hydrochloric
acid
by i n f r a r e d
spectrum).
H
20cc.
o f sodium h y d r i d e
under
during
dimethylberyllium.
(0.0352 m o l e . ,
mixture
dilute
(identified
e t h e r ) was t r a n s f e r r e d b y s y r i n g e
1.2g.,(o.o5 mole.)
sodium h y d r i d e and
0.456* , ( 0 . 0 0 4 7 m o l e . ) o f
with
NaH + Me_Be
in
excess
p o i n t ) was
s o l u t i o n . Gases e v o l v e d
hydrochloride
Dimethylberyllium
and m e l t i n g
e x t r a c t i o n from
crystallisation
hydridodiethylberyllate
reflux
o f a 1.76M. s o l u t i o n
t oa flask
and 30cc.
with
containing
o f ether.
vigorous
e i g h t hours r e s u l t e d i n t h e d e p o s i t i o n
ofa
m a t e r i a l . The complex
analogous
e t h y l compound, and e x t r a c t i o n i n a d o u b l e S c h l e n k
than t h e
p r o v e d t o be l a b o r i o u s .
The
hydride
disc
soluble
white
insoluble
tube
was l e s s
stirring for
compound was t h e r e f o r e
with boiling
Soxhlet
beryllate,
during
ether
extracted
f o r several
days
e x t r a c t o r . The compound, s o d i u m
crystallised
as t i n y
from
excess
using
a sintered
hydridodimethyl-
needles i n the ether
t h e e x t r a c t i o n . When s u f f i c i e n t
sodium
material
solution
was o b t a i n e d .
the
mixture
compound
was t r a n s f e r r e d
filtered
connecting
o f f a n d pumped d r y o n t h e s i n t e r e d
compound
water andmelts
Other
i spyrophoric,
a t 195-196°
experiments
r e f l u x i n g were
required
tetrahydirofuran
increase
Be, 14.98,
-hydride,
i
n
reacts
a sealed
showed
tube under
t h a t twot o three
f o r complete
as solvent
explosively
1.59,
14.80;
1.62.
hydrolyzable-methyl
hydrolyzable-methyl,
No e t h e r
47.5;
was d e t e c t e d
-hydride
colourless
crystalline
i n the products
Be, 14.3;
1.60%.
compound, m e l t i n g
t u b e u n d e r vacuum, was p r e p a r e d
analogous hydride
sodium d e u t e r i d e
ethereal
Found:
4 ? . 8 , 46.S;
y rJaBeMe^D .
2
of
days
deuterodimethylberyllate.
NaD + M e B e
the
vacuum.
r e s u l t e d i n no a p p a r e n t
2
sealed
with
r e a c t i o n , and the use
o f h y d r o l y s i s . CpK^BeMa ( N a B e M e H ) r e q u i r e s
This
disc
i n the rate o f reaction.
Found:
Sodium
tube and t h e
t h e two l i m b s .
The
of
t o a d o u b l e Schler.k
compound
and7«0cc.
dimethylberyllium
C^HgBeDNa ( N a B e M e ^ D ) r e q u i r e s
3«1%-
i na similar
i na
way t o
0.1389g«(O.0056mole.)
o f a 0.929M-
(0.0065
Kydrolyzable-methyl,
-deuteride,
from
a t 19o
solutiono f
mole.).
46.9; - d e u t e r i d e ,
3'«1«
hydrolyzable-methyl
46.9;
-73-
Reaction
o f sodium h y d r i d o d i e t h y l b e r y l l a t e
with
trimethylamine
hydrochloride•
Me,N. B e E t ^ + N a C l
3
+ P"
^
2
N a B e E t p H + Me^NECl
..N . B e H E t + N a C l
5
2.2g.(0.023 mole.) o f t r i m e t h y l a m i n e
in
a glove
box,
was added
i n small
+ C_H
2 6,
r
hydrochloride,
t o 1 .'9858g.
quantities
(0.022 m o l e . ) o f sodium h y d r i d o - d i e t h y l b e r y l l a t e
of
a t -78°(acetone-C0
ether
mixture
was a l l o w e d
) . After
;:)
t o warm s l o w l y
gas e v o l u t i o n
ceased,
hydrochloride
was a d d e d . A t room
of
gasoccurred
formation
o f sodium
solution
chloride.
t o room
must have produced
beryllium-
ande t h y l b e r y l l i u m
the
yielded
774.0 N-cc.
A
for
consisted
products,
of
Thus
the
diethylcomplexes,
t oseparate. Hydrolysis o f
318.1 IC-cc. o f h y d r o g e n a n d
o f ethane.
This
method
evolution
due t o the
o f ethane.
two
until
amine
hydride-trimethylamine
difficult
solution
slow
The g a s e v o l v e d
which were considered
residual
o f the
became c l o u d y
a tl e a s t
the
temperature
temperature,
168.7 N - c c . o f h y d r o g e n a n d 196.0 N-cc.
reaction
50cc.
in
each a d d i t i o n
then a f u r t h e r q u a n t i t y
and the
transferred
type
the
successful
o freaction
preparation
preparation
trimethylamine
is
therefore
not
o fethylberyllium
o f the
a satisfactory
hydride
ethylberyllium
complex by a n o t h e r method
complexes.
hydride-
i s described
later.
-7k-
Reaction
of
Chloride
and
For
Sodium H y d r i d o d i m e t h y l b e r y l l a t e w i t h
the
Thermal Decomposition
most r e a c t i o n s
and
beryllium
the
time-consuming operation
beryllate
compound
chloride
between
free
did
from
not
i t was
interfere
i n ether)
was
sodium h y d r i d e
in
was
cool
a
allowed
sample
to
of
the
found
of
L
hydridodimethylberyllates
unnecessary
isolating
with
the
the
refluxed
100cc. o f
to
had
as
to
this
to
a
1.76M.
1 .Og. (0.0-+17 m o l e . )
for
two
days.. The
room t e m p e r a t u r e , and
reacted
latter
reaction.
with
ether
undertake
hydridodimethyl-
(0.0352 m o l e . , 2 0 c c . o f
supernatant l i q u i d
dimethylberyllium
'Me Be^K^'
excess sodium h y d r i d e
Dimethylberyllium
solution
the
of
Beryllium
showed
form
an
solution
hydrolysis
that
of
most o f
evidently
of
the
very
-2
sparingly
soluble
at
20°).
in
50cc. o f
mixture
to
Beryllium
ether
with
cooled
to
settle.
A
syringe
hydrogen,
and
was
slowly
a white
The
An
mixture
the
to
the
exothermic
and
was
the
Found:
m e t h a n e on
x
10
mole/litre
0.0817 m o l e . )
dissolved
refluxing
reaction
reaction
appeared
sodium
refluxed
chloride
overnight,
precipitate allowed
supernatant l i q u i d
analysed.
5«8 M - c c . o f
added
2.64
p r e c i p i t a t e of
temperature
sample o f
and
(l.5g.,
stirring.
formed.
room
(solubility
chloride
rapid
take place
immediately
by
compound
was
then
Be,
to
removed
0 - 7 c c . g a v e 3*0 K - c c .
hydrolysis;
then
of
O.OOlSg.
I
-75Th e r a t i o
and
to
methyl :hydrogen : b e r y l l i u m
t h e r e f o r e the
the
3 . 8 9 ^ : 2 .. 003
=
r e a c t i o n appeared
to have
:3 • 0 0 0 ,
gone
according
equation:
i
2nNaBeMe^H + n B e C l -
no
hydrolysis,
the
(Me,,Ee„H_)
2
a
As
> 2nNaCl +
c h l o r i d e was
a l l the
'+
found
in
the
3 2
solution
after
b e r y l l i u m c h l o r i d e must have
s o d i u m c h l o r i d e f o r m e d has
a negligible
n.
reacted
solubility
and
in
e th e r.
'The
product
which
1
'Me^Be^Hj , a l t h o u g h
probably
species
combined w i t h
soluble
i n ether;
and
sodium
pressure
ether
cooled
which
for
until
was
with
thus
the
be
many h o u r s .
but
removed by
about 30cc.
solid
No
reduced
a negligible
amount
by
rest
into
of
a
be
detected
of
on
in
ether
the
receiver
h y d r o l y s i s and
formation
of
bipyridyl
complex.' ^" H y d r o l y s i s
the
of
also
the
dimethyl-
identified
characteristic
a
pumping
together
0.00024 mole.) o f
measured
5
The
atmospheric
i t s surface
consisted
(about
amount o f
hydride
colourless viscous o i l ,
beryllium
a small
completely
(sodium
pressure,
m a t e r i a l on
condensate
complex
o f f under
remained.
b e r y l l i u m could
the
many
by
filtration.
distilled
a i r , leaving a
forms
denoted
consisting of
insoluble material
condensed, under
slowly
be
in equilibrium, is
e t h e r was
only
in liquid
distillate
ether
c h l o r i d e ) can
Most o f
hereafter will
sample o f
by
yellow
the o i l
the
-76-
1 2 . 7 N - c c . o f m e t h a n e , 5.8 N - c c . o f h y d r o g e n ;
yielded
Be,
=
0.00396g.
o fheat
a t 51°
1
o f theviscous
the o i l s t a r t e d
e t h e r were
which
evolved
white
solid
evolved,
started
approximately
ether,
apparatus
solid
fire
Sublimate:
(about
temperatures
a t6 0 ° . Assuming
1
t o t h ecomposition
although a
the solia
r e s i d u e was t r a n s f e r r e d
heated
started
under
Me^Be,E„.OEt^
t oa s u b l i m a t i o n
vacuum. A t 6 0 ° a w h i t e
t osublime
a n d t h e s u b l i m a t i o n was
which
both
sublimate
r e s i d u e o f amorphous appearance which
n o r fumed
i n t h ea i r , were
Be, 22.5; h y d r o l y z a b l e m e t h y l ,
77-2.
C E,Be
C
Be) r e q u i r e s Be, 23.1; h y d r o l y z a b l e m e t h y l ,
H y d r o l y s i s was r a p i d
Residue;
with
Samples e v o l v e d
neither
analysed.
_____
(Me
0.6g.)
, theo i l consisted o f
a t 120° f o r t e n days, a f t e r
the white
solid
;
and then
continued
caught
a white
'Me^Be-H.,
vacuum
0 . 0 0 7 m o l e , o f Me^Ee_H_' a n d 0 . 0 0 7 m o l e , o f
solid
pyrophoric
leaving
under
a n d 153*3 N - c c . ( 0 . 5 0 5 g . )
t obubble
t osublime
corresponding
The
o i l was h e a t e d
no more e t h e r a t h i g h e r
r e s i d u e was e n t i r e l y
and
methyl:hydrogen:beryllium
o n Me^Be^H., * .
1.1g.
About
of
t h er a t i o
4.00:1.84:3.10.
Action
and
and thus
w
11.0%.
2-methoxyethanol a t l o w temperature
5-2 N - c c , 5-7 N - c c . o f m e t h a n e a n d
-77-
11.J N - c c ,
which
12.3 N-cc.
was s l o w w i t h
although
rapid
with
o f hydrogen
respectively
2-methoxyethanol
acid.
even a t room
condensed
air,
on t o 0.0584g.
(78.0
u n d e r vacuum. A t 5 0 - 6 0 ° ,
compound
cation.
sublimed
The w h i t e
hydrolysis
volatile
d
33
d
"r
ratio
as t h e known
o f 0.43:1.
some m e t h y l
groups
compound,
reaction
had occurred t o
be r a i s e d
beryllium
groups,
how h i g h
hydride,
f u r t h e r experiments
thehydride
content
1
'Me^Be^E^ 1 p r e p a r e d
o f ethereal
dim e t h y l b e r y l H u m
mole.) o f sodium h y d r i d e
chloride
beryllium
were
of the
b y pyrol2/'S.is.
containing
a I.76H. s o l u t i o n
3.5g.(0.145
and i n v o l a t i l e
some m e t h y l
t odetermine
could
into
y d.
A solution
of
identifi-
r e s i d u e was-, s h o w n b y
h a s removed
insufficient
dimethylberyllium
undertaken
of
reaction
for
'Me.Be^H ' w a s a p p a r e n t l y d i s p r o p o r t i o n a t i n e
containing
residue
temperature.
further investigation.
As
s t i l l
i n liquid
crystalline
was o b t a i n e d
amorphous-looking
this
Me_Be(Me.,NCHr-. )_.
warrant
a colourless
butinsufficient
the residue, probably
d
cooled
t o warm t o room
t o have a m e t h y l : h y d r o g e n
Although
d
residue,
N-cc.)
( 3 8 . 0 N-cc.) was removed, a n d t h e r e s i d u e
Excess amine
from
o f this
and t h e m i x t u r e was a l l o w e d
heated
temperature
Methyl:hydrogen = 0.461,0.463:1.
N,N,N'jN'-tetraraethylethylenediamine
was
on h y d r o l y s i s
from
60cc.
(0.106mole. ) ,
and 4.2g.(0.0526
mole.)
i n 4 0 0 c c . o f e t h e r , was pumped a t room
-78-
temperature
remained
a white
vacuum
t o remove
liberated
solid.
This
ether.
e t h e r a t 51° i
more
l a t t e r was h e a t e d
f o r three days d u r i n g which
sublimed
leaving a white
Residue;
Samples
residue
the
further
at
time
1.8
leaving
170-180° u n d e r
a white
solid
as b e f o r e .
N-cc.,
o f hydrogen
1.0
N-cc.
slow w i t h
2-
o f methane and
respectively,
Therefore
r a t i o i s 10.30,10.25:1.
s a m p l e o f t h e same s o l u t i o n ,
t h e s o l v e n t was h e a t e d
under
at
after
removal
200-210° f o r e i g h t h o u r s
vacuum.
A s a m p l e o n h y d r o l y s i s g a v e 1.2
Residue:
13-0 N - c c .
o f hydrogen,
N-cc.
o f methane and
therefore the hydrogen:methyl
ratio
10.4:1.
was
In
were
small
of
N-cc.
hydrogen:methyl
A
of
10.5
N-cc,
u n d e r vacuum,
on h y d r o l y s i s , w h i c h was v e r y
m.ethoxyethanol, l i b e r a t e d
18.6
The c o l o u r l e s s o i l w h i c h
one e x p e r i m e n t ,
evolved
during
appears
This
volume i s q u i t e
due t o t h e presence
o f the hydrogen:methyl
t o be a b o u t
10:1.
91 m o l e p e r c e n t
assumed
o f uncondensable gas
o f small
amounts
i no r on t h e g l a s s .
The l i m i t
being
the pyrolysis.
a n d was p r o b a b l y
moisture
2.5 N - c c .
This
ratio
corresponds
beryllium hydride
t o be d i m e t h y l b e r y l l i u m .
i nthe residue
t o the
residue
i f the remainder i s
-79-
Preparation
The
with
of
o fHethylberyilium
Hydride
Coordination
Corn-pounds
1
r e a c t i o n s o f s o l u t i o n s o f Me^Be^H.,' i n e t h e r
donor molecules
methylberyllium
proved
hydride
t o be a r o u t e
f o rthepreparation
c o o r d i n a t i o n compounds.
N,N,N',N'-Te t r a a e t h y l e t h y l e n e d i a m l n e.
An e t h e r e a l s o l u t i o n
prepared
a
I.76M.
from
(10CC.) c o n t a i n i n g
ether
3«5g»(0.l45 m o l e . ) o f s o d i u m h y d r i d e , &Occ. o f
solution
o f ethereal dimethylberyllium
and concentrated
transferred
by s y r i n g e
by d i s t i l l a t i o n
into
one l i m b
Excess
o f t h e d i a m i n e was c o n d e n s e d
cooled
i nliquid
room
temperature
mixture
mixing,
being
of
1
(0.10b
mole.)
4.2g.(0.0326 m o l e . ) o f b e r y l l i u m c h l o r i d e i n 4 0 0 c c . o f
and
The
'Me.Be^H^
then
through
o f a double
Schlenk
tube.
Ether
t o ensure
o p e r a t i o n was r e p e a t e d
by
connecting
was d i s t i l l e d
ether by r e p e t i t i o n
t o warm t o
m a t e r i a l was d e p o s i t e d .
m a t e r i a l was s e p a r a t e d
on t h e s i n t e r e d d i s c
tube
on t o t h e s o l u t i o n ,
f o ra fewminutes
t h e s i n t e r e d d i s c , and t h i s
washed w i t h
washing
an i n s o l u b l e white
t h es o l i d
t h e Schlenk
1 0 0 c c . was
a i r , and on a l l o w i n g t h e m i x t u r e
was s h a k e n
collected
t o about
complete
filtration,
t h e two l i m b s
back under
allowed
t h es o l i d
o f t h e above p r o c e s s .
once more, a n d then
vacuum
t o be
This
the ether
-80-
and
excess
crystals
amine were
r e m a i n e d when
shown b y i t s m e l t i n g
Colourless
was e v a p o r a t e d
vacuum. T h i s
and t h e s e
m a t e r i a l was
81°(literature v a l u e
point
i n f r a r e d spectrum
1
the f i l t r a t e
a t 3 0 - 4 0 ° under
were sublimed
its
removed u n d e r vacuum.
t o b e t h e known compound
8 1 - 8 2 ° ) and
dimethyl-
1
(N,N,N , N -1 e t r a m e t h y l e t h y l en e d i a r n i n e ) - b e r y l 1 ium ,
33Me Be(Me .NCH-. )
2
2
The
white
insoluble
The
and n e i t h e r
carbon
sample under
280-290°,
10.85;
-hydride,
prepared
fumed n o r c a u g h t
fire
insoluble
2-
i na i r .
i n carbon
t u b e became s e m i - l i q u i d a n d
crystalline
solid
sublimed,
69.k: h y d r o l y z a b l e - m e t h y l ,
diamine,
CpK^Be^^JCMeBeH) (He NCH-) "J
2
69.9;
diamine,
leaving
2
2
hydrolyzable-methyl,
17-9;
requires
".8.05;
1.21%.
1,2-pimethoxyethane.
An
rapidly with
residue.
1.20.
