Seediscussions,stats,andauthorprofilesforthispublicationat:http://www.researchgate.net/publication/282604076 ImplicationsofCandidatusPhytoplasmamali infectiononphloemfunctionofappletrees ARTICLEinENDOCYTOBIOSISANDCELLRESEARCH·OCTOBER2015 READS 11 6AUTHORS,INCLUDING: AxelMithöfer MichaelReichelt FriedrichSchillerUniversityJena MaxPlanckInstituteforChemicalEcology 110PUBLICATIONS3,390CITATIONS 101PUBLICATIONS3,114CITATIONS SEEPROFILE SEEPROFILE AlexandraCUFurch FriedrichSchillerUniversityJena 19PUBLICATIONS377CITATIONS SEEPROFILE Availablefrom:AlexandraCUFurch Retrievedon:12October2015 Journal of Endocytobiosis and Cell Research (2015) 67-75 | International Society of Endocytobiology zs.thulb.uni-jena.de/content/main/journals/ecb/info.xml Journal of Endocytobiosis and Cell Research Implications of Candidatus Phytoplasma mali infection on phloem function of apple trees Matthias R. Zimmermann1+, Bernd Schneider2+, Axel Mithöfer3, Michael Reichelt4, Erich Seemüller2 and Alexandra C.U. Furch1* 1InstituteofGeneralBotanyandPlantPhysiology,Friedrich‐ Schiller‐University Jena, Dornburger Str. 159, 07743 Jena, Germany; 2 Julius Kuehn Institute (JKI), Federal Research CentreforCultivatedPlants,InstituteforPlantProtectionin Fruit Crops and Viticulture, Schwabenheimer Str. 101, 69221 Dossenheim, Germany; 3 Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans‐Knöll‐Straße8,07745Jena,Germany;4MaxPlanckIn‐ stitute for Chemical Ecology, Department of Biochemistry, Hans‐Knöll‐Straße8,D‐07745Jena,Germany; +MatthiasR.ZimmermannandBerndSchneiderhavecon‐ tributed equallytothearticle. *correspondenceto:Alexandra.Furch@uni‐jena.de Appleproliferation(AP)iscausedbyapsyllid‐transmit‐ tedphytoplasmaandisoneofthemosteconomicallyim‐ portant diseases on apple in Europe. AP was first re‐ portedinnorthernItalyandinthefollowingyearsfrom manyEuropeancountries.Previousresearchonphyto‐ plasma‐induced diseases of rosaceous fruit trees (mainlyAP,peardeclineandEuropeanstonefruityel‐ lows), exhibits strong evidence that phloem injuries play a central and probably universal role in phyto‐ plasmapathogenicity.Theeffectofphytoplasmainfec‐ tionsonphloemfunctionandtheresultingdiseasesre‐ ceivedlittleattentioninthepast.Phytoplasmainfection severelyimpairsassimilatetranslocationinhostplants andmightberesponsibleformassivechangesinphloem physiology including signalling components. As shown for other phytoplasma species, infection brings about Ca2+influxintosievetubes,leadingtosieve‐tubeocclu‐ sionbycallosedepositionorproteinplugging,whichis assumedalsoforAPphytoplasma.Effectorsmaycause gatingofsieve‐element Ca2+ channels leading tosieve‐ tube occlusion with presumptive dramatic effects on phytoplasma spread, photoassimilate distribution and thewholephloemphysiology.However,thereisindica‐ tionthatphloemloadingisaffectedbyphytoplasmain‐ fection.Assieveelementsneedapermanentinputofen‐ ergytoensuretheirviability,sugarmetabolismandthe associate energy production of the companion cells have a dramatic impact on the physiological fitness of Journal of Endocytobiosis and Cell Research VOL 26 | 2015 phloemfunction.Itispresumptivethatsignalling sub‐ stances are produced prior sieve‐element occlusion to ensurethespreadthroughouttheplantbody.Analyses ofdiversephytohormonesinresponsetochallengewith APphytoplasmashowastrongincreaseofsalicylicacid accompaniedbyadecreaseofjasmonicacid.Thissup‐ portstheideathatphytohormoneshavearoleinplant defencesignallingagainstphytoplasmainfection.Itisa matter of debate whether mechanisms involved in phloemimpairmentcoulddifferbetweenpathosystems andvarywiththeplantsusceptibilitytoinfection. JournalofEndocytobiosisandCellResearch(2015)67‐75 Category:Reviewarticle Keywords:abscisicacid,appleproliferation,auxin,Candida‐ tusPhytoplasmamali,jasmonates,phloem,phytohormones, plantdefence,plant‐phytoplasmainteraction,salicylicacid, sieve‐elementocclusion Accepted:14September2015 ____________________________________________________________________ Introduction Economical significance of phytoplasma‐induced diseases Phytoplasmascausediseasesinmorethan1000plantspe‐ cies worldwide (Seemüller et al. 2002). In Europe, mainly perennialplantssuchasfruittreesandshrubs,grapevine,a rangeofforestandlandscapetrees,andsomeornamentals areknowntobeaffected.AmongthefruitcropsgrowninEu‐ rope,appleproliferation(AP),apricotchloroticleafroll,lep‐ tonecrosisofPrunussalicinaplums,peardeclineaswellas phytoplasma diseases of grapevine are of particular im‐ portancebyimpairingsizeandqualityofthecropandvigor and longevity of the trees. The economic losses of phyto‐ plasmadiseasesaredifficulttoassess.Forappleprolifera‐ tionalossof125mio€i.e.hasbeenestimatedforGermany andItalyduetoproductionoftastelessfruits(Strauss2009). Additional expenses accrue for plant protection measures like insecticide applications or rouging. The diseases of pome‐andstonefruitsarecausedbythecloselyrelatedspe‐ ciesCandidatusPhytoplasmamali,Ca.P.prunorumandCa.P. pyri,respectively,thatformadistinctgroupwithinthephy‐ logenetic phytoplasma clade (Seemüller and Schneider 2004), while the grapevine diseases are caused by other moredistantlyrelatedphytoplasmas.Duetotheireconomic importance,thetemperatefruittreepathogensareamong themostextensivelystudiedphytoplasmas. 67 Candidatus phytoplasma mali affects phloem function, Zimmermann MR et al. Characteristicsofphytoplasmas phloem tissue of new host plants (Figure 2). There is evi‐ dencethatsomephytoplasmasareverticallytransmittedto theirprogeny(Hanboonsongetal.2002),ortransmittedvia seedsasshownforcoconutembryos(Cordovaetal.2003), however,thepredominantroutemeansofsurvivalofphyto‐ plasmasisthroughtransmissionbetweeninsectsandplants. Theyappeartomanipulatetheirinsectandplanthoststoen‐ hancetheirowntransmissionefficiencies.Inplants,theyre‐ mainmainlyrestrictedtothephloemtissue(Doietal.1967; WhitcombandTully1989),andspreadthroughouttheplant bymovingthroughtheporesofthesieveplatesthatdivide the phloem sieve tubes (Figure 2). As mature sieve tubes usually contain the highest concentrationof phytoplasmas (Christensenetal.2004),theywerealsofoundinsidethecy‐ toplasmofimmaturephloemelements.Nexttosievetubes, phytoplasmas have been detected in the cytoplasm of phloemparenchymacellsadjacenttosieveelements(Sears andKlomparens1989;Silleretal.1987). Phytoplasmasareplant‐pathogenicprokaryotesoftheclass Mollicutes (mycoplasmas) characterized by the lack of a rigid cell wall and a small (0.53 – 1.35 Mb), low‐GC (21 – 28%)genome(Kubeetal.2008;Marconeetal.1999).They aremostcloselyrelatedtootherwall‐lessbacteriasuchas the saprophytic acholeplasmas and, more distantly, to the human‐ and animal‐pathogenic and commensal mycoplas‐ mas.Inplants,phytoplasmasinhabitalmostexclusivelythe phloem sieve elements and are transmitted within their planthostsbyphloemsap‐feedinghomopterousinsects,pri‐ marily leafhoppers (Cicadellidae) and, less frequently, planthoppers(Fulgoroidea)andpsyllids(Psylloidea,Figure 1)(Seemülleretal.2002). Figure1:AdultfemaleofCacopsyllapicta(MayerandGross,JKI). Newgeneration(emigrant)onMalussp. Phytoplasmainfectionsaresystemic,persistentanddifficult tocontrol.Duetotheinabilitytocultivatephytoplasmasun‐ der axenic conditions, many biological aspects including their phytopathogenic traits are poorly understood. Thus far,themostimportantinformationonpathogenicandmet‐ abolictraitsofthesepathogenswasobtainedfromcomplete genome sequences of six phytoplasmas that include Ca. P. mali(Kubeetal.2008).Theremainingfivearerepresenta‐ tives of the aster yellows (Ca. P. asteris)/stolbur (Ca. P. solani) phytoplasma complex. Facilitated by genomic se‐ quencedata,foureffectorproteinsrelatedtovirulencewere identifiedingenomesoftwoCa.P.asterisstrainsthatinduce witches’broom(WB)formationanddwarfism(Hoshietal. 2009)ortargetthenucleioftheplantandmayalterplant cellphysiology(Sugioetal.2011).Noneoftheseeffectorsor othervirulence‐relatedfactorsweredetectedinphytoplas‐ masinfectingrosaceousfruittrees,thatareonlydistantlyre‐ latedtoCa.P.asterisorCa.P.solani.However,phytoplasma induced phloem injuries were observed in diseased fruit treesleadingtoseveresymptomsandthereforemayplaya centralandprobablyuniversalroleinphytoplasmapatho‐ genicity. Lifecycle Phytoplasmasarebacteriathatliveinandmanipulateplants and insects (Hogenhout et al. 2008). They require replica‐ tion in both hosts for their survival. Phytoplasmas are in‐ gestedwiththeplant/phloemsapandmovethroughthein‐ sectstyletandinvadegut,epithelialandmuscletissues,he‐ molymph and salivary glands. They multiply in salivary glandcellsandaretransportedwiththesalivabackintothe 68 Figure2:Phytoplasmalifecycle.Reddotsrepresentthephytoplas‐ masandredarrowsshowthespreaddirection. Symptomsofappleproliferation AP induces specific and nonspecific symptoms on shoots, leaves, fruits, and