-hydride,
amorphous
t e t r a c h l o r i d e and benzene. At 248° a s m a l l
a colourless
Be, 11.0;
Found:
moderately
vacuum i n a s e a l e d
brown-yellow
Be,
was an a p p a r e n t l y
compound w a s i n v o l a t i l e ,
disulphide,
a
material
powder w h i c h h y d r o l y s e d
methoxyethanol
at
2
ethereal
1
('monoglyme )
solution
(60cc.)
containing
'Me^Be-H^
from 1 . 6 g . ( 0 . 0 6 7 7 mole.) o f sodium h y d r i d e ,
60cc. o f
-81-
a 0.929M.
solution of ethereal
2.2g.,(0.0275
and
ether,
was
(about
10g.).
by s y r i n g e
The c l e a r
m i n u t e s and then
oil
mole.) o f b e r y l l i u m
transferred
and a w h i t e
solid.
removed
The w h i t e
t e m p e r a t u r e was m a i n t a i n e d
appeared
to sublime.
swirled
under
solid
pumping and a t 48-50° a c o l o u r l e s s
T&is
chloride
on t o excess
s o l u t i o n was
the ether
The c r y s t a l l i n e
of
'monoglyme'
went o i l y
solid
no f u r t h e r
solid
an
on
sublimed.
material
was i d e n t i f i e d
m.p.101°,
as
(literature
100-101° ) ^ '
The
in
i n 150cc.
vacuum, l e a v i n g
crystalline
until
mole,
f o r a few
slowly
(1,2-dimethoxyethane) dimethylberyllium,
value
(0.0558
dirnethyiberylliuin
viscous
oily
r e s i d u e was i n v o l a t i l e
b e n z e n e , a n d no method
Be, 1 . 3 - 1 ,
Found:
13-2:
hydrolyzable-methyl,
-hydride,
1.33,
requires
Be, 12.9; h y d r o l y z a b l e - m e t h y l ,
The
1-37-
f o ri t s purification
CgH^gBe^
course o f the r e a c t i o n
' m o n o g l y m e ' was a d d e d
and
insoluble
could
21.6,
be
found.
21.5;
£(MeBeH) (CH^OCH^)^
2
21.h;
-hydride,
d i d not d i f f e r
to the beryllium
1.44%
when
compound.
2,2'-Bipyridyl.
The
ethereal
addition
solution of
deposition
o f excess 2 , 2 ' - b i p y r i d y l
1
file.Be-H- ' r e s u l t e d
4 3 £
o f a yelloi-v s o l i d
i n ether
t o an
i n the immediate
( b i p y r i d y l d i m e t h y l b e r y l l i u m ) and
-82-
the
f o r m a t i o n o f a deep
these
two m a t e r i a l s could
beryllium
while
redsolution.
i s slightly
t h e deep-red
appeared
leaving
Complete
n o t be e f f e c t e d
as
separation of
"oipyridyldimethyl-
s o l u b l e i n e t h e r and afi;er a s h o r t
colour o f the supernatant
a dark-brown
tarry
liquid
dis-
material.
Trimethylamine.
(31-!- N - c c . , a n e x c e s s ) w a s c o n d e n s e d
Trimethylamine
to
15cc.
liquid
o f an e t h e r e a l s o l u t i o n
60cc.
from
o f a 1 .76M.
(0.106
z
3«5g«(0.1 f5
solution
of ethereal
mole.) and T . 2 g . ( 0 . 0 5 2 6
m i x t u r e was a l l o w e d
cooled
and a l l o w e d
reaction.
clear
mole.) o f b e r y l l i u m
crystals
36°
t o room
temperature,
t o ensure
vacuum, l e a v i n g
continuously through
sublimed
into
a n d was t h e known
amine
t o warm
(literature
40-^5° w i t h
compound
value
continuous
36°)."'"
pumping
then
complete
removed
from the
colourless crystals.
a liquid
the trap.
chloride i n
t o 100cc.
by d i s t i l l a t i o n
t o warm, u p a g a i n
under
tube, which had
dimethylberylliurn
The e t h e r a n d e x c e s s a m i n e w e r e
solution
pumping
Schlenk
mole.) o f sodium h y d r i d e ,
^OOcc. o f e t h e r a n d c o n c e n t r a t e d
The
1
o f Me^Be^H^', c o o l e d i n
a i r i n one l i m b o f a d o u b l e
been prepared
on
This
a i r trap,
On
colourless
compound m e l t e d a t
dimethylberylliuir..-trimethylThe r e s i d u e was h e a t e d a t
through
thel i q u i d
air
trap
-83-
when c o l o u r l e s s
the
Schlenk
Found:
tiibe,
condensing
1.20, 1.20; M,
cryoscopically
molecular weight
association
solutions
o f 1.97 a n d
prepared
sublimate
second
1.83
respectively
experiments,
for purification
)
2
17.8;
t o degrees
i n t h e two
sublimation
beryllium- trimethylamine
fractional
isolation
The
o f a pure
apparatus
so t h a t
be c a r r i e d
joints
vacuum s y s t e m
this
ratio
d i d n o t produce
was c o n t a m i n a t e d
Consequently
amine
with
method
were
of
fractional
as t h e
g r e a t e r than one, and
a pure
compound., i e . t h e
s m a l l amounts o f d i m e t h y l -
and i t m e l t e d
condensation
over
t h e range
o0-80°.
methods were used f o r
compound.
shown i n F i g u r e
trap-to-trap
I V . was u s e d
fractionations
o u t w i t h o u t vapours
o r t a p s . The a p p a r a t u s
i n which
complex
was n o t s a t i s f a c t o r y
had a methyl:hydrogen
sublimate
greased
(MeHBe.NMe
2
measurements correspond
samples o f t h i s
f o r further
sublimation
could
2
166,15^
measured.
When l a r g e r
designed
i n benzene,
Cg.H gBe N
2
17.5,17-7;
1.20; M, 168.
The
the
parts.
B e , 10.7; Me^N, 70-3; h y d r o l y z a b l e - m e t h y l ,
-hydride,
of
up t h e w a l l s o f
on t h e c o o l e r
0.if,0.2 w e i g h t % s o l u t i o n s .
requires
a
(prisms) sublimed
B e , 10.8; Me_N, 70.5; h y d r o l y z a b l e - m e t h y l ,
-hydride,
in
crystals
a n d i t was
under
coming i n t o
vacuum,
contact
with
was a t t a c h e d t o t h e
t r i m e t h y l a m i n e had been s t o r e d ;
i t was
FIGURE 17
MeHBs.NMe^
apparatus.
serum cap
T7
fvj
'H
M
to
vacuum.
f7=h
r,
M
K
n
U
U0
vg/
to
vacuum.
then
evacuated
and f i n a l l y
A 0.929M. s o l u t i o n
filled
with nitrogen.
of ethereal dimethyl beryllium
( 6 0 c c . 0.0557 m o l e . ) w a s h e a t e d u n d e r
(O.O667 m o l e . ) o f s o d i u m h y d r i d e
for
to
two days w i t h c o n t i n u o u s
be c o m p l e t e
liquid
the
since
evolved
original
only
reflux with
suspended
stirring.
1 .6g.
i n '100cc. o f e t h e r
Reaction
was p r e s u m e d
h y d r o l y s i s o f 2cc. o f t h e supernatant
2.5 N - c c . o f u n c o n d e n s a b l e
dimethylberyllium
present
would
gas, whereas
have
given
31.2 N - c c . p e r 2 c c . o n h y d r o l y s i s . B e r y l l i u m c h l o r i d e
0.0275 m o l e . ) i n 5 0 c c . o f e t h e r w a s a d d e d
reaction
mixture
precipitate.
and
then
with
t h e immediate
The m i x t u r e
thesolution
No c h l o r i d e c o u l d
about
into
trap
sealed
was
and
by s y r i n g e
into
through
being
evolved
Ether
i nliquid
trimethylamine
two o r t h r e e
times
filtered.
26.0 N - c c . o f
was r e d u c e d t o
t h e serum cap and
'A' a n d t h e m i x t u r e
frosen again
overnight
a n d t h e s o l u t i o n was
* A' f r o z e n
evacuated. Excess
reaction.
which
white
t h e h y d r o l y s i s o f a 2cc.
'A' ( F i g u r e I V ) . T h e c o n s t r i c t i o n
o f f and w i t h
condensed
after
before
g a s . The v o l u m e o f t h e s o l u t i o n
80cc. by d i s t i l l a t i o n ,
transferred
formation o f a
to cool
be d e t e c t e d
sample o f t h e c l e a r f i l t r a t e
uncondensable
to the refluxing
was b o i l e d w i t h r e f l u x
allowed
(2.2g.,
below
then
t a p 'H'
*H' w a s
a i r , the apparatus
(1000 N - c c . ) w a s
warmed
t o room
t o ensure
and excess amine were
temperature
complete
removed u n d e r
vacuum,
-35-
leaving
'J'
1
a
colourless crystalline
shut,
water
with
'K' a n d
:
and
C
cooled
from
cretailine
in liquid
trap
in
solid
point,
i t was
sublimed
from
'B' i n t o
The
the
and
vacuum i n t o
mercury
oil
that
of
was
bulb
was
of
had
the c o l o u r l e s s
dimethylberylliura-
colourless crystalline
'J'
sealed
bulb
pure
in
'3'
and
open and
had
was
f
a
sharp
therefore
K' a n d ' L
under n i t r o g e n
'B' was
170°
1
and
at
by
was
raised
at
on
1
shut
and
1
'E' a n d
'F .
and
possible
t h e vacuum
t h e compound
sublimed
in liquid
were
listed
taken
i n Table
system.
ballunder
a i r . The
the b u l b immersed
r e a d i n g the mercury
mark
c l o s e as
means o f a s m a l l
cooled
readings
are
'G' a s
( F i g u r e V)
some o f
'A' w h i c h
each
the standard
the
sealed
broken
thermostat. Pressure
Before
sublimed
vapour d e n s i t y measurements.
a magnet and
and
in ice-
(i.e.
'D' w i t h
'K' was
cut-off
between 20°
to
36
temperature
break-seal
bearing
and
apparatus
'high
t o 0°
p r e s u m e d , t o be
the apparatus
Vapour p r e s s u r e
to
'B' c o o l e d
7 3 - 7 ^ ° • As t h e m a t e r i a l
'3' was
The
valves
a i r , t h e compound, was
was
i n 'C
melting
finally
float
'A', t h e m e l t i n g p o i n t
t r i m e t h y l a m i n e " ' ' ) , and
solid
traps
With
p u m p i n g a t 2 0 - 3 0 ° • When a l l t h e m a t e r i a l
continuous
sublimed
'L' o p e n ,
solid.
about
in
an
10°
every
V.
cut-off
'B' was
'C. Temperatures were measured
by
raised
a
FIG.
THE
HIGH TEMPERATURE
UJ
Z
TO LOW
VACUUM
BULB
-86-
standardised
mercury
thermometer
reading to tenths of a
degree.
A t t h e end o f t h e e x p e r i m e n t ,
present
was d e t e r m i n e d
by h y d r o l y s i s
measurement o f t h e uncondensable
Vapour Pressure
material
- over
gas
vapour
:
Observed
those
The
heat
pressures
log
r 0
vapour
calculated
(56-115°)
0
f o r the l i q u i d
P m.
from
and
73-115°
~
^ 3 9
a r e compared
i n TableV
point
kcal.per
i s 257°j
mole., and
the latent
the Trouton
21.1.
constant
Vapour-phase
The
association.
vapour
density
m e a s u r e m e n t s when a l l t h e m a t e r i a l
was p r e s e n t i n t h e g a s e o u s p h a s e o v e r
that
t h e range
144-172°
t h e compound i s inonomeric b u t shows s i g n s o f
association.
Temp(°C)
Molecular Weight
Degree
are
t h e above e q u a t i o n .
boiling
11.2
from
a
equation:
=
m
pressures
extrapolated
of vapourisation
indicate
i n which the
''( .K) w a s l i n e a r
1
r e p r e s e n t e d by t h e l i n e a r
73-115°
with
range
was n o t a l l p r e s e n t i n t h e gas phase
the. o b s e r v e d
and
liberated.
the temperature
&
o f compound
of the material
-plot o f l o g p
against temperature
° - mm.
closely
the quantity
of Association
144.2
156.2
165-3
172.3
101.6
95-1
90.8
82-5
1.21
1.13
1-08
0.?S.
-87-
Table
V.
Vapour p r e s s u r e o f t r i m e t h y l a m i n e - m e t h y l b e r y l l i u m
O b ' s . p r e s s . (mm.)
Vap.press.(mm.)
Temp.(°C)
hydride.
Gale.]
0.26
0.2.6
23.0
0.42
0.42
30.6
0.44
0.43
39.4
0.80
0.79
47.0
1 .15
1.13
55-8
1 .170
1.98
1 .94
65.9
1 .941
3-09
3.02
75.2
3.025
4.96
4.84
85.6
4.849
7.97
7-75
96.0
7.513
11.31
10.96
104.8
10.64
15.96
15.38
114.7
15.58
21.92
20.9^
125.8
25.90
24.43
134.8
30.00
27.81
144.2
34.16
30.57
156.2
37.82
32.70
165.3
43.20
36.56
172.6
-88-
Reaction
o f (MeBeHNHe^) ~, w i t h 2 , 2 ' - b i p y r i d y l .
Excess
of
bipyridyl
i n e t h e r was a d d e d
trimethylamine-methylberyllium
Immediately
either
a deep
when p r e c i p i t a t e d
allowing
the solution
p u m p i n g down
brown
the solution
dissolved i n ether.
formed w h i c h decomposed
by t h e a d d i t i o n
t o stand
sample
o f hexane, o r on
f o r a few h o u r s ,
to small
o r on
volume, t o form
a
dark-
tarry material.
Reaction
o f (MeBeH.NMe^,)^ w i t h
20*9
beryllium
N-cc. o f monomer) o f
hydride
cooled
i n liquid
e v o l u t i o n o f gas o c c u r r e d
gas e v o l u t i o n ceased. 2 0 . 8
hydrogen were
formed
dimethylamine.
N-cc. o f d i m e t h y l a m i n e were
0.0783g. (20.8
slow
red solution
hydride
to a small
which
evolved
and thus
on t o
trimethylamine-rnethyla i r . A t room
and t h e m i x t u r e
N-cc. o f a m i x t u r e
a mixture
temperature
was l e f t
until
o f methane
and
o f c o m p o u n d s was
was n o t f u r t h e r i n v e s t i g a t e d .
Trimethylarnine-rnethylberyllium
Sodium
condensed
deuteride
2.^2M. s o l u t i o n
deuteride.
(O.^i'g-j
0.021
m o l e . ) ar.d S e e . o f a
of ethereal dimethylberyllium
(C.019^
mole.)
-89-
were b o i l e d i n 200cc.
a 2cc.
o:f e t h e r
f o r two days. H y d r o l y s i s
sample o f t h e supernatant
of
uncondensable
in
50cc.
mixture
liquid
gas. B e r y l l i u m
of ether
was a d d e d
and b o i l i n g
chloride
yielde-d
f o ra further
filtered.
chloride
was
transferred to the apparatus described
of
trimethylamine
trimethylamine
condensed
was
then
isolated
a t 75-76°
Found:
Eydrolyzable-methyl.
i f
-deuteride,
raethylberylliura
to
hydride,
bond
might
a chelate
have
complex,
-deuteride,
2.29-
hydrolyzable-methyl,
t o form
i n which
be e x p e c t e d
might
a chelate
17-6;
t o be p r e s e n t .
o-phenylenediamine,
bond. Since
was
first
with
I t was
thought
because
of i t s
induce methylberyllium
thus
have a
the preparative
resulted i n the formation
the l a t t e r
complex
a terminal beryllium-
complex which would
beryllium-hydrogen
also
appears
configuration,
form
17*6;
analogue.
1
N,N,N',N'-tetramethyl
steric
crystals
N,N,N'.N -tetramethylethylenediamine nor
1,2-dimethoxyethane
that
as c o l o u r l e s s
deuterid
2-35%-
Neither
hydrogen
f o r the
I V . ) and 1100 N-cc.
i n t h e same w a y a s i t s h y d r i d e
(MeDBe.NMe^) r e q u i r e s
1 2
d i d not contain
on t o i t . M e t h y l b e r y l l i u m
melting
C H BeDN
(Figure
mole.)
h o u r and then t h e
was
o f the analogous hydride
which
N-cc.
reaction
solution
isolation
The f i l t r a t e ,
2.1
only
(O.bjg-,0.008
to the refluxing
continued
of
hydride
terminal
method
would
of the dimethylberyllium
-preoared. a n d
characterized.
-90-
Reaction
of
dimethylberyllium with
N,N,N',N'-tetramethylo-phenylenediamine •
N,N,N' ,N' - t e t r a m e t h y l
0 . 0 1 2 2 m o l e . ) was
solution
of
contained
ethereal
i n one
exothermic
for
a
few
added
minutes
solution
was
crystals
appeared.
of
a double
took
to
ensure
(at
8 0 - 9 0 / I 0 ~ ~ m m . ) UD t h e
and
fumes s l o w l y
reacts
Found:
vigorously
Be,
Be,
weight %
4.42;
degrees
t u b e as
sealed
in
the
with
of
slightly
was
swirled
clear
good
vacuum
colourless
does n o t
vacuum
sublimed
-prisms,
vacuum.
hydrolyzable-methyl,
211,
20b
r e s p e c t i v e l y . C^
of
A
colourless
then
14.8%,
M,
m o l e c u l a r w e i g h t measurements
association
mole.),
The
under
tube under
0.929M.
catch
The
fire
water.
i n benzene, 215,
solutions
and
a i r but
hydrolyzable-methyl,
The
mixture
mixing.
(2.0g.,
a
tube.
volume
excess amine
4.52, 4.29;
cryoscopically
0.42
remove
103-104° i n a
at
the
a t low
of
(0.00929
These w e r e pumped d r y
one
compound
to
10cc.
Schlenk
complete
pumped down and
hour
to
plaice and
for
melting
syringe
dimethylberyllium
limb
reaction
by
o-phenylen.edia.mine
1.05,
1*03,
1.01
14.6:
M,
i n 0.92,
O.65,
^Be¥>
requires
203correspond
to
respectively.
I
_91_
R e a c t i o n o f Sodium P l y d r i d o d i e t h y l b e r y l l a t e w i t h
B e , r y l l i u m C h l o r i d e a n d t h e T h e r m a l D e c o m p o s i t i o n o f 'Et .Be^E^,
(
(0.03
Diethylberylliurn
in
e t h e r ) was
heated
under
mole, 20cc.
reflux
(0.0*+ m o l e . ) o f s o d i u m h y d r i d e
(0.015
added
then
boiled
allowed
to cool
be
9-1
the
refluxing
with reflux
supernatant
gave
to
expected
was
according
of heat
The
filtrate
a
on
to
and
the
was
to a
by
r e c e i v e r w h i c h was
cooled
leaving- a
latter
viscous
by
before
A 2cc.
syringe
overall
being-
sample o f
and
TB.2 N - c c o f
the
Lydrolysed,and
e t h a n e , as
would
equation:
* 2NaCl +
'
syringe
'Et.Be^H '
'+ y 2
20cc. of
to a
flask
ether
residue.
the
clear
joined
attached
removed u n d e r
in liquid
evolved
glassy
and
receiving flask
e t h e r was
this
was
filtered
v a c u u m s y s t e m . The
and
r e a c t i o n mixture, which
+ 3eCl_,
2
transferred
d i s t i l l a t i o n arm
oil
was
hour
of
1.2g.,
'Et.Be,?!-'
4.
solution
was
ether.
ether
further
removed
solution
w i t h 1.Og.,
day
i n 100cc. o f
temperature.
of hydrogen
2NaH + 2 E t _ B e
2
Action
;
for a
t o room
liquid
N-cc.
f o r one
b e r y l l i u m c h l o r i d e i n 50cc.
mole.) of
slowly
1 .pM.
of
to
This
the
vacuum i n t o
a i r , leaving a
at about
by
50°
residue
colourless
under
was
the
vacuum
heated
to
1
-92-
50-60
, t h e minimum
distils,
leaving
temperature
when a c o l o u r l e s s l i q u i d
a colourless glassy-lite
distillate
consisted
evolved
of
only
ethane
1 3 - ^ N-cc.
In
another
N-cc.
A small
110°
experiment
of
'Et^Be^H^
using
of
sample o f t h i s
liquid
distilled
a white
this
A
solid
further
N-cc.
of the
f o r eight
o f hydrogen
was
residue
was
heated
of a double Schlenk
up
washed
although
the walls of the
half
ratio
tube.
an h o u r , h e a t i n g
to 98.0
was
A
was
removing
remarkably
evolved
I f the product
and d i e t h y l b e r y l l i u m
slow
with
N-cc.
and
thus
were
only,
a
then
mole % b e r y l l i u m h y d r i d e .
experiment usina
-
20cc.
the
white,
w i t h a c i d , 16.7
o f ethane were
i s *f?.7:1.
to
tube,
twice with ether
quite rapid
of beryllium hydride
corresponds
10cc.
and pumped d r y . H y d r o l y s i s o f t h i s
hydrogen:ethyl
mixture
evolved
ethane.
10.1
evolved
and a f t e r
h y d r o g e n and 0 - 3 5 N-cc.
the
of
a further
non-crystalline residue,
2-methoxyethanol
of
residue
residue
product,
apparently
ethereal
ethane.
colourless
liquid
the receiver
and h e a t i n g a t 70--80°
1
i n one l i m b
The
The
into
on h y d r o l y s i s
1 ? . ? N-cc.
and
vacuum
stopped.
residue.
residue
under
leaving
distilled
on h y d r o l y s i s a n d e v i d e n t l y
a sample o f t h e r e s i d u e
11.6
and
o f hydrogen
solution
hours,
diethylberyllium
diethylberyllium.
A sample o f t h e s o l i d
above
a t which
of the solution
of
-93-
'Et,Be.,H ' was
4- } 2
ether
for
was
c a r r i e d out
removed
f o u r h o u r s and
hours.
During
Residue
81.856:
Be,
(a).
36.6
The
of
N-cc.
Addition of
no
79 •~'}%\
N-cc.
diethylberyllate
such
period
Be,
0.9
and
vacuum,
subsequently
this
Found:
hydrogen
v/ashed w i t h
by h e a t i n g
0.0090g.
on
prior
gas
was
60°
to
110-120°
to
for
two
evolved.
gave 3 5 - 7 N-cc.
of
h y d r o l y s i s . BeH^
to sodium
filtration
shown i n P h o t o g r a p h
obtained.
ether
The
requires
hydrogen.
without
be
followed
beryllium chloride
apparatus,
could
apparatus.
permanent
ethane
of
similar
heating
that quantitative isolation
products
be
under
using
and
I t also
without
from
enabled
from
sodium
I . was
analysis
removal
hydridohydride.
designed
of
both
the: r e s i d u e
the
to
apparatus.
1 ^0°
1
Et ,Be-.H_ '
*T
J>
d.
-—*
;
Diethylberyllium
in
ether)
was
(O.O83 m o l e . ) o f
After
the
2k
hours,
in
50cc.
further
then
(0.06
t r a n s f e r r e d by
2.0g.
of
(0.03
ether
hour.
filtered..
The
Two
mole,
M-Occ. o f
syringe
sodium h y d r i d e
reaction mixture
2.4g.
2Et_Be +
d
T
had
and
1
solution
suspension
i n 100cc.
of
boiling
reflux
was
samples o f
continued
allowed
the
for
dissolved
for
to cool
filtrate
of
ether.
beryllium chloride,
reaction mixture
3«0cc.
a
a
been b o i l e d w i t h
mole.) of
were added
into
BeH_
d.
were
a
and
-9k-
h y d r o l y s e d and y i e l d e d 23-2, 2J.1 N-cc. o f h y d r o g e n and
4-6.6, 4-6.5 N-cc. o f e t h a n e .
c
A n o t h e r sample ( 3 1 « 3 c . ) o f t h e same f i l t r a t e
transferred
through
illustrated
i n Photograph I . This apparatus
to
t h e vacuum l i n e
'b' t o b u l b
allowed
'A' o f t h e a p p a r a t u s
by b a l l - j o i n t
(acetone-CC^)• t h e apparatus
evacuated,
'B' was t h e n c o o l e d
i nliquid
1
down t o b u l b
bulb
and as 'A' was
the ether
g l a s s b e t w e e n t h e t o p o f 'A , t h e j o i n t
connected
'A' was c o o l e d
which
was condensed i n t h e vacuum a p p a r a t u s
Bulb
and
was
'e'. B u l b
t o warm t o room t e m p e r a t u r e
evaporated
was
and s t o r e d
n i t r o g e n , the
1
' b , and e x t e n d i n g
'C was wound w i t h h e a t i n g t a p e k e p t a t 60-70°
'A' was s l o w l y warmed t o 70° and m a i n t a i n e d a t
or near t h a t
temperature
f o r 2k h o u r s . D u r i n g
d i e t h y l b e r y l l i u m , probably
this
time
a c c o m p a n i e d b y some e t h e r ,
c o n d e n s e d i n 'B'.
The t e m p e r a t u r e
o f the o i l bath surrounding
t h e n r a i s e d t o 120° f o r a f u r t h e r 2k h o u r s ,
time
t h e c o n t e n t s o f 'A' p a r t i a l l y
solidified
liquefied
during
condensed j u s t
above t h e l e v e l
period,
m a t e r i a l had
of the o i l bath, but this
was removed by r a i s i n g t h e l e v e l
inch. Finally
which
and t h e n
as a w h i t e m a t e r i a l . A t t h e end o f t h i s
a s m a l l amount o f c o l o u r l e s s c r y s t a l l i n e
'A' was
o f t h e l a t t e r a b o u t an
t h e o i l b a t h was h e a t e d
t o 180° f o r 8 h o u r s .
-95-
Bulb
'B' was a l l o w e d
t o warm t o -9b°(CEUClp
(identified
by i n f r a r e d
bath)
and
1A-.0 N-cc. o f e t h y l e n e
spectrum)
was
c o l l e c t e d i n a t r a p a t -196°. No gas t h a t c o u l d n o t be
condensed a t -196° ws-s p r o d u c e d d u r i n g t h e r e a c t i o n .
The
apparatus
was t h e n f i l l e d
w i t h n i t r o g e n , and,
a g a i n s t a c o u n t e r c u r r e n t o f n i t r o g e n cap 'c' was r e p l a c e d
by a n i t r o g e n l e a d . The l e f t
then separated from
hand s i d e o f t h e a p p a r a t u s
was
'B' by s e a l i n g o f f a t ' f .
Analysis o f the d i e t h y l b e r y l l i u r a .
Cap
'd' was removed a g a i n s t a c o u n t e r c u r r e n t o f
n i t r o g e n and r e p l a c e d b y a d r o p p i n g
funnel containing
de-gasseefc- 2 - m e t h o x y e t h a n o l . A f t e r t h e n i t r o g e n had been
pumped o u t , a d d i t i o n o f 2 - r n e t h o x y e t h a n o l t o 'B'
at
-196°, t h e n a l l o w e d s l o w l y t o warm t o room
f o l l o w e d by w a t e r
and f i n a l l y d i l u t e
(initially
temperature)
sulphuric acid yielded
M-76.5 N-cc. (0.02126 m o l e . ) o f e t h a n e ( i d e n t i f i e d
spectrum),
a little
ether (also i d e n t i f i e d
by i n f r a r e d
by i t s i n f r a r e d
s p e c t r u m ) and no gas t h a t was n o t condensed by l i q u i d
nitrogen
the
( e . g . no h y d r o g e n ) .
Bulb
'B
1
was d e t a c h e d
from,
vacuum l i n e and i t s c o n t e n t s washed i n t o a s t a n d a r d
volumetric
yielded
f l a s k and made up t o 2 5 0 c c . Two 5 0 c c .
0.0536 and 0.0539g- o f BeO. so b u l b
aliquots
'B' h a d c o n t a i n e d
0.0107^ m o l e , b e r y l l i u m and 0.02126 m o l e , h y d r o l y z a b l e
ethyl,
Et:Be = 1-977:1.
-96-
Analysis of the i n v o l a t i l e
residue.
Against a countercurrent of n i t r o g e n e n t e r i n g through
the
gas
lead attached at
adaptor which
connected
1
'c', cap
b
1
the apparatus
v i a a s t o p c o c k . When t h e n i t r o g e n had
ether
(about 1 0 c c ,
p r e p a r a t i o n ) was
The
apparatus
the
separated
t i m e s and
' C . E t h e r was
repeated
condensed on
was
s w i r l e d a few
r e p l a c e d by
t o t h e vacuum
earlier
o b s e r v e d i n 'C',
the w h i t e r e s i d u e i n
'A'.
f r o m t h e vacuum l i n e , b u l b 'A'
apparatus
was
the side-ann
the o p e r a t i o n
then r e - c o n n e c t e d
t h e e t h e r removed; no
w h i c h was
line
stage of the
the ether f i l t e r e d i n t o
t w i c e more- The
an
been pumped o u t , d r y
t h e n condensed back i n 'A' and
vacuum l i n e and
had
s t o r e d f r o m an
was
sealed o f f a t
residue could
to
be
'a' a f t e r n i t r o g e n
been l e t i n .
Cap
'c' v/as r e p l a c e d by a d r o p p i n g f u n n e l c o n t a i n i n g
d e - g a s s e d 2 - m e t h o x y e t h a n o l , t h e n i t r o g e n pumped away, b u l b
'A* was
cooled
As
'A' was
bulb
slow
gas
allowed
e v o l u t i o n was
accomplished
dilute
t o -1^/6° and
2-r.iethoxyethanol s l o w l y run i n .
t o warm t o room t e m p e r a t u r e
seer., and
t h e h y d r o l y s i s was
by t h e s u b s e q u e n t a d d i t i o n o f w a t e r
s u l p h u r i c a c i d a t room t e m p e r a t u r e .
d u r i n g h y d r o l y s i s were pumped t h r o u g h
and
-196°
The
a very
mainly
and
finally
gases
evolved
t r a p s a t -128°(pentane)
( t w o i n s e r i e s ) by means o f a T O p l e r pump. 2^-2 N-cc.
(0.01080 m o l e . ) o f h y d r o g e n and
1.80 N-cc.(0.0000803 m o l e ,
-97-
identified
by i n f r a r e d
s p e c t r u m ) o f e t h a n e were
no e t h e r was d e t e c t e d . The s o l u t i o n r e m a i n i n g
washed i n t o a s t a n d a r d
2 5 0 c c . Two
so
collected;
i n 'A* was
v o l u m e t r i c f l a s k and made up t o
5 0 c c . a l i q u o t s y i e l d e d 0.0272 and 0.0279g.
'A' had c o n t a i n e d
BeO,
0.00550 m o l e , b e r y l l i u m , so t h e r a t i o
H:Be i n t h e h y d r i d e was
1.965:1•
From t h e v o l u m e s o f h y d r o g e n and e t h a n e t h e mole.^o
h y d r i d e w o u l d be
ZkZ.Q x 100 = 99.3%
BeE^, on t h e a s s u m p t i o n ( s o o n
t h e o n l y o t h e r component was
o r 95-9 w e i g h t
shown t o be i n c o r r e c t )
%
that
diethylberylliura.
The r e m a i n d e r o f t h e e t h e r s o l u t i o n c o n t a i n i n g
'Et.Be-.H-,' was
following
left
(1).
t r e a t e d i n e x a c t l y t h e same way and t h e
reactions carried
after
o u t on t h e i n v o l a t i l e
pyrolysis.
A f t e r r e m o v a l o f most o f t h e h y d r i d e f r o m b u l b
the apparatus
out.
With
was r e - a t t a c h e d
the apparatus
'A'
t o t h e vacuum s y s t e m and pumped
shut o f f from
t h e pump b u t open t o
a manometer, t h e b u l b and i t s c o n t e n t s were h e a t e d
in
residue
slowly
a s i l i c o n e o i l b a t h . A t 280° s l o w e v o l u t i o n o f h y d r o g e n
occurred
and t h e w h i t e s o l i d
started
t o t u r n b l a c k . A t 300°
15*5 N-cc. o f h y d r o g e n were e v o l v e d
o v e r a p e r i o d o f 7-8
minutes.
d i d not catch
air.
The b l a c k powder r e m a i n i n g
fire in
-98-
(2) .
The h y d r i d e d i d n o t c a t c h
f i r e n o r fume i n a i r .
A f t e r two h o u r s i n a i r , s m a l l s a m p l e s o f t h e h y d r i d e
h y d r o g e n "when w a t e r was added t o them b u t a f t e r
three hours
no e v o l u t i o n o f gas was n o t i c e a b l e even when a c i d was
(3) -
The i n f r a r e d
raethyldecalin
region.
liberated
added.
s p e c t r u m r e c o r d e d as a m u l l i n p e r f l u o r o -
showed
t h e absence o f C-H
v i b r a t i o n s i n t h e 3jJL
(The s p e c t r u m r e c o r d e d as a n u j o l m u l l i s d i s c u s s e d
elsewhere).
(4) .
in
Diethylberylliun
(0.006 m o l e , kcc. o f a. 1.5M. s o l u t i o n
e t h e r ) was added t o 0.0647g.(0.0059 m o l e . ) o f t h e h y d r i d e .
The h y d r i d e d i d n o t d i s s o l v e a f t e r
two h o u r s a t room t e m p e r a t u r e
n o r a t 90° o v e r k h o u r s a f t e r r e m o v a l o f t h e s o l v e n t by
distillation.
addition
The h y d r i d e d i d n o t d i s s o l v e on t h e f u r t h e r
o f 10cc. o f t h e s o l u t i o n o f d i e t h y l b e r y l l i u i n
f o l l o w e d by r e f l u x i n g f o r s e v e r a l h o u r s .
(5) .
A list
relative
o f t h e i n t e r p l a n a r s p a c i n g s ( d ) and
intensities
their
( I ) f r o m t h e 3C-ray powder p h o t o g r a p h o f
a sample o f t h i s h y d r i d e u s i n g c o p p e r r a d i a t i o n i s shown
o v e r l e a f i n Table V I .
-99Table V I .
X - r a y Powder D a t a f o r t h e P y r o l y s i s
Product.
I n t e r p l a n a r spacings
(A°) a r e r e p r e s e n t e d
b y 6..
Relative intensities
o f t h e l i n e s i s r e p r e s e n t e d by I .
(maximum 2 0 0 . )
_d
I
d
1
6.178
18
1 .852
8
4.538
20
1.799
3.765
15
3.228
d
I
18
1 .035
5
1 .767
13
1 .068
5
200
1.717
>
1 .024
10
3.108
8
1 .652
3
0.992
5
3.038
8
1.602
18
0.941
2.990
3
1 .568
5
0.901
1t
3
2.913
150
1-553
10
0.888
2.731
3
1.488
13
0.879
3
2.661
120
1.457
1£
0.855
1*
2.499
5
1.439
1*
0.804
2.441
120
1.384
18
2.341
20
1 -553
1£
2.263
5
1.327
1£
2.168
5
1.296
5
2.078
3
1.252
5
2.049
18
1.230
10
1 .991
3
1.217
5
1.189
3
1.164
3
1 .934
1 .881
35
-100-
(6).
A s m a l l sample o f t h e h y d r i d e was t r a n s f e r r e d i n
a g l o v e box t o a s m a l l w e i g h i n g
ground g l a s s j o i n t s .
filled
The c a p s u l e
capsule
water
w i t h B14.
was opened i n s i d e ' a f l a s k
w i t h n i t r o g e n and t h e c o n t e n t s
distilled
fitted
f o l l o w e d by d i l u t e
hydrolysed w i t h
s u l p h u r i c a c i d . The
h y d r o l y s i s o f 0.024°Ag. gave 44.5 N-cc. o f h y d r o g e n , and
0.5 N-cc. o f e t h a n e .
Found:
Na, 43; Be, 30.9; h y d r o l y z a b l e - h y d r i d e , 8.72;
-ethyl,
2.6%. n e i t h e r c h l o r i d e n o r e t h e r c o u l d be d e t e c t e d .
T h i s a n a l y s i s a c c o u n t s f o r o n l y 855i o f t h e t o t a l w e i g h t
so
some o x y g e n may have been p r e s e n t , p o s s i b l y as b e r y l l i u m
oxide.
EeH^ R e q u i r e s Be, 81.7; H, 13.3%-
3Na Be Hg + 5BeK
2
2
A
mixture of
r e q u i r e s Na, 52; Be,37-3; H, 10.6%.
( b ) M o d i f i e d p r o c e d u r e f o r 'Etj.Be-H^' p y r o l y s i s . , w i t h
c o n t r o l o f the sodium
content.