roots. Specific symptoms of the vector‐ born disorder are WB (Figure 3B), rosettes, enlarged stip‐ ules, and non‐specific symptoms are foliar reddening, yel‐ lowing,undersizedfruitandgrowthsuppression.However, symptomexpressionisoftensubjecttofluctuation.WBsand undersizedfruitaretypicalfornewlyinfectedtreesandcan beoftenobservedforonlyoneorafewyearsafterfirstap‐ pearance.Then,treesmayrecoverandshownooronlymild symptomsforshorterorlongerperiods(Carraroetal.2004; Seemülleretal.1984).Symptomsaremorepronouncedin young trees where the root system is severely impaired leadingtoalowvigorandoftenadeclineofthetree.Symp‐ tom severity also varies greatly within the genus Malus. KartteandSeemüller(1988)founddifferentresponsesafter experimental inoculation of more than 40 taxa. All trial Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Candidatus phytoplasma mali affects phloem function, Zimmermann MR et al. plants could be infected but some reacted hypersensitive whereasotherswereastolerantascommercialrootstocks. Symptomdevelopmentalsodependsonthevirulenceofthe infectingAPphytoplasmastrainasshowninastudyof24 Ca. P. mali accessions of different origin (Seemüller and Schneider2007).Virulent(Figure3B),moderatelyvirulent andavirulent(Figure3AandD)accessionswerepresentin almost equal numbers. The plant reaction due to the viru‐ lence of the pathogen is also evident in the experimental phytoplasmahostCatharanthusroseusasexemplifiedwith the avirulent and virulent apple proliferation strain 1/93 and12/93,respectively(Figure3D‐E). Figure3:Malusxdomesticacv.GoldenDeliciousinfectedbydiffer‐ rentaccessionsoftheappleproliferationphytoplasma[(A)acces‐ sion1/93avirulent;(B)accession12/93virulent]andCatharanthus roseusplants[(C)healthy;(D)accession1/93avirulent;(E)acces‐ sion12/93virulent]. TheplanthabitatofAPphytoplasmas Theplantvascularsystemservesasmainrouteforthelong‐ and short‐distance transport of various compounds throughout the plant (van Bel 1996; Hafke et al. 2005). It consistsoftwomajortissuetypes—xylem,whichconducts waterandnutrients,andphloem,whichtransportsmainly organiccompounds. Sieveelements(SEs),companioncells(CCs)andphloem parenchymacells(PPCs)arethethreephloemelementsin‐ volved in long‐distance transport of photoassimilates (van Bel1996;Hafkeetal.2005)andseverallong‐distancesig‐ nals, such as diverse RNA‐species, proteins, nitric oxide, azelaic acid, SFD1/GLY1‐derived glycerol‐3‐phosphate, de‐ hydroabietinal, phytohormones (e.g. salicylic acid, jasmonates),aswellaselectricalsignals(e.g.Davies2006; Parketal.2007;Gaupelsetal.2008;Jungetal.2009;Demp‐ seyandKlessig2012;Furchetal.2014).Whiletheenucleate SEs form the transport pathway, the CCs are engaged in maintaining their viability. A high density of pore‐plasmo‐ desma units (PPUs) and tight endoplasmic reticulum (ER) couplingSEandCCunderlinesanintimatesymplasmiccon‐ nectionacrossthisboundary(Kempersetal.1998;Martens etal.2006).Permanentmetabolicandenergeticsupportfor theSEsisrequiredsincetheircellularmachineryislargely reducedduringontogenytomakewayforamoreefficient massflow(vanBelandKnoblauch2000). As phytoplasmas are obligate parasites, living in the phloemsystemandspreadthroughouttheplantbymoving throughtheporesofthesieveplates(Figure4),animpair‐ mentofthephloemisverylikely. Phytoplasma‐induced injuries of the phloem were first identifiedbySchneider(1973).Hefoundthatseverephyto‐ plasmainfectionsofpearareassociatedwiththepathologi‐ caldepositionofcalloseinsidethesieveelementsfollowed bythecollapseoftheseSEsandtheirCCs.Thislossofcon‐ ductingtissuemayresultinahyperactivityofthecambium, leading to the formation of a more or less pronounced re‐ placementphloem.Asthistissueusuallybecomessimilarly affected, starch accumulates in the stem, especially in the leaves, whereas the roots are starving. Depending on the susceptibilityofthegenotype,diseasedtreesdeclineorsuf‐ fer more or less (Schneider 1976; Schaper and Seemüller 1982;KartteandSeemüller1991).Thephloemsystemofall higherplantspervadestheplantfromrootstoleaftipsand ensurescommunicationandnutrientsupplyamongallplant organsandtissues.Apotentiallossofvascularsapduetoa wound is prevented via efficient sealing mechanisms with callose and proteins (Knoblauch et al. 2003; Furch et al. Figure4:TransmissionelectronmicrographsofCa.P.maliinfectedCuscutaodorataplants.Theoverviewofphloemcells(A)showaninfection ofsieveelements(SE),companioncells(CC)andphloemparenchymacells(PPC)withphytoplasmas.Highermagnification(B,C)illustrates theaccumulationofphytoplasmasatthesieveplateanddenselypackedphytoplasmas,somearebudding(arrowheads)(D).Sieveporesare markedwitharrows.SP,sieveplate;SER,sieveelementreticulum. Journal of Endocytobiosis and Cell Research VOL 26 | 2015 69 Candidatus phytoplasma mali affects phloem function, Zimmermann MR et al. 2007). Thus, phloem sap cannot be usually collected by wounding of the vascular system, as known for cucurbits andRicinus(DinantandLemoine2010;Zimmermannetal. 2013). Interestingly, considerable volumes of phloem exu‐ date can be collected from severely affected trees (Figure 5A)butnotfrominfectednonsymptomaticorhealthytrees. Thegreatvolumeof~300µlperdroplet,thenumerouspro‐ teins and the pH of 7.5‐8 indicates sieve‐tube content (Fi‐ gure5).Highproteinconcentrationsbetween0.07and110 mg ml‐1 with 150‐1000 different proteins were found in sieve‐tubeexudatesofvariousplantspecies(e.g.Schobertet al.1998;Rodriguez‐Medina2009;Zimmermannetal.2013). ThepHvalueofthecytosol,respectivelysieve‐tubeexudate, isacharacteristic,regulatedandconsistenttrait(Ojaetal. 1999;Felle2001,2005;Hafkeetal.2005)andisprobably notorequallyinfluencedbytheinfluxofxylemwaterafter wounding (Zimmermann et al. 2013). These findings indi‐ cate that the phytoplasma infection impairs the sealing mechanismofthephloem(Kollaretal.1989).Ashasbeen shownforseveralotherbacterialplantpathogens,itislikely that phytoplasmas produce a series of virulence proteins thatsuppressplantresponses(Hogenhoutetal.2008). Figure5: AppletreeinfectedwithCa.P.malishowingwound‐inducedvascularexudation.Thegreatvolumeof~300µlperdroplet(A),the numerousproteins(B)andthecytoplasmicpHof7.5‐8(C)indicatessieve‐tubecontent.Exudatewascollectedfromthestemofanappletree aftercuttingbyapipetteandtransferredto4‐foldconcentratedreducingsamplebuffer(Roti‐Load1;Carl‐Roth,Karlsruhe,Germany)inthe proportionof1:3.One‐dimensionalSDS–PAGEofexudatewascarriedoutaccordingtoLaemmli(1970)byusinga4%stackinggelanda12% separationgelinaMiniProtean3ElectrophoresisSystem(Bio‐RadLaboratories,Hercules,CA,USA)withPrecisionPlusProteinStandard–All Blue(Bio‐Rad)asaproteinsizemarker.Thegelswerestainedbysilver(HeukeshovenandDernick1988).Exudates(V=1–4µL)weredropped onindicatorpaper(Macherey‐Nagel,Düren,Germany).MES/TRISbufferswithdifferentpHvalues(4–9.7)wereusedforcalibrationline. Somephytoplasmasinduceseverephloemnecrosisintheir hostplants,indicatingthattheseplantsreacttothephyto‐ plasma infection. However, many phytoplasmas, do not seemtoinducephloemnecrosisbutstillaccumulatetohigh densitiesinphloemelements. Phloemlocatedplantdefence Itisapermanentchallengeforplantstoprotectthemselves againsttheattackandharmfuleffectsofpathogens.Inpar‐ ticular, the phloem is one preferred destination for plant pathogens,asitmediatesthetranslocationofprimaryand secondarymetabolites.Hence,thephloemreflectsaninter‐ estingpropagationpathwayandanimportantsourceofen‐ ergy and defence‐related information. Compromised phloemfunctionalitymayhavedisastrousconsequencesfor plant health and development. Focus on phloem research overthepastyearshasbeenshiftedfromthetranslocation ofnutrientstowardssignallinganddefence.Oneexampleis theocclusionofSEs. Sieve‐elementocclusion The SE sealing prevents an invasion and manifestation of pathogens and their released effectors/elicitors, redirects nutrient flows, and enriches signal and defence molecules 70 andmaybeseenasageneraldefenceresponsetopathogen attack.Sievetubesmaybeconstrictedbycallosepluggedby proteins(e.g.Furchetal.2007).Callosedepositionisanuni‐ versal mode of sieve‐plate occlusion (Kudlicka and Brown 1997;Nakashimaetal.2003).Itisaß‐1.3‐glucanpolymer thatisproducedenzymaticallyanddepositedextracellularly aroundplasmodesmataandsieveporesintheformofcollars (Blackmanetal.1998;Zabotinetal.2002)asareactionto chemical or mechanical stress (Kudlicka and Brown 1997; Nakashimaetal.2003;Levyetal.2007).Asforproteinplug‐ ging, the numerous aggregation forms of phloem‐specific proteins(CronshawandSabnis1990)displayanimmense variation within the plant kingdom. Spindle‐like protein bodiesthatonlyoccurinFabaceae(PalevitzandNewcomb 1971)wereobservedinViciafabasievetubes.Triggeredby osmoticshockorCa2+application,theseproteinbodiesdes‐ ignated as forisomes (Knoblauch et al. 2003) disperse di‐ rectly and recondense “spontaneously” into