A s o l u t i o n o f a p p r o x i m a t e l y 3«3g- o f b e r y l l i u m
c h l o r i d e i n 2 5 0 c c . o f e t h e r was made up s h o r t l y
(the
one
solution
b e f o r e use
t u r n s y e l l o w a f t e r 3-^ d a y s ) such t h a t
only
phase was p r e s e n t . The s o l u t i o n was s t a n d a r d i s e d by
r e m o v i n g an a l i q u o t w i t h a p i p e t t e , h y d r o l y s i s w i t h w a t e r and
titration
solution.
o f the free acid with standard
sodium
hydroxide
-101-
Sodium h y d r i d e
(2.0g.,
c
0.08.33 m o l e . ) and 3 0 c -
°f
a 1.57K. s o l u t i o n o f e t h e r e a l d i e t h y l b e r y l l i u r n
(O.C)V?1 m o l e . )
were r e f l u x e d i n 2 5 0 c c . o f e t h e r w i t h s t i r r i n g
f o r three
d a y s . The m i x t u r e was p o u r e d i n t o l i m b
Schlenk tube
1
'A' o f t h e t r i p l e
( F i g u r e V I ) and t h e s o d i u m h y d r i d o d i e t h y l -
beryllate
e x t r a c t e d w i t h ether from
into limb
'B . Most o f t h e e t h e r was t h e n d i s t i l l e d
vacuum i n t o
1
*A' ( c o o l e j t o - 1 9 6 ° )
hydride
under
and t h e r e s i d u a l s o l u t i o n
t o -60°(acetone-C02). The m o t h e r l i q u o r was d e c a n t e d
cooled
into
excess s o d i u m
'A', l e a v i n g t h e c r y s t a l l i n e h y d r i d o d i e t h y l b e r y l l a t e i n
1
•B . E t h e r was d i s t i l l e d
-196°)
back f r o m
'A' i n t o
u n d e r vacuum up t o a s t a n d a r d
temperature)
*E' ( c o o l e d t o
mark (l80c:c. a t room
and t h e s a l t d i s s o l v e d by g e n t l y s w i r l i n g and
w a r m i n g t h e s o l u t i o n . Two 0 . 7 c c . s a m p l e s were removed by
syringe, hydrolysed
up t o s t a n d a r d
these
with d i s t i l l e d
w a t e r and a c i d a n d made
volume w i t h d i s t i l l e d
water. A n a l y s i s o f
s o l u t i o n s f o r s o d i u m showed t h a t t h e e t h e r s o l u t i o n i n
'B' c o n t a i n e d
0.842g.(O.O366 m o l e . ) o f s o d i u m . 1 0 8 . 5 c c . o f
t h e 0.167.5M. s o l u t i o n o f e t h e r e a l " b e r y l l i u m c h l o r i d e (O.OI818
m o l e . ) were added by p i p e t t e
t o t h e s o l u t i o n i n 'B' and an
i m m e d i a t e w h i t e p r e c i p i t a t e f o r m e d . The m i x t u r e was g e n t l y
swirled
t o e n s u r e c o m p l e t e m i x i n g and t h e n t h e p r e c i p i t a t e
allowed
t o s e t t l e . A n a l y s i s o f a sample o f t h e s u p e r n a t a n t
liquid
showed t h a t o n l y a s m a l l amount o f s o a i u m was p r e s e n t
AUG 1964
ngure}£l
53
The Triple Sch/enk Tube.
C
A
-102-
i n s o l u t i o n and. c h l o r i d e c o u l d n o t be d e t e c t e d . The s o l u t i o n
was f i l t e r e d
distilled
into limb
down t o a b o u t 70-S0cc.
by s y r i n g e i n t o
and
The s o l u t i o n was t r a n s f e r r e d
the p y r o l y s i s apparatus,
previously described ,
t h e p y r o l y s i s was c a r r i e d o u t as d e s c r i b e d
previous
its
*C a n d t h e c l e a r s o l u t i o n was
experiment.
infrared
?6-2 N-cc. o f e t h y l e n e
s p e c t r u m . ) were e v o l v e d
i n the
( i d e n t i f i e d by
d u r i n g t h e p y r o l y s i s and
t h e r e s i d u e was washed f o u r t i m e s w i t h e t h e r a n d pumped d r y .
The h y d r o l y s i s was c a r r i e d o u t a s p r e v i o u s l y d e s c r i b e d ,
u s i n g a small capsule
f i t t e d w i t h ground j o i n t s i n which
to weigh t h e h y d r i d e .
H y d r o l y s i s o f O.Ol85g. p r o d u c e d 70.4- N-cc. o f h y d r o g e n
and
0.3 N-cc. o f e t h a n e . C h l o r i d e c o u l d n o t be d e t e c t e d i n
the product.
Found:
Na. 5-7; Be, 81; h y d r o l y s a b l e - H ,
17.1%.
BeH_ r e q u i r e s Be, 8 1 . 7 ; H, 18.3"/°- A c o m p o s i t i o n Na_Be^H^- +
65BeH
2
o r Na^BeH^ + 6 6 B e H
2
r e q u i r e s Na, 5-8; Be, 77; H, 1 7 - ^ i .
The X - r a y powder p h o t o g r a p h showed t h a t t h i s
product
v/ a s amo r p h o u s .
(c).
E f f e c t o f c h l o r i d e on t h e p r e p a r a t i o n o f b e r y l l i u m h y d r i d e .
I n order
t o determine
t h e e f f e c t o f c h l o r i d e on t h e
p y r o l y s i s , a f u r t h e r experiment
was t r i e d u s i n g
I.Og.
(0.0417 m o l e . ) s o d i u m h y d r i d e a n d 20cc. o f a 1.57M. s o l u t i o n
of ethereal diethylberyllium
(0.0314 m o l e . ) i n lOOcc. o f
-103-
ether. After
and
t h e h y d r i d o d i e t h y l b e r y l l a t e had
d i s s o l v e d i n e t h e r i n the t r i p l e
been e x t r a c t e d
S c h l e n k t u b e as
a n a l y s i s o f a sample o f t h e s o l u t i o n showed t h a t
solution
(80cc.)
contained
before,
the
total
0.26?3g-(0.0116 m o l e . ) o f s o d i u m .
2 9 . 0 c c . o f a 0.2003M. s o l u t i o n o f b e r y l l i u m c h l o r i d e (O.OO581
m o l e . ) i n e t h e r was
liquid
a d d e d , and
shown t o c o n t a i n no
c h l o r i d e . The
experiments,
s o l u t i o n was
b u t a t 120°,
v e s s e l became l i q u i d
and
a f t e r mixing,
t r e a t e d as i n t h e
previous
the c o n t e n t s o f the p y r o l y s i s
did not s o l i d i f y
began t o d a r k e n a f t e r a b o u t an h o u r so
b e l o w 140° even
A t 180
, the
t h e v e s s e l was
s p e c t r u m ) o f e t h a n e and
e t h y l e n e were
(shown by
6.9
N-cc.
formed.
o f e t h a n e on h y d r o l y s i s . The
s o l u t i o n a f t e r h y d r o l y s i s contained
I n one
experiment
c h l o r i d e b u t no
o n l y ( o u t of about s i x or
aimed a t t h e p r e p a r a t i o n o f b e r y l l i u m h y d r i d e by
process,
h y d r o l y s i s o f the r e s i d u e produced a
s m a l l amount (30.2
infrared
spectrum).
N-cc.) o f i s o b u t a n e
During
infrared
0 . 0 2 4 l 6 g . on h y d r o l y s i s p r o d u c e d 17*6 N-cc.
h y d r o g e n and
solid
allowed
t h e r e s i d u e washed f o u r t i m e s w i t h e t h e r .
t h e p y r o l y s i s , 25.0 N-cc. o f a m i x t u r e
Found:
supernatant
s o d i u m b u t a s m a l l amount o f
a f t e r several hours a t t h i s temperature.
t o c o o l and
the
of
residual
sodium.
seven)
the p y r o l y s i s
relatively
( identified
by i t s
-104-
Reactions
b e t w e e n 'Et,,Be-H~
* a n d Sodium
1
—
<
_
Methods f o r i n c r e a s i n g
reaction
Hydride.
t h e h y d r o g e n : e t h y l r a t i o by
o f 'EtiBe-,H_' w i t h s o d i u m h y d r i d e , w i t h a v i e w t o
obtaining
e t h y l b e r y l l i u m h y d r i d e o r i t s sodium h y d r i d e
c o m p l e x a r e now d e s c r i b e d .
Sodium h y d r i d e (2 .J;g. , 0.0958 m o l e . ) a n d 20cc. o f a
2.78M. s o l u t i o n o f e t h e r e a l
were r e f l u x e d
diethylberyllium
(0.0556 m o l e . )
i n 100cc. o f e t h e r f o r 24 h o u r s .
2.2g.(0.0275
m o l e . ) o f b e r y l l i u m c h l o r i d e i n oOcc. o f e t h e r were added
and
a f t e r r e f l u x i n g f o r 1 hour,
t h e m i x t u r e was f i l t e r e d .
H y d r o l y s i s o f a 1.0cc. sample o f f i l t r a t e d
solution liberated
6.5 N-cc. o f h y d r o g e n a n d 15-7 N-cc. o f e t h a n e .
hydrogen r a t i o i s 2 . 1 : 1 ,
1
thus Et^Be^H^
1
The e t h y l :
h a s been
formed.
2 . 5 g - ( 0 . 0 1 0 4 m o l e . ) o f s o d i u m h y d r i d e was added t o
t h e above f i l t r a t e
and t h e m i x t u r e r e f l u x e d with, s t i r r i n g
f o r s e v e r a l h o u r s . 2 . 0 c c . samples o f t h e s u p e r n a . t a n t
were removed a t v a r i o u s i n t e r v a l s and a n a l y s e d
23 h o u r s .
liquid
by h y d r o l y s i s .
9-^ N-cc. o f h y d r o g e n a n d 23-0 N-cc. o f e t h a n e ,
e t h y l : h y d r o g e n = 2.44.
52 h o u r s .
8.8 N-cc. o f h y d r o g e n and 22.6 N-cc. o f e t h a n e ,
e t h y l : h y d r o g e n = 2-58.
100 h o u r s .
8.9 N-cc. o f h y d r o g e n and 24.4 N-cc. o f e t h a n e ,
e t h y l : h y d r o g e n = 2.73-
- 105Th e e t h e r was d i s t i l l e d
75-S0
u
o f f , t h e m i x t u r e heated a t
f o r 24 ho u r s a n d t h e n t h e e t h e r r e p l a c e d and t h e
mixture
r e f l u x e d f o r 1 hour.
6.5
124 h o u r s .
N-cc. o f h y d r o g e n and 13-0 N-cc. o f e t h a n e ,
e t h y l : h y d r o g e n = 1.99The s o l u t i o n was p o u r e d i i i t o a d o u b l e S c h l e n k
and
a. c r y s t a l l i n e
s o l i d was e x t r a c t e d w i t h e t h e r f r o m
s o d i u m h y d r i d e . The s o l u t i o n was d i s t i l l e d
volume, cooled
tube
dowr. t o s m a l l
t o -40° and t h e c o l o u r l e s s n e e d l e s
o f f on t h e s i n t e r e d d i s c c o n n e c t i n g
excess
filtered
t h e two l i m b s o f t h e
S c h l e n k t u b e and pumped d r y .
Be, 9-34; h y d r o l y z a b l e - e t h y l , 6 3 . 7 : - h y d r i d e , 1 . 1 :
Found:
C^H^BeNa ( N a B e E t H ) r e q u i r e s Be, 9-9;
2
63.7;
-hydride,
hydrolysable-ethyl,
1.1%.
Sodium h y d r i d o d i e t h y l b e r y l l a t e was o b t a i n e d
yield
on t h e b a s i s o f t h e e q u a t i o n
'Et^Be^ELj' + Nal-I
inseparable
shown b e l o w :
y NaBeEt^H + an i n s o l u b l e p r o d u c t
from sodium h y d r i d e
In a s i m i l a r experiment,
1
i n ^'\%
(as discussed
on p .
the ethereal solution o f
Et^Be,!-^' was added t o s o d i u m h y d r i d e i n ' d i g l y r n e ' ,
ether d i s t i l l e d
36 h o u r s .
products
o f f and t h e m i x t u r e heated
diethyl-
t o 80-85° f o r
A t t h e end o f t h i s p e r i o d , t h e gaseous h y d r o l y s i s
f r o m a sample o f t h e s o l u t i o n w h i c h was d a r k - b r o w n ,
were v e r y s m a l l , consequently
decomposition
has t a k e n
place.
-106-
As
'Et^Be^H^' r e a c t s w i t h s o d i u m h y d r i d e as t h o u g h i t
c o n t a i n s d i e t h y l b e r y l l i u m , i t was t h o u g h t t h a t r e a c t i o n o f
t h i s p r o d u c t w i t h b e r y l l i u m c h l o r i d e w o u l d p r o d u c e more
'Et^Be^H^' and so o n . The o v e r a l l r e a c t i o n
c a n be r e p r e s e n t e d
by t h e e q u a t i o n b e l o w :
2NaH + Et„Be + E e C l d.
2
Diethylberyllium
» 2JMaCl + 2Et3eH.
*
( 0 . 0 3 m o l e , 2 0 c c . o f a 1.5M. s o l u t i o n
i n e t h e r ) was r e f l u x e d w i t h 1-5g.(0.0625 m o l e . ) o f s o d i u m
h y d r i d e i n 400cc. o f e t h e r f o r 1 day. 2.5g-(0.051
of beryllium
c h l o r i d e i n 50cc. o f e t h e r was added
mole.)
o v e r two
h o u r s t o t h e r e f l u x i n g r e a c t i o n m i x t u r e w h i c h was r a p i d l y
stirred
and r e f l u x e d
supernatant l i q u i d
f o r s e v e r a l d a y s . 5cc. samples o f t h e
were
removed
by s y r i n g e a t v a r i o u s
i n t e r v a l s and h y d r o l y s e d .
1 day.
8-5 N-cc. o f h y d r o g e n and 15*2 N-cc. o f e t h a n e
3 days.
9-1 N-cc. o f h y d r o g e n and 19-9 N-cc. o f e t h a n e .
The s o l u t i o n was t h e n f i l t e r e d
m o l e . ) o f s o d i u m h y d r i d e and a g a i n
1 day.
8.5
7 days.
15»0 N-cc.
N-cc.
on t o 0 « 9 g « ( 0 . 0 3 7 5
refluxed.
o f h y d r o g e n and 18.2 N-cc.
o f h y d r o g e n and 27»5 N-cc.
This type o f r e a c t i o n i s t h e r e f o r e
o f ethane
o f ethane.
unsatisfactory for
t h e p r e p a r a t i o n o f e t h y l b e r y l l i u m h y d r i d e , p r o b a b l y due t o
coating
o f sodium h y d r i d e b y c h l o r i d e .
-107-
R e a c t i o n b e t w e e n ' T r i - e t h y l s t a n n a n e and D i e t h y l b e r y l l i u m .
Et,SnH + Et„Be
3
CL
Tri-ethylstannane
of
b Et.Sn + EtBeH.
hr
(5-2g.,
0.0252 m o l e . ) and l o . O c c .
a 1.57K. s o l u t i o n o f e t h e r e a l d i e t h y l b e r y l l i u m
were t r a n s f e r r e d by s y r i n g e i n t o
VII)
(0.0251 m o l e . )
the r e a c t i o n f l a s k
and h e a t e d a t 4-0° f o r 2 h o u r s , ( t h e a p p a r a t u s
'A' ( F i g u r e
being-
a t t a c h e d t o t h e vacuum s y s t e m v i a b a l l - j o i n t £ and j o i n t s D and
E being closed with
75°
d u r i n g which
c a p s ) . The t e m p e r a t u r e was t h e n r a i s e d t o
time e t h e r d i s t i l l e d
into
t h e r e c e i v e r 'B
1
and t h i s t e m p e r a t u r e was m a i n t a i n e d f o r 2 h o u r s . The f l a s k was
allowed
air
t o c o o l t o room t e m p e r a t u r e ,
'B' c o o l e d i n l i q u i d
a.nd t h e s y s t e m evacuated, so t h a t a l l v o l a t i l e m a t t e r was
c o l l e c t e d i n *B' o v e r 14 h o u r s . A f t e r c o n t i n u o u s pumping a t
35°
f o r 2 hours, the f l a s k
* A' c o n t a i n e d a v i s c o u s g l a s s y
r e s i d u e , w h i c h became a w h i t e s o l i d
a f t e r prolonged
pumping.
The d i s t i l l a t e was removed by s y r i n g e , t h e r e c e i v e r '3'
washed w i t h more e t h e r , and t h e s e were combined and made up t o
s t a n d a r d volume ( 2 5 c c . ) w i t h e t h e r .
A p p r o x i m a t e l y 20cc. o f e t h e r was condensed on t o t h e
c o n t e n t s o f 'A' and t h e c l e a t s o l u t i o n removed by s y r i n g e and
s t o r e d i n a f l a s k under n i t r o g e n .
Distillate.
Two 5cc. a l i q u o t s were removed by p i p e t t e and
FIGURE
W
EtaSnH-Et^Bg apparatus.
B
V
-108-
fractionated
through
a
a t -50
trap
0.80g. of t e t r a - e t h y l t i n c o n t a i n i n g
( s h o w n by
ethyltin
infrared
spectrum).
Residue.
have been
Hydrolysis
g a v e 31-0 N - c c .
of beryl1ium
The
of
(38.5
by
trapped
of
syringe
to
the
solution
w h i c h was
react
at
of
one
tube as
sealed
with
O.78
the
tri-ethylstannane
quantity
of
tetra-
theoretical,
the
residue).
ethereal
solution
cooled
the
beryllium
compound
a double Schlenk
in liquid
room t e m p e r a t u r e and
a i r . The
then
colourless
sublimed
p r i s m s a t ^ 0 - ^ 5 ° • The
up
on
ether
and
to
was
excess
the
walls
compound m e l t s a t
of
the
90-91° i n
reacts
Schlenk
a
vigorously
effervescence.
cryoscopically
193: 200,
i n benzene,
solutions.
C .H_ Be N
1 (
0
29.6;
p
o
202,
9-2; h y d r o l y z a b l e - e t h y l ,
The
m o l e c u l a r weig;ht m e a s u r e m e n t s c o r r e s p o n d
1.97? 2 . 0 ^ ,
2.06
i n O.36.
( E t H B e .NMe_
Be,
of
tube,
mixture
3e, 9-3; h y d r o l y z a b l e - e t h y l , 29-0; - h y d r i d e ,
association
was
crystalline
t u b e u n d e r vacuum, f u m e s i n a i r , and
weight %
0.0155s-
e t h a n e and
t r i m e t h y l a m i n e were condensed
r e m a i n e d , was
water with
Found:
M,
which
the
l i m b of
a m i n e r e m o v e d u n d e r v a c u u m . The
material
the
in
of
solution
500 N - c c . ( e x c e s s ) o f
to
total
of
N-cc.)
and
allowed
2cc.
trace
h y d r o g e n , 31-5 N - c c . o f
remaining
transferred
a
4.05g.(?1% of
i s o l a t e d was
r e m a i n d e r may
The
0.82g.,
which' c o l l e c t e d
-hydride,
respectively.
1 .0>i:
0.55)
requires
1.035=: K,19o.
to
degrees
of
DISCUSSION
-109-
Discussion.
In
w h i c h may
vated
at
readily
forra
methyl
20°)
c o n t r a s t t o sodxum h y d r i d o d i e t h y l b e r y l l a t e
crystallised
compound i s o n l y
s y m m e t r y . No
association
only
e x t r a c t o r . The l o w e r
compound i s e x p e c t e d
i n view
evidence
material
the analogous
solubility
of i t s probably
but X-ray
a t present being
i s monoclinic
with
1 . 6g/litre
v e r y s l o w l y by t h e u s e
h a s been o b t a i n e d
of these s a l t s
diethylberyllate,
a t 20°),
s p a r i n g l y s o l u b l e (about
a n d may be c r y s t a l l i s e d
of a Soxhlet
this
from d i e t h y l e t h e r i n u n s o l -
about 3 0 g / l i t r e
(solubility
,
o f the inethvl
gr£;ater
molecular
f o r the degree of
data
f o r sodium
hydrido-
s t u d i e d , h a v e shown t h a t
space
g r o u p F2^/c
(No.14).
o
The u n i t c e l l d i m e n s i o n s a r e , a=5»0'+, b = 1 1 . 2 , c=20.9A and t h e
monoclinic
angle
For
the
salt,
suspension
beryllium
falls,
(£) i s 101°
t h e p r e p a r a t i o n o f many
derivatives,
isolation
of
NaBeMe^H, i s f o r t u n a t e l y n o t n e c e s s a r y . When a
o f sodium h y d r i d e
( i nexcess) i n ethereal dimethyl-
i s b o i l e d , the c o n c e n t r a t i o n of the l a t t e r
a s i n d i c a t e d by t h e amount o f m e t h a n e e v o l v e d
samples of supernatant
change appears
of h a l f
15'.
liquid
are hydrolysed.
to take p l a c e a f t e r
No
when
further-
a b o u t 48 h o u r s ,
a mol. e t h e r e a l b e r y l l i u m c h l o r i d e then
gradually
but a d d i t i o n
causes
-110-
precipitation
of
together
hydrolyzable
in
with
s o d i u m c h l o r i d e and
s o l u t i o n i n molar
chloride
and
excess
methyl
ratio
a l l the
and
hydrogen
J>:k:2. F i l t r a t i o n
sodium h y d r i d e
beryllium
yields
to
from
reappear
sodium
a solution
containing
'Me^Be-^Hj ' • S o d i u m h y d r i d o d i e t h y l b e r y l l a t e
', prepared
sodium hydride
reacts in
similar
way
and
with
diethylberyllium
+ Et Be
$> N a B e E t H
2
?
2NaBeEt_H + B e C l _
2
2
is little
solutions
and
1:2
mixture
of
evidence
about
the p r o d u c t
methylberyllium
hydride
>
the
'Hei,Be,H
(MeBeK)
reaction
with
amines,
main s o l u t e s p e c i e s are
solvated
of
(e.g.
solvated
could
be
a 2:1
these
mixture
dimethylberyllium,
and
On
the
b a s i s of
a
significant
the
their
the
and
concentrations
more c o n r a l e x s p e c i e s
5 2
"
to b e l i e v e
dimethylberyllium
though
or
of
dime t h y l b e r y l l i u m .
52.
i s insoluble in ether
'Me.Be-,!! ') o r
H
'Et,Be_H '
4 j> 2
i t i s reasonable
methylberyllium hydride
trinuclear
1
n
(Be^)
seems u n l i k e l y .
tertiary
+
c o n s t i t u t i o n of
and
beryllium hydride
possibility
2NaCl
r
However, s i n c e b e r y l l i u m h y d r i d e
latter
a
beryllium chloride,
NaH
There
i n ether
from
could
*
be p r e s e n t . The c o l o u r l e s s v i s c o u s o i l y r e s i d u e o b t a i n e d when
s o l v e n t i s r e m o v e d f r o m e t h e r e a l 'Ke. Be_.H • a t room t e m p e r a t u r e ,
H
j> 2
h a s t h e a p n r o x i m a t e c o m p o s i t i o n Me. 3 e _ H „ 0 E t _
Mos '; o f t h e
H
j> c.
2.
-
ether
i s lost
when
this
oily
material
i s heated
to about
30°
-111-
under
vacuum. S i n c e d i i n e t h y l b e r y l l i u m
i san e l e c t r o n - d e f i c i e n t
2o"
polymer
insoluble ora t least
solvents
• could
with
which i t does n o t r e a c t
be r e g a r d e d
between
very s p a r i n g l y soluble i n
27.
a s some k i n d
dimethylberyllium
", t h e v i s c o u s o i l
of electron-deficient
and m e t h y l b e r y l l i u m
n
A
containing
Reactions
Me
the trimethylamine
The
complex
complex
complex
volatile
than
He Be.NMe.
( I ) ofmethylberyllium
( I ) , a . p . 73-0-73-2°, i s d i m e r i c
less
chain.
t o e t h e r e a l 'Me,,Be_H
of the dimethylberylliura
and
considerably
polymer
molecules.
of trimethvlamine
a mixture
such a s ,
^
donor
Addition
yields
hydride
an element o f the d i m e t h y l b e r y l l i u m
with
complex
Me-Be.NMe,.
hydride.
i n benzene
and i s
'Whereas t h e
v a p o u r p r e s s u r e o f Me_Be.NMe_ i s 1.8mm. a t 3 0 ° , t h a t o f
2
is
1.8mm. a t 6^° ( l o g „ _ p
0
f r o m 73-115°)»
fractional
hydrogen
not
liouid
T
a n d t h e two c o m p l e x e s may b e s e p a r a t e d b y
condensation.
r a t h e r than
between
7.V38 - 2*+39 , f o r the
Krmm.
The h y d r i d e
a methyl bridge
decomposed by e x c e s s
bridges
(I)
j>
( I ) i s formulated
because the complex i s
of trimethylamine
b e r y l l i u m atoms
with a
whereas
the methyl
i n the dimethylberyllium
polymer
-112-
are
c l e a v e d by
trimethylamine.
/
\
3e
Be
\
/
Me.
Studies
on r e a c t i o n s b e t w e e n d i a l k y l a l u m i n i u m
donor molecules
have
compounds a r e l e s s
shown
readily
Q
m
that
the hydrogen b r i d g e s
cleaved
than
a r e the methyl
bridge
0 9 .
trimethylaluminium.
vaporization
point
i s 11.2 k c a l .
257° a n d t h e T r o u t o n
constant
suggests
during
likely
that
the vapour,
mainly
o f d i m e r . An a t t e m p t
successful
vapour appeared
21.1. 'The n o r m a l
to measure
i t i s
110°, c o n s i s t s
the molecular
weight
o
(1^5-175°) was n o t
o f some d e c o m p o s i t i o n ;
t o be m o n o m e r i c
Trouton
i n the degree of
up t o a b o u t
temperatures
heat of
boiling-
of v a p o r i z a t i o n , thus
at least
on a c c o u n t
the l a t e n t
, the extrapolated
constant
the process
a s vapour a t h i g h e r
entirely
mole
t h e r e i s no c h a n g e
association
the
i n these
q
From t h e v a p o u r p r e s s u r e e q u a t i o n ,
(I)
h y d r i d e s and
a t 175° a n d
however
t o become
more a s s o c i a t e d a t l o w e r
temperatures.
A t t e m p t s t o p r e p a r e monomeric c o m p l e x e s , L^BeMeE,
of methylberyllium hydride
which
readily
Addition
by t h e u s e o f d o n o r
substances
form c h e l a t e complexes have n o t been
of bipyridyl
immediate yellow
t o e t h e r e a l 'Me^Be^Hp' r e s u l t s
precipitate
becoming deep r e d .
successful
o f bipy.BeHe^'
i n an
the solution
-113-
Though i t i s p o s s i b l e t h a t
the
r e d soon
could
turned
be o b t a i n e d
t o a d a r k brown
on r e m o v a l
underwent
decomposition
bond
matter
a r e d c o l o u r was p r o d u c e d w h i c h
a
be e x p l a i n e d
tarry
bipyridyl
to ( I ) ,
may
and o n l y
t o bipy.BeMeH,
o f t h e s o l v e n t . When
was added
similar
t h e r e d c o l o u r w a s due
to t h a t d e s c r i b e d
above,These
by a t t a c k o f t h e h y d r i d e
of the b i p y r i d y l
as occurs
with
across
other
metal,
observations
the azo-methine
hydride
10°.
complexes such
as bipyridyl
Reaction
results
with
aluminium
hydride.
N,H,N',N'-tetramethylethylenediamine
i n the formation
o f t h e known c h e l a t e c o m p l e x o f
d i m e t h y l b e r y l l i u m ' ^ * and t h e p r e c i p i t a t i o n
amorphous
carbon
of
substance,
which
^l^eBeB.) ^/SAe^C^E^¥.Ke^^
is
present
below
( I I )
resulting
i t appears
to t h e
that
the a n a l y s i s
formula.
the hydrogen
bridge
c o n s t i t u t i o n a s shown
M
flu,
,.-3e.<— A l — C « 2 — O k — N—>6e
&
r
corresponds
apparently
benzene,
tetrachloride. Since
i n a polymeric
rfea
H
i s insoluble i n ether,
d i s u l p h i d e and c a r b o n
the i n s o l u b l e product
o f a v/hite
fee
y
\
en*.
-114-
This
nor
does
involatile
complex
(II)
i sneither
pyrophoric
i t fume i n a i r .
Reactions
evaporation
-with 1 , 2 - d i r a e t h o x y e t h a n e a n d
of ether gives a mixture
of solid
i s heated
1 ,2-diinethoxyethane
complex o f d i m e t h y l b e r y l l i u r . r ^ "
the reaction
insoluble
to
2
similar
complex
(II).
Reactions
hydrochloride
?
to t h a t
and a b e r y l l i u m
'amine-methylberyllium
liberating
a mixture
reaction
o f the o i l corresponds
i t s constitution i s
n
between a secondary
a s gaseous
sublimes
of the tetramethylethylenediamine
and h y d r i d e groups,
hydrocarbon
vacuum, t h e
a very v i s c o u s o i l which i s
£(MeBeH) Ke0C H^0iyieJ
probably
the
leaving
i n benzene. S i n c e the a n a l y s i s
the formula
alky!
vessel,
50° i n
and l i q u i d
p r o d u c t s . When t h i s
from
to about
subsequent
amine o r a t e r t i a r y
compound
produces
containing
a mixture
both
o f hydrogen and
p r o d u c t s . Dimethylamiine and
hydride react
a t about
room
o f methane and h y d r o g e n . T h i s
between, the s e c o n d a r y
amine
crimethyltemperature
resembles
amine and i s o p r o p y l b e r y l 1 i u m
hi
hydride
which
e v o l v e d p r o p a n e and hydrogen
A mixture
o f ethane
liberated
from
and hydrogen
trimethylamine
hydridodiethylberyllate
This l a t t e r
for
reaction
i n the r a t i o
i n the ratio
2.5:1
1.1b:1 w a s
h y d r o c h l o r i d e and sodium
i n ether solution
was n o t c o n s i d e r e d
a t room
temperature.
t o be a good
the preparation of trimethylamine-ethylberyllium
method
hydride
-115-
since,
no
d o u b t , an
diethylberylliurn
method
for
hydride
the
by
corrrplex i s a l s o
preparation
another
Reaction
in
ether
and
route
solution
ethane
left
and
formed. A s a t i s f a c t o r y
i s discussed
results in
hydride;
hydrogen
in
takes
the
place
tri-ethylaluminium
the
trimethylamine-ethylberyllium
the
below.
of
the
of
triethylstannane
of
tetra-ethyl tin
the
involatile
tetra-ethyltin
r a t i o 1.016:1.
when
and
formation
hydrolysis
a f t e r evaporation
exchange which
with
of
e q u i m o l a r amount o f
between d i e t h y l b e r y l l i u r n
ethylberyllium
residue
approximately
yielded
hydrogen-alky1
The
tri-ethylstannane
i s heated
( g i v i n g E t p A l H ) i s i n h i b i t e d by
ethers
1
10^
or
tertiary
with
amines.
tri-ethylalu.min.ium
intermediate,
be
character
of
the
there
of
remove
by
trimethylamine
been
like
that
the
the
exchange
that
in
exchange
coordination
electron-deficient
the
presence
surprising
Ethylberyllium
by
should
electron-deficient
forming
reaction
characterised
complex
solution
i t i s not
exchange
diethylether.
method h a s
benzene
expect
i s evidence
that
electron-deficient
p e r s i s t in dimethylberyllium
hydride-alkylberyllium
this
an
to
aluminium a l k y l
trimsthylphosphine,^"
presence
assumption
involves
r e a g e n t s which
complexes. Since
bridges
the
i t i s reasonable
i n h i b i t e d by
and
" On
takes
that
place
of
ethers
the
tin
in
the
hydride
prepared
conversion
into i t s
by
( E t H B e .IfMe_)» w h i c h i s d i m e r i c i n
i 2
i t s methyl analogue ( I ) . I t i s p o s s i b l e
-116-
that
this
range.of
method
could
be
organoberyllium
used
hydride
can
be
i f more
than
one
by
p u m p i n g a t -k0°
forms a s t a b l e
1:1
complex with
complex
d
of a
wide
complexes.
complex
amine
whereas
with
coordinates, i t
dimethylberyllium"'''
t r i m e t h y l a t v i i n e and
(Ke_.Be) ( r I H e _ ) _ w h i c h
d
liquid
mol. o f
removed
2:J
preparation
coordination
f o r m s a 1:1
Diethylberyllium
trimethylamine;
f o r the
readily loses
an
unstable
a mol.
of
d j
amine.
N,N,WjN'-tetramethyl
crystalline
to
the
these
and
complex w i t h
o-phenylenediamine
dimethylberyllium
can
be
sublimed
In
the
beryllates,
ordinated
unchanged
preparation
of
i t i s probable
ether
H"
Hydride
compounds a r e
ion also
(used
as
monouieric
in
sodium
hydride
k1
7 —
n
+ R-Be.OEt,
2
2
displaces
reaction
very
i n benzene
solution
hydriaodialkylion displaces
co-
n
(R BeH) ~
2
n
+
n
OEt,
2
trimethylamine,
* N a B e E t - H + Me,N.
J>
d
a
c o m p l e x . ^ "Both
solvent):
NaH + E t „ B e . N M e _
in
s i m i l a r to
2
7
the
formation
of
sodium
aluminium
96.
hydride
from sodium h y d r i d e
NaH
+ E_Al.NMe,
5
way
vacuo.
the
that
a
in a similar
N,M ,N' , K ' - t e t r a m e t h y l e t h y l e n e d i a m i n e
cryste-lline
forms
t>
and
trimethylamine-alane.
kKaAlH,
'
^
+ Me,Is.
t>
-117-
Thermal
decomposition
of a l k y l b e r y l l i u m
hydride-dialkyl-
beryllium
Attempts
to prepare
s u b l i m a t i o n under reduced
from
the s o l i d
(from
pressure
slow
sublimation
methylberyllium
(detailed
below),
extensive
sublimation
continued
with
thermal
formation
until
i n the range
experiments
170-210°
resulted
\ Me
„Be
.H -:- Me_Be .
w
n-2 n + m -1 m
2
2
more t h a n
a t higher
temperatures
decomposition
o f some
2
ratio
10:1. A t t e m p t s
a greater hydride:methyl
ratio
i n the residue
to o b t a i n
by means o f
were n o t s u c c e s s f u l
of d i n e t h y l b e r y l l i u m ,
on
account
shown b y t h e
methane.
viscous residue, l e f t
solutions
to a r e s i d u e o f
In several
the hydride:methyl
Diethyl beryllium
the
corresponding
2
(m:n-2) w a s a l i t t l e
of
i s apparent
disproportionation,
2
reactions
1
o f any pause i n the e v o l u t i o n
was o b t a i n e d .
Me Be
H
n
n + m m
products
'MeiBe-H4- 'j 2
A t a b o u t 10~^mm.
of d i m e t h y l b e r y l l i u m
a t a stage
hydride
by
of dimethylberyllium
2
dimethylberyllium
which
hydride
r e s i d u e o f amoroximate convoosition
f r o m 6 0 ° , b u t no i n d i c a t i o n
in
methylberyllium
2NaBeMe H + B e C l g ) w e r e n o t s u c c e s s f u l .
pressure
of
mixtures.
o f approximate
separates
after
r a t h e r more e a s i l y -when
the evaporation
composition
of e t h e r
1
from
' Et^Be-.Hp , i s h e a t e d .
-118-
For
example, a g l a s s y
ethylberyllium
70-80°.
is
The
greatly
hydride
course
of
affected
ethylberyllium
In
residue
was
the
hydride
some e a r l y
excess
The
with
determined
half
by
at higher
c o m p o s i t i o n of
experiments,
the
of
beryllium
solutions
were p r e p a r e d
the
hydrolysis
mol. of
of
of
by
small
chloride
in
sodium
stirring
sodium
diethylberyllium
supernatant
a
of
liquid
was
s a m p l e and
ether
was
from
mixture
sodium h y d r i d e
and
gave
composition
experiment,
1
solutions
Et^Be-H^
i n which
1
originally
, who.se p y r o l y s i s was
the
residue
after
way,
from a s o l u t i o n
prepared
in
this
60°
and
at
110-120°
for
residue
This
k hours
was
result
then
obtained
which
indicated
that
Et^Be^H
had
taken
hydride,
is
18.3??-
place
since
Later
giving
the
a product
hydrogen
sodium
of
studied.
heated
the
In
of
one
ether
i n vacuo
for 2 hours;
17.8% h y d r i d e
2Et Be
p
+
BeH
an
at
involatile
hydrogen.
2
c o n s i s t i n g mainly
content
work s u g g e s t e d
Filtration
reaction
}
p
be
evaporatisn
was
coiitained
the
to
one
without
precipitated
believed
ether.
then
added,
sodium h y d r i d e .
liydrid
in
exactly
from u n r e a c t e d
chloride
at
diethylberyllium-
filtration
of
of
temperature
previous
the
mainly
8hours h e a t i n g
after
reaction
boiling solutions
NaBeEtpH c o n t e n t
consisting
solution.
hydridodiethylberyllate
in
obtained
further
by
evidently
this
of
of
pure b e r y l l i u m
was
a misleading
beryllium
hydride
result
-119-
which
i s now
attributed
to t h e p r e s e n c e
of a very
T
amount o f 3\ aBeEt_H i n t h e 'Et,Be_K., *. F u r t h e r
£
-r _'; d
showed
that
solutions
1
of
EtiBe,H '
0
•t
and
that
dissolve
t h e p r e s e n c e o f soiiie a l k a l i m e t a l
disproportionation
described
i n the Experimental s e c t i o n
as
pyrolysis
ethyl.