the original stateinintactsievetubes(Knoblauchetal.2001,2003).Ma‐ nipulation of isolated forisomes showed a strong cal‐ cium‐dependentdispersion/recondensation. TransientinfluxofCa2+constitutesanearlyelementof signalling cascades triggering pathogen defence responses Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Candidatus phytoplasma mali affects phloem function, Zimmermann MR et al. inplantcells.Numerousstudieshaveprovidedevidencethat Ca2+playsapivotalroleinactivatingtheplant’ssurveillance system against attempted microbial invasion (Yang et al. 1997; Scheel 1998). Stimulus specific and spatio‐temporal defined Ca2+ signatures of characteristic magnitude, fre‐ quency,anddurationareassumedtomaintainsignalspeci‐ ficityoftransductioncascades(Thuleauetal.1998;Trewa‐ vas1999).Subsequently,thebindingofcytosolicCa2+to,for example,calmodulin,Ca2+‐dependentproteinkinases,phos‐ phatases and Ca2+‐gated ion channels facilitates down‐ stream signal transduction directed toward activation of a signal‐specificcellularresponse(Blumwaldetal.1998). V. faba sieve tubes infected by a Stolbur phytoplasma containconsistentlydispersedforisomeshintingatCa2+lev‐ elsappreciablyhigherthaninhealthysievetubes(Musetti etal.2013).Moreover,thesievetubesaresealedwiththick depositsofcallose(Musettietal.2013).Undoubtedly,phy‐ toplasmasinduceCa2+influxwithinherentconsequencesfor forisome dispersion and callose synthesis. As V. faba and Stolbur phytoplasma is an exclusive artificial system, it wouldbeofinteresttostudyhowapathogeninteractswith anaturalhost(forexampleMalusandAPphytoplasma). Theabovereportedeffectoftheimpairmentoftheseal‐ ingmechanismisunexpectedbecausebothocclusionmech‐ anismsandtheinducedphloemnecrosisreduceorinhibit themassflow.Thefindingsindicateconditions,depending onthephytoplasmatiterorthestrain(avirulentorvirulent) where the sieve tubes are still functioning but where the sealingmechanismisaffected.Sofar,ithasbeenunclearif SEocclusion(maybereversible)ispartoftheplant’sstrat‐ egyagainstphytoplasmaspreadorifphytoplasmasinduce andexploresymplasmicisolationforanundisturbedmulti‐ plication(vanBeletal.2014).Hence,onemajorfuturetask should be to understand the physiological relationship of phytoplasmainfection,sieve‐tubeocclusionandwoundin‐ ducedvascularexudation. Stress‐relatedchangesofphytohormonesandproteins TheformationofWB,thesmall‐fruitsymptom,andthere‐ ducedrootgrowthofdiseasedappletreescanbeexplained withaninfection‐inducedhormonalimbalance,inparticular byanalteredauxin(Indole‐3‐aceticacid;IAA)/cytokininra‐ tio(HegeleandBangerth1997).Thereisindicationthatsyn‐ thesis,metabolismand/ortransportofplanthormonesare affectedindiseasedplants(Hare1977).Phytohormonedis‐ persioninleavesofCa.P.mali‐infected(virulentandaviru‐ lent) and healthy apple trees (Figure 6), show significant phytoplasma‐triggered effects for all examined phytohor‐ mones(Figure6A:IAA‐auxin,ABA‐abscisicacid,SA‐salicylic acid; Figure 6B: JA‐jasmonic acid, cis‐OPDA‐cis‐12‐oxo‐ phytodienoicacid,JA‐Ile‐(+)‐7‐iso‐jasmonoyl‐L‐isoleucine). Thisisconsistentwitharoleinimmunesignalling(Dempsey and Klessig 2012; Pieterse et al. 2012). It is generally ac‐ ceptedthatpathogenswithabiotrophiclifestylearemore sensitive to SA‐mediated induced defence mechanisms (Glazebrook2005),henceasignificantincreaseofSAisex‐ pected.TheincreaseofSAinplantsinfectedbythevirulent andavirulentstrainbyeither100%andaparalleldecrease ofJAandJA‐Ilepointstoacross‐talkandindicatethatanin‐ nate immunity response has been initiated (Kornneef and Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Pieterse2008).ThedownregulationoftheJA‐mediatedde‐ fencesmayhelptheplanttominimizeenergycostsandal‐ lowstheplanttofine‐tuneitsdefenceresponse(Pieterseet al.2001;Bostock2005;KornneefandPieterse2008).ABA andIAAhavealsobeenimplicatedinplantdefence,buttheir significance is less well studied (Kornneef and Pieterse 2008).ABAisproducedinresponsetomicrobes(DeVleess‐ chauweretal.2010),transportedfromtheproducingroot cellsintothexylemandreleasedtotheabove‐groundplant parts(Zangetal.2008;Furchetal.2014).IAAhasprofound effects on plant growth and development. Both plants and some plant pathogens can produce IAA to modulate plant growth(Zhao2010).Itisverylikelythatthesignificantlyin‐ creasedIAAlevelisresponsibleforformationofWB.Atpre‐ sentitisnotknown,iftheplantsproducemoreIAAdueto thephytoplasmainfection,orifthephytoplasmasitselfpro‐ duceIAA. Figure 6: Analysis of phytohormones in leaves of healthy apple treesandtreesinfectedbyeitheranavirulent(a‐vir)oravirulent (vir)Ca.P.malistrain.Eachbarrepresentsthemeanof13‐25repli‐ cates from 6 different plants ± standard deviation. The statistical significanceistestedwithone‐wayANOVAbypairwisecomparison with Students t‐test and marked with different letters (p = 0.05). 250mgofeitherleafmaterialwasgroundandextractedinthepres‐ enceofamixofinternalphytohormonestandards(Vadasseryetal. 2012).Subsequently,thereducedandresolvedsamplewasloaded onto a reversed‐phase column (Oasis HLB 3cc; Waters, Eschborn, Germany) that was first pre‐conditioned by the addition of 2 ml methanol(MeOH)followedby2mlwater.Afterbeingwashedwith 2ml5%(v/v)MeOH/watersolutioncontaining0.5%(v/v)formic acid,thecolumnwaselutedwith2mlMeOH.Theeluatewascom‐ pletely dried in a speed‐vac, resolved in 0.1 ml MeOH and subse‐ quently subjected to liquid chromatography–mass spectrometry analysisaccordingtoVadasseryetal.(2012). 71 Candidatus phytoplasma mali affects phloem function, Zimmermann MR et al. Supportedbythediversityofsymptoms,itislikelythatthe natureofdiseasedevelopmentismorecomplex.Recentsur‐ veysrevealedthatthephloemisacentralactorinplantde‐ velopmentandnutrition,providingnutrientsandenergyto sinkorgansandintegratinginterorgancommunication.Data showthatthesieve‐tubesapcontainsatleast150different water‐solubleproteins(Schobertetal.1995).Amajorpart is engaged in sugar metabolism, transmembrane sugar transport,proteindegradationanddetoxificationofreactive oxygen species. Furthermore, long‐distance signalling is supposedtobeanintegralpartofinduceddefenceresponse ofplants(e.g.Davies2006;Furchetal.2014;Gaupelsetal. 2008; Jung et al. 2009; Park et al. 2007). In addition, the phloemisbelievedtobeinvolvedintheproductionoram‐ plificationofsignalsthatarereleasedintothephloem‐sap streaminresponsetostress,andintheproductionandstor‐ age of antimicrobial compounds acting in defence mecha‐ nisms. However, the interaction of phytoplasmas with phloem constituents is still poorly understood (MacLean andHogenhout2013).Thereisindicationthatphloemload‐ ingisaffectedbyphytoplasmainfection.AsSEsneedaper‐ manentinputofenergytoensuretheirviability,sugarme‐ tabolism and the associate energy production of the com‐ panioncellshaveadramaticimpactonthephysiologicalfit‐ nessofphloemfunction.Whentherequiredsmallpropor‐ tionsucrosebreakdowninthecompanioncellswasblocked by insertion of a phosphorylase gene, sugar uptake or re‐ trievalwasinhibitedandphloemloadingwasseverelyim‐ paired, probably by the lack of proton pump fuelling. This resulted in photoassimilate accumulation in source leaves, chlorophyll loss, and reduced plant growth (Lerchl et al. 1995;vanBel2003),typicalsymptomsofphytoplasmaldis‐ eases. PutativevirulencefactorsofCa.P.mali The role of AAA+ proteins in phytoplasmal patho‐ genicity Thereisnodirectmolecularorbiochemicalproofforviru‐ lenceproteinsoreffectorsofCa.P.mali.However,thereis circumstantialevidencethatmembraneproteinsfromCa.P. mali strains have a significant influence on pathogenicity. Thesefindingsarebasedonmonitoringdiseasedataoflong‐ termtrialsfromAPaccessionsofdifferentoriginandmolec‐ ular data derived from the associated pathogen strains. Basedonphenotypicsymptomstheaccessionswereclassi‐ fied as being strongly, moderately or mildly virulent (SeemüllerandSchneider2007;Seemülleretal.2011).The moleculardatacomefromagroupofgenes,encodingAAA+ proteinswhicharepresentinanunusuallyhighnumberin phytoplasmas, namely the hflB‐ and AAA+ ATPase genes. Analysisofnucleicacidsequencesorderivedaminoacidse‐ quences of some of the genes revealed virulence‐related substitutions.Clusteranalysisclearlyseparatedthevirulent fromnon‐virulentstrains.TheAAA+superfamilyisalarge, functionallydiversegroupofproteinsandcomprehendvar‐ ious types of ATPases (e.g. ClpC, ClpV, p97) and proteases (e.g. HflB, Clp group, Lon) possessing the ATPase module (Langklotzetal.2012;Snideretal.2008).Bothareintegral 72 membraneproteinswiththelong,catalyticrelevantC‐termi‐ nal domain facing the cytosol. Topology prediction pro‐ grams however, indicated that the C‐tail of four AAA+ ATPasesandtwoofthreeHflBsofCa.P.malifacetotheout‐ side,hencethesievetubecytoplasm(Seemülleretal.2013). AAA+proteinsareofcrucialimportanceforbacterialvir‐ ulence.TheClpCATPasefromStaphylococcusaureusforex‐ ample