This
crystalline
280°
residue
w a s shown
but f a i l e d
I n one
a t 180°)
photograph);
to r e a c t
experiment
(p.93 ) , t h e r e s i d u e
c o n t a i n e d ky-}i s o d i u m
t o be c r y s t a l l i n e
T h o u g h some o x y g e n w a s p r o b a b l y
accounted
hydride
i s necessary for
8.7% h y d r i d e h y d r o g e n ,
( X - r a y pov/der
i n vacuo
more s o d i u m
to t a k e p l a c e -
( f i n a l l y 8 hours
a s 31% b e r y l l i u m ,
well
experiments
? C
extensive
after
small
with
2.6%
and
or mainly
i t decomposed a t about
diethylberyllium.
p r e s e n t , as the a n a l y s i s
f o r only Sj/i of the t o t a l
weight,
the composition
o f t h e r e s i d u e r o u g h l y c o r r e s p o n d e d t o a m i x t u r e o f drools.
B e E _ + 3 m o l s . N a _ B e _ H o r 8 m o l s . B e E _ + 3 m o l s . Na_BeH,
2
2 2 6
2
2
'4.
r
As
reaction
with
is
probably
p r e s e n t a s a complex sodium b e r y l l i u m
rather
than a s f r e e
Further
hydride,
several
the
w a t e r was r e l a t i v e l y
sodium
evidence
evidently
experiments
boiled
cold
f o r the existence
i n ether,
solutions
The h y d r o l y s i s
ethyl:hydride
ratio
hydride
o f a sodium
was o b t a i n e d
of 'Et^Be^H^'
w i t h an e x c e s s o f sodium h y d r i d e
days.
the sodium
hydride.
insoluble
i n which
slow,
of samples
beryllium
from
i n e t h e r were
f o r p e r i o d s up t o
of solution
( i n s o l u t i o n ) was a l w a y s
showed
at least
that
2:1,
-120-
but
since concentration
NaBeEt^H. showing
of the f i l t e r e d
t h a t sodium had
entered
evident
that hydride
must h a v e l e f t
complex
hydride.
formation
salts
Beli^nLiH h a s been
Having
sodium
of
The
found
hydride,
ethereal
oxide,
salt
and
with
these
and
alkoxide
i n a preliminary
' EtiBe-.H
i^ocedure
modified
to a l l o w
sodium h y d r i d e .
or f a i l u r e
apparatus
were
could
before
be
found;
the p r e p a r a t i o n
s i n c e no
ether-soluble
oxidation
been p r e p a r e d ;
and
finally,
the p r e p a r a t i o n
The
Schlenk
{k)
thus
beryllate
the re-use
without
f o r the
drying
of
of
VI
of
once
i n the
unnecessary
i t has
o f t h e same
removal from
t u b e shown i n F i g u r e
removing
formed
the avoidance
of the h y d r i d o - d i e t h y l
throughout
triple
O)
of
Conse-
method
or h y d r o l y s i s products
of the p r e p a r a t i o n :
transferences
sodium
ethereal, d i e t h y l b e r y l l i u m
of the h y d r i d o d i e t h y l b e r y l l a t e ,
step
both
by t h e p r e s e n c e
necessary
of
of beryllium
e x a c t l y the
(2) i s o l a t i o n
first
f r e e from
( 1 ) the r i g o r o u s
u s e by w a s h i n g w i t h
with
preparation
i n s o l u b l e m a t e r i a l s i n the r e s i d u e .
of pure b e r y l l i u m hydride
purification
' react
The p r e s e n c e
to b a l a n c e
the f o l l o w i n g p r e c a u t i o n s
preparation
communication
f o r the
and
t h e b e r y l l i u m c h l o r i d e i s shown
involatile,
quently
reported
N a B e E t ^ H o f known c o n c e n t r a t i o n
diethylberyllium
some i n s o l u b l e
of e t h e r - i n s o l u b l e l i t h i u m
the e x p e r i m e n t a l
was
solution, i ti s
s o l u t i o n as
that s o l u t i o n s of
beryllium hydride
solution yielded
the
( i n the
ether
apparatus.
Experimental
-121-
Section)
fitted
In
was
added
excess
one
the
such
which
product
after
870
but
no
amount o f
followed
ether
by
filtration
(180°)
of
beryllium hydride
containing
strong
at
1760 and
examined
(approximately
there
cm
appears
proportions
of
i n having
. The
in
than
infrared
sodium
theoretical
NaBeEt^H,
(X-ray
91 w t . % ) .
that
of
powder
Na^Se^^H^ +
The
mainly
infrared
of b e r y l l i u m h y d r i d e
relatively
broad
i n s t e a d of
spectrum
absorption
has
of
and
absorptions
this
latter
i n t h e 5jU, r e g i o n
been o b t a i n e d
91 w t . % ) t h a n
no
of
the
amorphous
from
of
product.
composition
a
the
when
perfluoromethyldecalin.
hydride
t o be
A trace
evaporation
175^ cm
on
apparent
as a mull
A purer
differed
centred
s h o w e d no
gave an
of
chloride,
(approximately
more s o d i u m
1629
(180°)
BeR^) e v i d e n t l y c o n s i s t i n g
product
absorption
product
in this
1fb l e s s
approximate
65 BePI,, ( o r Na^BeH^ *• 66
this
1 mol. c h l o r i d e i n
o n l y 2.55:1*
detected
from sodium
chloride
chloride yielded a
was
a d d i t i o n of about
pyrolysis
of
beryllium
of
b e r y l l i u m c h l o r i d e to a s o l u t i o n
and
spectrum
amount o f
sodium
ratio
s o d i u m was
photograph) product
of
an
above.
inols. b e r y l l i u m . P y r o l y s i s
the H:Et
Finally,
listed
i n the p r e s e n c e
s e p a r a t i o n of
i n which
chloride
experiment
resulted
f o r every
filtrate
requirements
reason
by
other
to doubt
(or better s t i l l
by
this
method
known p r e p a r a t i o n s
that
still
and
smaller
l i t h i u m ) i n excess
of
-122-
the
exact stoichiometric proportion
formation
of
pyrolysis
products
pure b e r y l l i u m h y d r i d e .
the
reaction
would
result
more c l o s e l y
in
approaching
P r e v i o u s l y o t h e r "workers
between l i t h i u m
the
aluminium hydride
had
and
studied
dimethyl-
52
beryllium
large
' forming
extent with
a hydride
w h i c h was
aluminium hydride,
contaminated
lithium
to
hydride
a
and
45
ether
low
and
this
decomposition
pyrolysis
was
no
doubt
(125°)
temperature
of d i - t e r t i a r y - b u t y l
mole % b e r y l l i u m h y d r i d e
(71
and
relatively
i t s reactivity.
beryllium etherate
wt.?:.-) ' " and
compound y i e l d e d 97
ether-free
r e s p o n s i b l e f o r .its
yielded
pyrolysis
mole % b e r y l l i u m
The
of
9c.5
the
hydride
43.
(So
\'it.%).~ ' R e c e n t l y
has
been
T
react
in xylene
( s o l u b l e ) and
by
(S0.7
the
therefore
hydride
a t 140°
precipitating
wt.?<).
forming
and
beryllium
triphenylphosphine-
99-1 m o l e %• b e r y l l i u m
" A negligible
triphenyiphosphine-borane,
and
triphenylphosphine
110
n
hydride
s y n t h e s i s of b e r y l l i u m hydride
e x t e n s i v e l y examined;
borohydride
borane
a new
use
be
of b o i l i n g
occluded
polymer
chain.
was
amount o f
r e m o v e d by
b e n z e n e and
this
o r bound i n some way
the
prolonged
impurity
impurity,
sublimation
must
i n the b e r y l l i u m
-123-
The
I n t e r p r e t a t i o n and D i s c u s s i o n o f S p e c t r o s c o p i c D a t a .
Section I .
Dimethylberyllium.
The
u n s a t u r a t e d and s a t u r a t e d
v a p o u r phase
infrared
s p e c t r a o f t h i s compound were r e c o r d e d b e t w e e n 100° and 200°
u s i n g t h e h e a t e d gas c e l l .
2000cm
i n typical
and V I I I .
The f r e q u e n c i e s o b s e r v e d
spectra are l i s t e d
I t i s perhaps o f i n t e r e s t
band a t 1307cm
below
below
i n Tables
VIl
t o n o t e t h a t -whenever a
, due t o methane ( p r e s u m a b l y f o r m e d by a c c i d e n t a l
h y d r o l y s i s i n t h e c e l l ) was o b s e r v e d , a band a t 842-847cm
was a l s o o b s e r v e d . The 3^2-8V7cm
band i s t h e r e f o r e due t o
h y d r o l y s i s o r o x i d a t i o n p r o d u c t s and i s i n t h e e x p e c t e d
for
region
yBe-0.
Table V I I
Dimethylberyllium
Temperature
Frequency(era
(unsaturated
150°
175°
185°
Assignment.
1266mw
1266m
1266ms
CE.„$sym.
108>5mw
1086m
1087rns
)
1062m
The
vapour)
CH,. p
1033ms
1033s
1033s
8l5mw
31om
816s
VBeC^
u n s a t u r a t e d v a p o u r c o n s i s t s m a i n l y o f monomer and
has a r e l a t i v e l y
s i m p l e s p e c t r u m i n t h e 5 - 1 S ^ . r e g i o n . Beyond
-124-
r e a s o n a b l e d o u b t monomeric d i m e t h y l b e r y l l i u m has
s t r u c t u r e and w i l l
a
linear
t h e r e f o r e have symmetry D^^, and
by
a n a l o g y w i t h d i m e t h y l z i n c and d i m e t h y l m e r c u r y , t h e m e t h y l
g r o u p s may
be assumed t o r o t a t e
116.
" The
freely.
odd
feature
iH-C'Ucm ^
o f t h i s s p e c t r u m i s t h e absence o f 0
CH_. m
i n zne
t h e 1480cm
asyin
6'J
r e g i o n , and t h i s i s c o n s i s t e n t w i t h t h e s p e c t r u m o f s o l i d
v
d i m e t h y l b e r y l l i u m i n which
t h i s a b s o r p t i o n i s a l s o a b s e n t . 29.
O t h e r m e t h y l - m e t a l compounds i n which. £
a
s
v
r
CH,. i s a b s e n t
r e l a t i v e l y weak a r e d e s c r i b e d i n t h e s e c t i o n o f t h e
dealing with
The
or
introduction
spectroscopy.
spectrum of the s a t u r a t e d
vapour o f d i m e t h y l -
b e r y l l i u m i s f a r more c o m p l e x t h a n t h a t o f t h e u n s a t u r a t e d
vapour.
T h i s i s t o be e x p e c t e d , s i n c e t h e s a t u r a t e d
c o n s i s t s o f monomer, d i m e r and
t r i m e r molecules, but the
p r o p o r t i o n o f monomer i n c r e a s e s as
according to the e q u i l i b r i u m
1 1 - 1 5 ^ r e g i o n , the spectrum
t h e t e m p e r a t u r e was
vapour
the temperature increases
c o n s t a n t s K_ and
^ " I n the
became i n c r e a s i n g l y c o m p l e x as
r a i s e d . The
assignments
o f CH_ft
(terminal.)
v
sym
and
•j>
t o t h e v e r y s t r o n g band o b s e r v e d
a t 1259-12'64cm
( b r i d g e ) t o t h e medium s t r o n g band a t 1211-12l4cm~'
3
sym
i s due
t o t h e o b s e r v a t i o n t h a t as
the temperature i n c r e a s e s ,
t h e r e l a t i v e i n t e n s i t y o f t h e 1259-1264cm
and
1
t h e 1211-12l4cm
band d e c r e a s e s
and
band i n c r e a s e s
the p r o p o r t i o n
of
monomer ( i e . t h e number o f t e r m i n a l m e t h y l g r o u p s ) i n t h e
Table
VIII.
Dimethylberyl1ium (saturated
;mperature
Calculated
saturated
vapour)
150
180
17.8
109.9
1484m
1 484m
1479m
1456m
1460m
1453m
1304mv/
1307mw
1305m
1259a
1264ms
1259vs
1211ras
1214ms
1212ms
120
1
Assignment.
v.p.(mm) o f
vaioour. 27.
2.4
frequency(cm
-1
5
)
CH,
3
8
asym.
CH,0
(t erminal)
3 sym
CP" C
(bridge)
3 Osym
1182W
1152w
1096-w
10?2w
105';s
980m
957s
957vs
940vs
861 B!S
864vs
870vs(
790ms
790m
801ms
758m
719w
719w
692w
668ow
690w
fa68w
v Be-CE.
-126-
v a p o u r i n c r e a s e s as t h e t e m p e r a t u r e
i n c r e a s e s ""'"(and
the p r o p o r t i o n o f b r i d g i n g methyl groups d e c r e a s e s ) .
r e s p e c t , b e r y l l i u m appears t o d i f f e r
Hoffmann
and
c
and
In this
from aluminium
since
" has assigned
CH_A
( t e r m i n a l ) a t 1201cm~
J> sym
CE-.A
( b r i d g e ) a t 1255cm ^ i n M e A l _
Goubeau '•''" has
3 sym
^
o 2.
-1
c
&
assigned
£
similarly
v
£
t h e two s t r o n g a b s o r p t i o n s a t 1243 and 12;?5cm
CH^ i n t h e s p e c t r u m
of solid
t h e s e must u n d o u b t a b l y
dimethylberyllium
as
(Table I )
be b r i d g e v i b r a t i o n s as s o l i d
d i m e t h y l b e r y l l i u m has a p o l y m e r i c s t r u c t u r e , a l l . t h e m e t h y l
groups occupying
observed
b r i d g i n g p o s i t i o n s . The s t r o n g a b s o r p t i o n s
i n t h e 7'00-yOOcm.
rocking
region are probably
methyl
vibrations.
Although
the assignments l i s t e d
f o r dimethylberyllium
are p u r e l y s p e c u l a t i v e , a study o f the deutero
analogue
under s i m i l a r c o n d i t i o n s should p r o v i d e c o n c l u s i v e
to enable
Section
u n a m b i g u o u s a s s i g n m e n t s t o be made.
II.
In this section the infrared
and
spectra of organoberyllium
o r g a n o b e r y l l i u m h y d r i d e c o o r d i n a t i o n compounds, t h e
s o d i u m h y d r i d o d i a l k y l b e r y l l a t e s and t h e i r d e u t e r o
and
evidence
b e r y l l i u m hydride are discussed.
given suggested
I n Tables
analogues,
IX-XVII are
assignments o f the c h a r a c t e r i s t i c a b s o r p t i o n
bands b e l o w 2500cm
to the various s t r u c t u r a l
features of
-127-
t h e compounds examined and p h o t o g r a p h s o f t h e i n f r a r e d
s p e c t r a o f these
compounds a r e shown a f t e r
Beryllium-hydrogen
The
of
the Tables.
vibrations.
0*1 v i b r a t i o n a l
t r a n s i t i o n o f t h e ground s t a t e
t h e Be-H m o l e c u l e d e r i v e d f r o m
band heads o f
emission
7
1 o.
electronic
and
s p e c t r a and band o r i g i n s
a t 2087-7cm
f o r the f i r s t
^ " i s a t 2058.6cm
excited state.
Be-H g r o u p c o u l d t h e r e f o r e be e x p e c t e d
n e a r 2100cm
t o cause a b s o r p t i o n
number o f t h e s t r e t c h i n g ;
the hydrides of the f i r s t
vibrational
A terminal
and a s i m i l a r c o n c l u s i o n i s r e a c h e d by c o n s i d e r i n g
t h e changes w i t h a t o m i c
of
-1
modes, o f m a i n l y
s h o r t p e r i o d e l e m e n t s . The
s t r e t c h i n g character o f the
b r i d g i n g h y d r o g e n atoms i n a BeK Be g r o u p s h o u l d
-1
0
a b s o r p t i o n a t f r e q u e n c i e s w e l l b e l o w 2100cm
with
and
frequencies
cause
, by a n a l o g y
t h e v i b r a t i o n a l modes o f t h e BH^B g r o u p i n d i b o r a n e
the v a r i o u s methyl
and e t h y l d i b o r a n e s . Whereas t e r m i n a l
B»H bonds u s u a l l y cause a b s o r p t i o n i n t h e 2200-2500cm
region,
t h e two modes due t o t h e EH B b r i d g e i n c.ibcrar.e
-1
, _i
a r e a t 1915cm
s y m m e t r i c a l o u t - o f - p h a s e ) and IcOocm
13G ./ "*
n
r
(v
se
, a s y m m e t r i c i n p h a s e ) ' " ^ . ^ v i b r a t i o n a l modes a r e
illustrated
on p - ^ 1 ^ The a l k y l d i b o r a n e s
provide a closer
a n a l o g y t o t h e b e r y l l i u m compounds f o r m u l a t e d as ( I ) and ( I I )
w i t h BeH_Be b r i d g e s . I n t h e f o r m e r ,
t h e weak a b s o r p t i o n s
-128-
corresponding
to
i s o b s e r v e d a t 1972 (Xe^3.,Hp) , 1880
(Me^E^Hj) ond 1852cm
(Et^B_,Hp) , vmereas t h e v e r y
absorption corresponding to
and
strong
i s o b s e r v e d a t 1b05, 1o05
5
1p82cm ^ i n t h e t h r e e compounds, c h a n g i n g t o 1186, 1183,
-1
and
1 3"T
1166cm
on d e u t e r a t i o n .
' The s p e c t r a o f (aeHBe.NMe )^,
7
(MeDBe.NMe^),, and (EtHBe .NMe^)~ examine d i n c y c l o h e x a n e
solution
a r e compared i n F i g u r e V I I I .
Figure V i l l a ,
in
c o n t a i n s a s t r o n g - a b s o r p t i o n a t 1344cm
shaded
t h e F i g u r e , w h i c h i s c l e a r l y due t o one o f t h e Beh^Be
stretching
modes, s i n c e i n t h e s p e c t r u m o f t h e d e u t e r o
(i-ieDBe.NKe,)-., F i g u r e V l l l b .
(also
of
The s p e c t r u m o f ( I ) ,
-1
s h a d e d ) and e v i d e n t l y
analogue
i t moves t o a b o u t 1020cm
overlaps
t h e a b s o r p t i o n a t 1007cm
1
( I ) which i s almost
c e r t a i n l y due t o v
(NC.,) o f t h e
"
asym
3
t r i m e t h y l a m i n e , ( s e e a l s o F i g u r e V I I I c . ) . A b s o r p t i o n due t o
--1
v(jse-EpBe) i s c l e a r l y e v i d e n t a t 13^3c:"»
i n the spectrum o f
t h e e t h y l d e r i v a t i v e , (EtHBe .NI-ie_. )„, F i g u r e V I I I c . I t i s
quite
possible that
t h e band a t 948cir.
i n (HeHBe .NMe,) _
j
^
-1
( m o v i n g t o 710cm
bridge vibration
absorptions
The
on d e u t e r a t i o n ) may a l s o be a. BeE„Be
although
correspond
i t i s n o t known whether
to v ^
or v ^
1
o f diborane.
s p e c t r a o f t h e N ,N ,N ' , j i ' - t e t r a m e t h y l e t h y l e n e d i a m i n e
c o m p l e x e s o f d i m e t h y l b e r y l l i u m and m e t h y l b e r y l l i u m
(Table X I I I
that
these
hydride
) examined as N u j o l m u l l s a r e v e r y s i m i l a r b u t
o f the hydride
complex c o n t a i n s a v e r y s t r o n g
absorption
Figure VIII
(Me H
10
•
it
BoNMe,)
la
HI
14
i
(Me D
10
i•s
BeNMv,)
13
1a
I
14
13
13
14
IS
is
14
i\Xl
(£"/ H Be
A/Me.)