regulates transcription, which is a major virulence factor(Luongetal.2011).Similarly,AAA+proteinsarees‐ sentialforthefunctionofsecretionsystems.Severalbacte‐ rial species such as Salmonella enterica, Agrobacterium tu‐ mefaciensand Pseudomonas syringaeusetypethreesecre‐ tionsystem(TTSS)toinjectvirulencefactorsintotheeukar‐ yotichost(VanMelderenandAertsen2009;AlixandBlanc‐ Potard2008).ThisunusualfindingonC‐tailorientationisa newaspectinunderstandingphytoplasmapathogenicityat thesievetubelevel.ItisconceivablethatthepowerfulAAA+ proteinsattackstructuresorcomponentsofsieveelements, inparticularifthepathogensareattachedtothemembrane. Adherencetohostmembranesiswellestablishedformost mycoplasmaspathogenictohumansandanimalsandiscon‐ sidered to be a prerequisite for colonization and infection evidencedbytheharmcausedtothemembranes(Razinet al.1998).However,suchanattachment,whichisbasedon protein/protein interaction, is not clearly established for phytoplasmas. Conclusion The effect of phytoplasma infections on function of the phloemandtheresultingdiseasereceivedlittleattentionin the past. However, recent results in phytoplasma and phloemresearch,likethecorrelationofphytoplasma‐AAA+ proteinswithvirulenceorchangesinphytohormonelevels understresssituationsoffertheopportunitytomakesignif‐ icantprogressinunderstandinginductionanddevelopment ofphytoplasmaldiseases.Forthefutureitwillbeimportant tostudytheeffectofthesievetube‐borninhabitingpatho‐ gensonthephloem.Wesupposethatafterinfectionbydif‐ ferentphytoplasmastrainsandthereleaseofproposedef‐ fectors/proteases from plasma‐membrane proteins (e.g. AAA+proteins),thefirstreactionisaCa2+increaseinsieve elements ‐ resulting in filament formation of phloem‐pro‐ teins and, later on, callose deposition at sieve plates and sievepores.Asubsequentreactionisthechangeofphyto‐ hormone dispersion, integrity of plasma membrane and changeofmassflowdirection(Figure7). Acknowledgements The authors thank Andrea Lehr for technical assistance concerning the phytohormone measurements and The Deutsche Forschungsgemeinschaft in the frame of FU 969/2‐1 as well as the Max Planck Society for supporting thiswork. Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Candidatus phytoplasma mali affects phloem function, Zimmermann MR et al. Figure7:Aproposedmodelaboutthe(sub‐)cellularlevelofplant‐phytoplasmainteraction. References AlixE,Blanc‐PotardAB.(2008)Peptide‐assisteddegradationofthe SalmonellaMgtCvirulencefactor.EmboJ.27:546‐557. BlackmanLM,GunningBES,OverallRL.(1998)A45kDaproteiniso‐ latedfromthenodalwallsofCharacorallinaislocalisedtoplas‐ modesmata.PlantJ.15:401‐411. BlumwaldE,AharonGS,LamBCH.(1998)Earlysignaltransduction pathwaysinplant–pathogeninteractions.TrendsPlantSci.3:342‐ 346. BostockRM.(2005)Signalcrosstalkandinducedresistance:strad‐ dling the line between cost and benefit. Ann Rev Phytopathol. 43:545–580. CarraroL,ErmacoraP,LoiN,OslerR.(2004)Therecoveryphenom‐ enon in apple proliferation‐infected apple trees. J Plant Pathol. 86:141‐146. ChristensenNM,NicolaisenM,HansenM,SchulzA.(2004)Distribu‐ tionofphytoplasmasininfectedplantsasrevealedbyreal‐time PCRandbioimaging.MolPlant–MicrobeInteract.17:1175–1184. CordovaI,JonesP,HarrisonNA,OropexaC.(2003)InsituPCRde‐ tectionofphytoplasmaDNAinembryosfromcoconutpalmswith lethalyellowingdisease.MolPlantPathol.4:99–108. Cronshaw J, Sabnis DD. (1990) Phloem proteins. In: Behnke HD, SjolundRD.(eds.)SieveElements.ComparativeStructure,Induc‐ tion and Development. Berlin, Heidelberg, New York, Springer‐ Verlag,pp.257‐283. DaviesE.(2006)Electricalsignalsinplants:factsandhypotheses. In: Volkov AG. (ed.) Plant Electrophysiology. Berlin, Springer‐ Verlag,pp.407‐422. DempseyMA,KlessigDF.(2012)SOS–toomanysignalsforsystemic acquiredresistance?TrendsPlantSci.17:538–545. DeVleesschauwerD,YangY,CruzCV,HöfteM.(2010)Abscisicacid‐ inducedresistanceagainstthebrownspotpathogenCochliobolus miyabeanusinriceinvolves MAPkinase‐mediatedrepressionof ethylenesignaling.PlantPhysiol.152:2036–2052. DinantS,LemoineR.(2010)Thephloempathway:Newissuesand olddebates.ComptesRendusBiol.333:307‐319. DoiY,TeranakaM,YoraK,AsuyamaH.(1967)Mycoplasma‐orPLT group‐like microorganisms found in the phloem elements of plantsinfectedwithmulberrydwarf,potatowitches’broom,aster yellows or paulownia witches’ broom. Ann Phytopathol Soc Jpn. 33:259–266. Journal of Endocytobiosis and Cell Research VOL 26 | 2015 FelleHH.