IO
la
ii
I
Be H>
to
i
i
II
u
ta
U
-129-
at
1331cm
-
, which
i s almost
certainly
a v i b r a t i o n of the
BeH Be b r i d g e , and a weak one a t 1754cm ^ , b o t h a b s e n t
the
spectrum
o f the dimethylberyllium
from
complex.
A c o m p a r i s o n o f t h e s p e c t r a o f NaBei-je^H and NaBeMe^S,
b o t h as K u j o l m u l l s
(Table XIV) i n d i c a t e s t h a t
absorptions
due
t o Be-H b r i d g i n g modes a r e a t 1328 and 1165cm \
due
to.Be-D b r i d g e s b e i n g a t 917 and 869cm
at
1328cm
i n the spectrum
by
the p a r a f f i n o i l , but i t i s s i g n i f i c a n t
of
this
those
. The a b s o r p t i o n
o f NaBeMe K i s somewhat o b s c u r e d
p
that
the spectrum
compound c o n t a i n s no p r o n o u n c e d f e a t u r e s b e t w e e n 800
—1
and
in
-1
1000cm
so t h e v e r y s t r o i i g a b s o r p t i o n s a t 869 and 917cm
t h e spectrum
of the deutero
3e-D mode. The r a t i o s
former
i s unexpectedly
doubtful
v
v
p/ £
a
r
large,
e
compound must be due t o a
1.45 and 1.34, and t h o u g h t h e
the s i g n i f i c a n c e o f t h i s i s
on a c c o u n t o f t h e d i f f i c u l t y i n m e a s u r i n g t h e
-1
a b s o r p t i o n a t 1328cm
. The s p e c t r a o f N a 3 e E t H and N a 3 e E t D
n
a r e more c o m p l i c a t e d , as e x p e c t e d ,
?
but a comparison o f the
- 1
two
shows V(Be-H) a t 1294s and 10o5vs. c m
and v(Be-D) a t
-1
931s and 8 3 5 s . cm
, v /\' b e i n g 1 .36 and 1.28. The r e m a i n i n g
n' D
v
D
a b s o r p t i o n s a r e v e r y s i m i l a r f o r t h e two compounds e x c e p t
for
a band a t 912cm ^ i n t h e s p e c t r u m
The
spectrum
10cm. h e a t e d
similar
o f t h e h y d r o g e n compound
o f ( I ) as s a t u r a t e d v a p o u r u s i n g a
gas c e l l
has a l s o been r e c o r d e d
t o a s o l u t i o n i n cyclohexane
and i s . v e r y
(Table X I ) . I n the vapour
-130-
vCBeH^Be) i s a t 13^-2cm
, very close
to the frequency
f o r a s o l u t i o n i n c y c l o h e x a n e . A t 50° ( v a p o u r
ca.0.9mm.) t h e r e was
and
recorded
pressure
no a p p r e c i a b l e a b s o r p t i o n b e t w e e n 1500
-
2500cm '', b u t a t 65°
and
C
p a r t i c u l a r l y at S0 , a
sharp
_i
a b s o r p t i o n band a t 2141cm
i
21 f'1cm~
appeared. This a b s o r p t i o n a t
i s b e l i e v e d t o be due
t o t e r m i n a l v ( B e - H ) i n monomeric
MeHBe. NMe., s i n c e v a p o u r d e n s i t v measurements i n d i c a t e d
3
extensive d i s s o c i a t i o n w i t h increasing- temperature
Between 65° and
80°, t h e amount o f monomer i n s a t u r a t e d
vapour could begin
unsaturated
t o be s i g n i f i c a n t . U n f o r t u n a t e l y
vapour a t h i g h e r temperatures
on a c c o u n t o f d e f e c t s i n t h e h e a t e d
The
(1^5-175°) •
infrared
gas
the
c o u l d n o t be
studied
cell.
spectrum of b e r y l l i u m h y d r i d e ,
examined
as N u j o l m u l l i s shown i n F i g u r e V H I d . T h i s p r o d u c t was
a p p r o x i m a t e c o r n - p o s i t i o n (BeH„)_, NaH. The
most
characteristic
f e a t u r e of the spectrum (Table X V I I I ) i s a r a t h e r
_1
a b s o r p t i o n c e n t r e d on
X-ray d i f f r a c t i o n l i k e
di
1750cm
. The
has
by
bands i n ( I ) and
relatively
p o s s i b l y analogous to the
a r e a t 1090,
1016,
as
sharo
-1
1333-13^cm
s i m i l a r compounds i s n o t e w o r t h y .
pronounced a b s o r p t i o n s
are probably
the p y r o l y s i s o f
commonly been r e g a r d e d
a c r o s s - l i n k e d d i s o r d e r e d p o l y m e r . The
-1
a b s o r p t i o n a t 12b3cm
broad
m a t e r i a l i s amorphous by
that obtained
t e r t i a r y - b u t y l b e r y l l i u m and
of
and
The
799cm
associated w i t h beryllium-hydrogen
other
and
deformations.
-131-
The
s p e c t r u m o f a p r o d u c t c o n t a i n i n g much s o d i u m , c a .
(BeH_)„ . (KaH),- ( T a b l e X V I i : ) i s v e r y s i m i l a r b u t d i f f e r s
2 11
o
_1
i n t h a t t h e b r o a d a b s o r p t i o n a t 1750cm
i s r e p l a c e d by
_ i
two s h a r p e r a b s o r p t i o n s a t 1o37 and 1771 cm
Methyl
vibrations.
In
t h e s n e c t r a o f Me_.3e.KKe-,, (MeHBe .NK'.e^) _ , (MeDBe.NHe,)
2
the
s y m m e t r i c and a s y m m e t r i c
3'
methyl deformations
;> 2'
;>
vibrations
can a l m o s t c e r t a i n l y be a s s i g n e d t o t h e a b s o r p t i o n s o c c u r i n g
above 1200cm
. Eov/ever, w h i c h a b s o r p t i o n s a r e due t o m e t h y l
g r o u p s a t t a c h e d t o b e r y l l i u m and w h i c h a r e due t o m e t h y l
attached
to nitrogen w i l l
o n l y be d e t e r m i n e d by s t u d y i n g t h e
s p e c t r u m o f an i s o t o p i c a l l y
the
groups
s u b s t i t u t e d a n a l o g u e o f one o f
above corn-pounds. The c o m p l e x
(CD_ )„Be .NMe,, w i l l be
p r e p a r e d i n due c o u r s e and e x a m i n a t i o n o f t h e s p e c t r u m o f
t h i s compound s h o u l d c l a r i f y
the
o r make i t n e c e s s a r y t o r e v i s e
a s s i g n m e n t s d i s c u s s e d h e r e . The CH_ r o c k i n g
vibrations
of
t h e t r i m e t h y l a m i n e p a r t o f t h e m o l e c u l e a r e f o u n d a t 1115
—1
1 32
and 850cm
i n Me^N.BHand t h e a b s o r p t i o n bands a t
5
3
1101m(35°) (1105m i n c y c l o h e x a n e ) and 8 4 0 s h . ( 3 5 ° ) (824sh.cm~'
in
c y c l o h e x a n e ) i n Me^Be.NMe^ a r e a s s i g n e d t o t h e s e modes o f
vibration.
to
The Be-CH_ r o c k i n g v i b r a t i o n i s more
assign but i t i s f e l t
difficult
t h a t t h e band a t 941s(35°) (951 v s .
c y c l o h e x a n e ) may be due t o t h i s v i b r a t i o n and i f t h i s i s a
1
•132-
c o r r e c t assignment, t h i s a b s o r p t i o n w i l l
660crn
of
be f o u n d
i n t h e s p e c t r u m o f t h e d e u t e r o compound.
(MeHBe.NMe^Jj ^
s
rather complicated
a t about
The s p e c t r u m
i n t h e 6-l4yU. r e g i o n
b u t q u i t e a l o t o f i t i s common t o t h e s p e c t r u m o f
he^Be.NMe_.
Thus i t w o u l d a p p e a r t h a t t h e K-CE^ r o c k i n g v i b r a t i o n
at
1107m and t h e Be-CH, v i b r a t i o n a t 922vs i n t h e h y d r i d e
3
_i
c o m p l e x and 1104m and 928s cm
coavplex •
Carbon-nitrogen
In
v
asym
at
in
occurs
respectively i n the deuteride
vibrations,
o t h e r t r i m e t h y l a m i n e c o o r d i n a t i o n complexes,
G - IN i s a l w a y s f o u n d
-1
i n t h e 1000cm
region., o c c u r i n g
1
1005s i n Me-N.EH,,
.?
3
" 1003 i n Me_N.GaH„
and 955cm"'
3
3
137.
t h e tetramethylammoniiium i o n .
' " Thus v
C-K c a n be
asym
assigned
fairly
certainly
t o t h e bands o c c u r r i n g a t 1000s (35°)
(1006 v s . c y c l o h e x a n e ) i n Me-Be.NMe-.. 100?vs i n (KeHBe .KMe,) „
2
p•
_? 2
( c y c l o h e x a n e ) , 101ovs i n (MeDBe.KMe_)_, 1001vs i n Et_Be.NMe_
3 2
2
j
and
of
1007vs i n ( E t H B e - H M e ^ ) . O t h e r a s s i g n m e n t s f o r t h e s p e c t r a
p
t h e e t h y l compounds
these
compounds
have n o t been made s i n c e
are complicated
the spectra o f
by -CH - v i b r a t i o n a l
0
modes.
No d e f i n i t e a s s i g n m e n t s have been made f o r b e r y l l i u m c a r b o n and b e r y l l i u m - n i t r o g e n a b s o r p t i o n s
beryllium-carbon
oOOcm
1
since
although the
s t r e t c h i n g v i b r a t i o n s probably
occur about
t h e s t r o n g band a t 816cm ^ i n d i m e t h y l b e r y l l i u m
( u n s a t u r a t e d v a p o u r ) h a s been a s s i g n e d
t o t h i s mode o f v i b r a t i o n .
•133-
Table IX.
Infrared
s p e c t r u m o f M e . j X ' K e _ as s a t u r a t e d v a p o u r .
21
Assignment.
l4?5vs
14?7VS
1464vs
1466vs
1 4 o6w
& (CH ) ( d )
1302W
1242ms
12'+5vs
1232ms
118SVS
1101m
1103m
103?sh
1041sh
1000s
1000v
941s
=>40vs
p(N.C3 ) ( 1 )
v
(CN) ( d )
asym
p(Be-0H_) ( t )
874vw
840sh
841 sh
p ( MGR..)
800vs
8o3vs
v(Be-C) ( t )
( f )
709m
714vs
671 vw
ouow
?06!T1
50?w
In
these t a b l e s ,
the degree o f c e r t a i n t y
o f these
a s s i g n m e n t s i s shov/n by t h e f o l l o w i n g a s s i g n m e n t s :
d = definite,
f = fairly
certain,
t =
tentative.
T a b l e X.
Infrared
Contact f i l m
s p e c t r u m o f Me_Be.NMe
(36 )
Cyclohexane
solution
Assignment,
1464VS
1443 s
S (CH„) ( d )
1405W
1255s
1219s
1186s
1100m
f(KCH ) ( f )
3
103?vw
995vs
v
(CN) ( d )
asym
p(Be-CH ) ( t )
7)
937w
840m
pCHCEj) ( 1 )
SOOvs
v(Be-C) ( t )
730m(broad)
?13vs
-135-
Table X I
I n f r a r e d s p e c t r a o f Q-ieHBe.NMe-,^ i n
t h e gas p h a s e , and i n
c y c l o h e x a n e s o l u t i o n and M e D B e . T T H e i n c y c l o h e x a n e
T
(MeHBe.MMe,)_
t)—<r05
Solution
solution
(HeDBe.A he_)
3Solution
2141 m
Assignment.
v(3e-H) ( f )
148 Os
1484s
1481s
1458 s
1470s.h
1466m
1400m
140?vw
A
S(CH,) ( d )
1370vw - J
1342 s
v(BeH Be) ( d )
1344vs
2
1317vw ^
1304s
1299m
1286s
1267m
126?sh
1254s
1255s
1256s
1235m
1233m
1200s
1214vs
1215s
1l87sh
1200s
1203vs
(CH„) ( d )
S(C
3
J
1143VW
1104m
1107m
1104m
(NCH.,) ( f )
1o86vw
1046vw
1035vs
1032vv;
1002s
1007vs
1047sh
1016
965
m
v(BeKpBe) ( f )
955s
948s
931 sh
922vs
92os
896s
896m
875s
8?0s
870s
v(BeD_Be) & v
(NC)
2
asym
3
«CBe-CH^)
( t )
-136-
Table X I contd.
65
c
848vs
Solution
Solution
84?vs
o^ovs
Assignment•
831 sh
826 vs
820vs(broad)
SlOvs
772vs
?72s
747s
746m
710ms
722sh
699sh
667m
676m
v(Be-C) ( t )
v(BeD Be) ( f
2
-137-
Table X I I .
Infrared
s p e c t r a o f d i e t h y l b e r y l l i u m - t r i m e t h y l a m i n e and
e t h y l b e r y l l i u i n h y d r i d e - t r i m e t h y l a m i n e examined as c o n t a c t
f i l m and a s a s o l u t i o n i n c y c l o h e x a n e
Et^Be.NMe
v
14?9VS
1466s
1451 m
1409m
1245m
1236m
1193ms
1105mw
10?6w
1001vs
954w
919w
uoOr.i
822vs
778m
730s(broad)
66 ?m
(EtHBe . NMe_ ).,
Assignment.
1484s
I468sh
1372m
I333vs
1299s
1250m
1235m
1206vw
1190w
1176sh
1109m
10o0m
1050m
1007vs
981 s
943vs
917sh
897s
851 sh
826vs
79-4sh
709m
635m
621 vw
571 vw
respectively.
v(BeH„Be) ( d )
c
v
asym
(CN) ( d )
v(Be-C) ( t )
Table X I I I .
I n f r a r e d s p e c t r a o f d i m e t h y l b e r y l l i u m and me t h y l b e r y l l i u m
h y d r i d e N,N,N;N'-tetraraethyletfiyIenediaraine complexes examined
as N u j o l m u l l s .
He^Ee complex
HeEeli complex
assignment.
1
—<—
17>4w
1?42sh
1361vs
1331vs
1289vs
1302s
1263W
1264m I
1247m
1236m
1190sh
1200w *
116SVS
1183s
1122ms
1131m
1098m
1099-TI
1053- "
1C86s
1042vs
1038m
102?vs
1020vs
1006vs
S95vs
951 vs
961 vs
856vs
902s
r
8l4vs
799sh
?6?vs
785m
701 vs
694s
66?w
659P-
8
(CH,) ( d )
J?
v(BeH Be) ( d )
& (CH,)
(CH ( d )
3
Table XIV.
I n f r a r e d s p e c t r a o f sodium h y d r i d o d i m e t h y l b e r y l l a t e and
i t s deutero analogue examined as N u j o l
NaBeMe_,H
NaBeMe_D
d
1323s
Issignment,
v(BeH Be) ( d )
2
1255ms
126lm
1189s
1199ms
1165s
v(3eH Be) (d)
0
113Svs
11 V-i-s
1O06s
1075sh
1018VS
1015vs
91?vs
v(BeD Be) ( d )
869vs
v(BeD Be) ( d )
789VS
797vs
75^??.
777s
612 vw
595vw
557vw
—
mulls.
p
2
Table XV.
I n f r a r e d s p e c t r a o f sodium h y d r i d o d i e t h y i b e r y l l a t e and
i t s d e u t e r o analogue examined as N u i o l m u l l s .
NaBeEt,
UaBeEt_D
Assignment.
c
16o5w
129^s
v(BeH Be) ( d )
2
1253s
1256ms
I235sh
1233vw
1178s
117osh
1lV?sh
11o7ms
1117sh
1091vs
1080ms
v(BeK Be) ( d )
1065vs
2
1021vs
lOl^s
978 vs
982vs
951s
956vs
v(BeDpBe) ( d )
928s
912m
358sh
831 vw
835vs
792w
SOOsh
672m
667w
657ms
6i?6mv;
v(BeD Be) ( d )
-141-
Table XVI.
I n f r a r e d spectrum o f the o i l o f arjoroxi.mate c o m u o s i t i o n
Me ,Be^H„..OEt„
Be^H .0"Et examined as a c o n t a c t
;i f
2
2
1555".'
l479sh
1468 m
1449m
1337s
1372sh
1295*
12o1s
I 240inw
1212s
1199m
I I ?6m
1089m
1033vs
1002sh
962s
917s
848s
800s
784m
676w
663w
film
-142-
Table X V I I .
I n f r a r e d s p e c t r a o f b e r y l l i u m h y d r i d e o f approximate
compositions shown below examined as M u j o l m u l l s .
(BeH_)_,NaK
(.ae'f-^)^ (NaH)^
1750s(broad)
17?1m
As signment.
1c37s
1263vs
1259vs
v(EeH Be) ( t )
0
1211vw
1090m
1086m
10V7m
1016VS
1013vs
886 ( b r o a d )
799s
795vs
s
(Be-H) ( t )
M^Br (untotvrattd vapour 185'J
M^B* (saturated vapour ISCT)
i
IO
II
12
13
14
6
(saturated vapour 120")
8
<W#,f* ipoturottd vapour ISO )
AA
7
IO
12
13
i
5
v
J
MtAtMMr, (crc*>Ac«mr toMnn)
^ J;
ij
•
V
3
e
«
»o
12
|
'4
(vapour 36;
c
a
3
14
17
6
•
\
6
C
5
'3
5
17
2C
tB«fHM<,
MtHBtf+Jtj {e/cHttrnxon* t&utton)
Ifyciohrmnt
toJut/on)
I
A
L/' i
•
II
10
13
/Wt/rsv/VMe, [vapour 65'J
n
V
X
hv7
8
II
12
13
14
ii
la
14
NoBtet^H
(Mtfo/ mull)
nfu/a
Nu/Ol
5
6
7
•
9
K)
II
12
13
14
15
n
NvBte^D
12
pujol mull}
'\
3
6
7
8
9
IO
II
12
13
14
15
iO
12
13
Mr/0/
Nujol
0
!5
f^t^lCr\-^lu/ol
mill)
ip*H^Hot\
{Nujol
mut)
1S
..i
i
•
•
•
!
6
10
i?
14
19
It
17
REFERENCES
-143-
BEFERENCES.
(1)
COATES G.E.
(2)
Organic Syntheses
(3)
FETTER N. P..,
(4)
NILS OS L.F. and PETTERSSON 0 . ,
(5)
COATES G.E. and HUCK N.D.,
(6)
L INSTEAD P..P. and ROBERTS OH J.14.,
(7)
BURG A.B. and SCHLESINGER H . I . , J . Aner. Chem. S o c ,
'Organo-Metaliic Compounds' p.4.(Methuen,1960)
V o l . 1 1 p.502.
Canad. J . Chem. , 1 9 6 4 , 42, 861 .
J . , 1952, 4 5 0 1 .
1940,
(8)
GILMAN H. and SCHULZE F.,
Ber., 1 8 8 4 , 1_Z, 987-
62,
J . , 1936, 1736.
3425.
J.Amer. Chern.Soc, 1 9 2 7 ,
49,
2904.
(9)
WITTIG G., MEYER F.J. and LANGE G., Annalen, 1 9 5 1 ,
(10)
CAHOURS A..
Compt. rend.,1873, 7 6 , 1 3 8 3 .
(11)
LAVROFF V.,
Zhur. f i z . Khim., 1884, 1j>, 9 3 -
(12)
LAVROFF V.,
Bull.Soc . chini .France • 1 8 8 4 , 4l_, 548.
(13)
OILMAN H. and SCHULZE F.,
(14)
KRAUSE E. and VJENDT B.,
(15)
WOOD G.B. and BRENNER A.,
J.. 1927, 2663.
Ber., 1 9 2 3 , 5 6 , 466.
-J .Electrochem.Soc. , 1 9 5 7 ,
104, 2 9 .
(16)
PANETH F. and LOLEIT H.,
J . , 1935, 366.
(17)
ZAKKARKIN L . I . , OKHLOBYSTIN 0 . Yu. and STRUNIN B.N.,
l a v e s t . Akad. Nauk S.S.S.R., Otdel.khim.Nauk, 1 9 6 1 , 2 2 5 4 .
-1M+-
(13)
PEEKINS T.,
J . , 1929, 1687.
(19)
ZIEGLEH K.,
B.Patent 763,82.4 ( 1 9 5 6 ) : Chem.Abs.,
1953,
(20)
ZIEGLEE K.,
Angew.Chem., 1 9 5 6 , 6 8 , 721 ; UspekhiKhim.,
(21)
52, 1203.
1957, 2 6 , 1189.
RABIDEAU S . W . , ALEI H. and HOLLEY C.E.,
1956,
(22)
MUXABT R., MELLET E. and JAWORSKY E.,
Chem.Abs.,
5 0 , 3992.
B u l l . S o c . chim.
France, 1 9 5 6 , 4-'+5.
(23)
S6HULZE F.,
(24)
GILMAN H. and BROWN E.E., J.Amer.Chem.Soc.,1930,52,kk8o.
(25)
BAHR G. and T H I E L E K.H.,
(26)
SNOW A . I . and BUNDLE B.E.,
(27)
COATES G.E., GLOCKLING F. and HUCKN.D.,
(28)
STSOHMEIEE W., HUMPFNEE K., KILTENBERGEE K. and
SEIFEET F.,
Iowa S t a t e C o l l . J . Science,
1 9 3 3 , S, 2 2 5 -
Chem.Ber., 1 9 5 7 , 9 0 , 1 5 7 8 .
A c t a . C r y s t . , 195'), 4, 3 4 3 .
J. ,1952 ,4496 .
Z.Elektrochem. , 1959, 6 3 , 537-
(29)
GOUBEAU J . and WALTER K. ,
Z .anorg-.Chem. , 1 9 6 3 , 5 2 2 , 5 8 .
(30)
BROWN H.C. and DAVIDSON N.R.,
J.Amer.Chem.Soc.,
1 9 4 2 , 64, 3 1 6 .
(3D
COATES G.E.,
J., 1 9 5 1 , 2003.
(32)
GREEN S.I.E.,
(33)
COATES G.E. and GREEN S.I.E.,
(3^)
COATES G.E., GLOCKLING F. and HUCK N.D.,
(35)
COATES G.E. and MUKEERJEE 3.U.,
Ph.D. Thesis. (DURHAM) 1 9 6 2 .
J . , 1962, 3340.
J., 1963,
J., 1952,4512.
229-
-145-
Z.Chem. , 1 9 6 3 , 3 ,
269.
(36)
MASTHOFF E.,
(37)
GOUEEAU J . and RODEWALD B., Z.anorg.Cfaem., 1 9 4 9 , 2 5 8 , 1 6 2 .
(38)
SCHREIBE G. , BAUMGAETNER F. and GENZER >!., Angew.Chem. ,
1955, 67,
512.
(39)
STROHMEIER W. and HUKPFNEE K., Z . E l e k t r o c h e m . , 1 9 5 6 , 6 0 , 1 1 1 1
(40)
STROHMEIER >/. and HUHPFNER K . , Z.Elekrochem.,1957,61 , 1 0 1 0 .
(41)
LONGI P., MAZZANTI G. and BERNARDINI F., G a z z e t t a ,
1960, 90,
180.
(42)
STROHMEIER W. and GEKNERT F. , Z . N a t u r f o r s c h , 1961 ,l6b,7oO.
(43)
STROHMEIER W. and GERNERT F., Z . N a t u r f o r s c h , 1 9 6 2 , 1?b,128.
(44)
STROHMEIER V/. and GERNERT F. , Chem.Ber. , 1 9 6 2 , 6 , 1420.
(45)
COATES G.E. and COX G.F., Che in. and I n d . , 1 9 6 2 ,
(46)
COATES G.E. and GLOCKLING F.,
J . , 1954, 2 2 .
(47)
COATES G.E. and GLOCKLING F.,
J . , 1954,
(48)
HEAD E.L., HOLLEY C.E. and RABIDEAU S.W., J.Amer.Chem.Soc.
269.
2526.
1957, 79,
3687.
(49)
WITTIG G. and WITTENBERG D.,
Annalen, 1 9 5 7 , 6 0 6 ,
(50)
WITTIG G. and HORNBERGER P.,
Annalen,
(51)
DESSY R.E.,
(52)
BARBARAS G.D.,
1952, 577,
J.Amer.Chem.Soc., 1960, 8 2 ,
DILLARD C ,
15.
11.
I58O.
FINHOLT A.E., WARTIK T.,
WILZBACH K.E. and SCHLESINGER H . I . , J.Amer.Chem.Soc.1951,75,4585(53)
POWERS J.C., VOSE D.W.
and SULLIVAN E.A.,
Chem.Abs.,
1963,58,219.
(54)
PIETSCH E.,
Z.Elektrochem., 1933, 5 7 7 , 3 9 -
-146-
(55)
WI.BERG E. and BAUER R.,
S.Naturforsch,1951,6b,171-
(56)
HUMPIDGE T.S.,
(57)
FINNOWJ.,
(58)
FISCHER 0.,
(59)
GILMAN H. and 3AENETT h . M .
(60)
'Organic Syntheses'
(61)
STUCKY G.D. and RUNDLE E.E., J . Anier. Chem. Soc.1965,85,1002 .
(62)
SCKLESINGEP. H . I . , BROWN H.C. and HYDE E.K.,
Proc-Roy.Soc. 1 8 8 5 , 5 9 ,
10.
3 e r . , 1899, 1401 .
Ber., 2 5 ,
2826.
Rec .Trav.chirn. , 1956 , 5 5 , 5 6 5 .
Vol.11 p.211 and p.290.
J .Arner.Chem.Soc.
1955, 75,
209-
(63)
FSICKE R. and SCHUTZDELLER H., Z.anorg.Chem.,1925,131,132-
(64)
'M4NTECATINI'
M i n e r a r i a e Chimica,
(65)
S o c i e t a Generale p e r l ' I n d u s t r i a
Chem.Abs. 1 9 6 3 , 5 9 , 4058 and 14022.
WIBERG E., HEtfLE H. and BAUER R., Z . N a t u r f o r s c h , 1 9 5 1 ,
6b,
(66)
WIBERG E. and HE'NLE W. ,
(67)
ZAKHARKIN L . I . and KHORLIKA I.M.
393-
Z .Ha t u r f orsch , 1 9 5 1 , 6 b , 461 .
Zhur.obsh&hei Khim.,
1962, 3 2 ,
2783.
(63)
SCHLESIMGER H . I . and BURG A.B., Chem.Rev.,1942,51,3o-
(69)
KOBETZ P. and BECKER W.E., Inorg.Chem.,1963, 859-
(70)
VJIBEHG E. and STREBEL F. ,
(71)
CLAFP D.P. and VJOODWARD S.B..
Annalen , 1957 , 6 0 7 ,
J .Amer.Chem.Soc . , 1 9 3 8 ,
60,
(72)
JOLIBCIS P.,
(73)
V/IBERG E. and BAUER R.,
9-
Compt.rend., 1912, 1 5 5 ,
1019-
353-
Chem.Ber. 1 9 5 2 , 8 5 ,
593-
-147-
(?4)
h'IBE'fiG E. and BAUER H. , Z .Uaturf orsch , 1 9 5 0 , 5 b , 5 9 6 , 3 9 7 •
(75)
WIBEEG E., GOELTZER H. and BAUER S.,
1951,
Z.Naturforsch,
6b, 3 9 ^ -
(76)
BAUER R. ,
Z . N a t u r f o r s c h , 19&2, 1 7 b , 2 0 1 .
(77)
BARTON D . H . R. and ROSENFELDEE W. J . , J . , 1 9 5 1 , 2381 .
(78)
WITTIG G. and EUCKERT A., Annalen, 1 9 5 0 , 5 6 6 , 1 0 1 .
(79)
WITTIG G., KEICHER G., EUCKERT A. and RAFF F..
Annalen, 194-9, 563. 110.
(80)
HONEYCUTT J.B.
and RIDDLE J . K . ,
J.Amer.Chem.Soc.,
1961,
(81)
8 3 . 369.
ZIEGLEE K., LEHMKUHL H. and LINDNER E.,
1959,
Chem.Ber.,
92, 2320.
(82)
WITTIG G. and BUB 0.. Annalen, 1 9 5 0 , 5 6 6 ,
113-
(83)
ZIEGLER K., KOSTER R., LEHMKUHL H. and REINEHT K.,
Annalen, 1 9 6 0 , 6 2 9 , 3 3 .
(84)
KOBETZ P., BECKER W.E., FIriKERTON R.C. and HONEYCUTT J . 3 . ,
Inorg.Chem., 1963,
(85)
359-
ZAKHARKIN L . I . and KHOELIN A I.H., laves 1:. Akad . Nauk
S.S.5.H,
Otdel.khim.Nauk, 1 9 6 1 , 1 8 9 4 .
(86)
ZAKHARKIN L . I . and GAVEILENKO V.V.. Zhur.obshchei Khim.,
1962,
(87)
52,
639-
ZAKHAEKIN L . I . , GAVRILEI7K0 V.V. and KHORLINA I.M.,
I z v e s t . Akad .ITauk S.3.5.R., Otdel .khim.Nauk, 1962 , 438 .
(88)
ZIEGLEE K., GELLEET E.G.,
SCHNEIDER J . ,
MARTIN H. , NAG; EL iC. and
Annalen, 1 9 5 ^ , 5 8 9 ,
91-
-148-
(89)
WARTIK T. and 3CHLESINGER H . I . , J.Amer.Chem.Soc.,
195.5, 7 5 ,
(90)
HOFFMANN E.G. and SCHOMFJRG G. , 2 . S l e k t r o c h e m . .
6_1,
1957,
(91)
855-
1101 .
PETERS F.M. , 3ART0CHA 3. and BILBO A.J., Canad .0 . Chem. ,
1963 . 4 l , 1051 •
(92)
FRASER G.W., GREENWOOD N.N. a n d STRAUGHAN B.P.,
1963,
(93)
K E I T S C E C.W. , NORDMAN C.E. and PARRY R.W., Inorg.Chem.,
1963,
(94)
DAVIDSON J.M. and 'WARTIK T . ,
3506.
RUFF J.K. a n d HAWTHORNE i t f . F . , J.Araer.Chea.Soc.,
1960, 82,
(96)
508.
J .Amer.Chem.Soc . ,
1960, 82,
(95)
3742.
2141.
RUFF J.K. and HAWTHORNE H.F., J.Amer.Chem.Soc.,
1961,
83,
535-
(97)
WI BERG E . and SCHKIDT I I . , Z . K a t u r f o r s c h , 1951 , 6 b ,
(98)
EHRLICE R., YOUNG A.R., LICHSTSIN B.M. and PERRY D.D..
I n o r g • C h e a . , 1963,
333.
65O.
(99)
SCHOMBURG G. and HOFFMANN E.G., Z . E l e k t r c c h e r n . 1957 , 6 1 , 1 1 1 0 .
(100)
Z E I L W. , DAUTEL R. and HOLTS BERG W. , Z . E l e k t r o c h e m . ,
1956, 60,
1131•
(101)
DAUTEL R. and Z E I L W., Z•Elektrochem.,196O, 64, 1 2 3 4 .
(102)
RUFF J.K.,
J.Amer.Chem.Soc., 1 9 6 1 ,
83.
1798.
-149-
(103)
GREENWOOD N.N. , STORK A. a n d WALLBRIDGE Ki.G.H. ,
Proc.Chem.Soc., 1 9 6 2 , 2 4 9 .
(104)
SHRIVES D.F. a n d PARRY E.W. , Inorg.Chem. , 1 9 6 3 ,
(105)
GREENWOOD N.N., STORE A. a n d WALLBRIDGE H.G.H.,
1039-
Inorg.Chern. , 1 9 6 3 , 1 0 3 6 .
(106)
GREENWOOD N.N. and WALLBRIDGE M.G.H., J . , 1 9 6 3 ,
(10?)
FIKHOLT A.E., HELLING C., IMHOF V . , NIELSEN L. a n d
JACOBSON E.,
(108)
Inorg.Chem.,1963, 504.
NEUMANN W.F. , NIERMANtJ H. and SCHNEIDER B. , Angew.Chem. ,
1963,
2,
ohl.
(109)
MUKHERJEE R.N.,
(110)
BANFORD L . a n d COATES G.E.,
(111)
BAUER R. ,
Z . N a t u r f o r s c h , 1961 , l 6 b , 3 57 •
(112)
BAUER R.,
Z . N a t u r f o r s c h , 1 9 6 1 , 16b, 839-
(113)
BAUER R.,
Z . N a t u r f o r s c h , 1962,
(114)
L U10' TEN J.G.A. a n d VAN DER iCERK G.O.M..
in
the f i e l d
19&3.
Ph.D. T h e s i s , Durham,
o f Organotin Chemistry
unpublished
1
2
observation.
:
VTa, ' ?'•
p.95:96.
'Investigations
( T i n Research
Institute.
(115)
5912.
1959)-
DILLARD C.R., McNEILL E.H., SIMMONS D.E. a n d YELDELL J.B.,
J .Amer.Chem.Soc:. , 1 9 5 8 , 8 0 , 5 6 0 7 -
(116)
GUTOWSKY H.S.,
J . Chem.Phys. , 1 9 4 9 ,
(117)
LEK'MANN W .J . , WILSON C.C. and SHAPIRO 7.. , J .Chern.Phys. ,
195C
(118)
HOFFMANN E.G.,
17, 128.
;
Z.Elektrochem. • 1960,
2 8 , 77764, 6 1 6 .
-150-
(119)
GRAY A. P..
(120)
KORSHAK V.V., ivOf-i.AP.OVA L . I . and SIDOROV T.A.,
Canad.J .Chem. .
1963, f±l,
Izvest.
1963 , 8 1 3 •
Akad .Nauk S.S.S.R. , O t d e l khim.Nauk. .
(121)
151 -
TJBOVA N.YA., SEKENENKO K.M. and N0V0SEL0VA
A.V.,
;
1963 , +52. ( E n g . )
Russ . J . I n o r g . Chem. •
(122)
KOLDITZ L. and BAUER K. , Z.Cfaem. , 1 9 6 3 ,
3,
(123)
RAKINTZIS N.Th.,
Stuttgart.
(12*0
BECHES H.J. and TAYLOR R.C.
Duke U n i v e r s i t y ,
Diss.Techn.Hochschule
3"'2.
International
Symposium.
19&3-)
Durham, N o r t h C a r o l i n a . ( A p r i l
(125)
CGATES G.E.
and LIVINGSTONE J.G., J . , 1 9 6 1 ,
(126)
EUCHLSR A and KLEMPERER W., J.Chem.Fhys.1958, 2 9 ,
(12?)
MAL'TSEVA N.N. and KHARITOKOV Y.Y., Z h u r . n e o r g . K h i m . ,
7,
1962,
(128)
ZIMKERMAK W.B. and MONTGOMERY D.J. .
121.
9^7.
Phys.Rev.,
196O,
(129)
1000.
120,
k05.
JAMES T.C., NORSIS W.G. and KLEMPERER W., J.Chem.Phys.•
32,
1960,
T
728.
(130)
BARCELO J . P.. and BELLA1\ ATO
Spec t r o c h i m . Ac t a . , 1956 ,8 , 2 ? .
(131)
SIEBERT H-,
(132)
RICE B., GALLIANO R.J. and LEHHANN W.J., J .Chem.Phys. ,
Z.anorg.Chem., 1 9 5 3 ,
273,
161.
1957,
(133)
61,
KERZBERG G. , ' S p e c t r a o f D i a t o m i c M o l e c u l e s
1
1222.
p.500.
(D.Van N o s t r a n d Company I n c . 1 9 5 0 ) .
(13^)
LEHMANN W.J . , WILSON C O .
and SHAPIRO I . J • Chem.Phys. ,
1961,
34,
733.
(135)
SIE3ERT H . ,
Z .an.org.Chem. , 1 9 5 3 , 2 7 3 , 1 7 0 .
(136)
SHRIVES D.F., AMSTER E.L. and TAYLOR E.G.,
J . Arner. Cheai. Soc . , 1962 , 8 ^ , 1 3 2 1 .
(137)
EDS A I L J.T.
(138)
NAKAMOTO K.,
Coordination
J .Chem.Phys. , 1 9 3 7 , _5_, 2 2 5 'Infrared Spectra o f Inorganic
Compounds' p . 1 2 0 .
( W i l e y , New Y o r k , 1963)
and BELL R.F . and LONGUET^HIGGINS, F r o c .Roy.Soc . , 19^5 , A183 , 5 5 7 .