(2001)pH:signalandmessengersinplantcells.PlantBiol. 6:577–591. FelleHH.(2005)pHregulationanoxicplants.AnnBot.96:519–532. Furch ACU, Zimmermann MR, Kogel K‐H, Reichelt M, Mithöfer A. (2014)Directandindividualanalysisofstress‐relatedphytohor‐ monedispersioninthevascularsystemofCucurbitamaximaafter flagellin22treatment.NewPhytol.201:1176‐1182. Furch ACU, Hafke JB, Schulz A, van Bel AJE. (2007) Ca2+‐mediated remotecontrolofreversiblesievetubeocclusioninViciafaba.J ExpBot.58:2827‐2838. GaupelsF,FurchACU,WillT,MurLAJ,KogelK‐H,vanBelAJE.(2008) NitricoxidegenerationinViciafabaphloemcellsrevealsthemto besensitivedetectorsaswellaspossiblesystemictransducersof stresssignals.NewPhytol.178:634‐646. Glazebrook J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 43:205–227. HafkeJB,vanAmerongenJ‐K,KellingF,FurchACU,GaupelsF,van Bel AJE. (2005) Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transportphloem.PlantPhysiol.138:1527‐1537. HanboonsongY,ChoosaiC,PanyimS,DamakS.(2002)Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettix hiroglyphicus (Matsumura). Insect Mol Biol.11:97‐103. HarePE.(1977)In:MethodsinEnzymology.47:3‐18. HegeleM,BangerthF.(1997)ChangesinIAAandABAlevelsandIAA transport of proliferation‐diseased apple trees. Acta Hortic. 463:97‐103. HeukeshovenJ,DernickR.(1988)Improvedsilverstainprocedure for fast staining in Phastsystem development unit; staining of sodiumdodecylsulfategels.Electrophoresis.9:28‐32. Hogenhout SA, Oshima K, Ammar el‐D, Kakizawa S, Kingdom HN, NambaS.(2008)Phytoplasmas:bacteriathatmanipulateplants andinsects.MolPlantPathol.9:403‐423. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S. (2009) A unique virulencefactorforproliferationanddwarfisminplantsidentified from a phytopathogenic bacterium. Proc Natl Acad Sci USA. 106:6416‐6421. Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. (2009)Priminginsystemicplantimmunity.Science.324:89‐91. 73 Candidatus phytoplasma mali affects phloem function, Zimmermann MR et al. Kartte S, Seemüller E. (1988) Variable response within the genus Malustotheappleproliferationdisease.ZeitschrPflanzenkrankh Pflanzenschutz.95:25‐34. KartteS,SeemüllerE.(1991)Histopathologyofappleproliferation inMalustaxaandhybridsofdifferentsusceptibility.JPhytopathol. 131:149‐160. Kempers R, Ammerlaan A, van Bel AJE. (1998) Symplasmic con‐ striction and ultrastructural features of the sieve element/com‐ panion cell complex in the transport phloem of apoplasmically and symplasmically phloem‐loading species. Plant Physiol. 116:271‐278. KnoblauchM,PetersWS,EhlersK,vanBelAJE.(2001)Reversible calcium‐regulated stopcocks in legume sieve tubes. Plant Cell. 13:1221‐1230. KnoblauchM,NollGA,MüllerT,PrüferD,Schneider‐HütherI,Schar‐ nerD,vanBelAJE,PetersWS.(2003)ATPindependentcontractile proteinsfromplants.NatMat.2:600‐603. KollarA,SeemüllerE,KrczalG.(1989)Impairmentofthesievetube sealing mechanism of trees infected by mycoplasmalike organisms.JPlantDisProt.124:7‐12. KoornneefA,PieterseCMJ.(2008)Crosstalkindefensesignaling. PlantPhysiol.146:839–844. KubeM,SchneiderB,KuhlH,DandekarT,HeitmannK,MigdollA, ReinhardtR,SeemüllerE.(2008)Thelinearchromosomeofthe plant‐pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMCGenom.9:26. KudlickaK,BrownRM.(1997)Celluloseandcallosebiosynthesisin higherplants.PlantPhysiol.115:643‐656. LangklotzS,BaumannU,NarberhausF.(2012)Structureandfunc‐ tion of the bacterial AAA protease FtsH. Biochim Biophys Acta (BBA)‐MolCellRes.1823:40–48. Laemmli UK. (1970) Cleavage of structural proteins during the assemblyoftheheadofbacteriophageT4.Nature.227:680–685. Lerchl J, Geigenberger P, Stitt M, Sonnewald U. (1995) Impaired photoassimilatepartitioningcausedbyphloem‐specificremoval of pyrophosphate can be complemented by a phloem‐specific cytosolicyeast‐derivedinvertaseintransgenicplants.PlantCell. 7:259‐270. Levy A, Guenoune‐Gelbart D, Epel BL. (2007) ß‐1,3‐glucanases. Plasmodesmal gate keepers for intercellular communication. PlantSignalBehav.5:288‐290. Luong TT, Sau K, Roux C, Sau S, Dunman PM, Lee CY. (2011) StaphylococcusaureusClpCdivergentlyregulatescapsuleviasae and codY in strain Newman but activates capsule via codY in strain UAMS‐1 and in strain Newman with repaired saeS. J Bacteriol.193:686‐694. MacLean AM, Hogenhout SA. (2013) Phytoplasmas and Spiroplas‐ mas:Thephytopathogenicmollicutesofthephloem.In:Phloem: MolecularCellBiology,SystemicCommunication,BioticInterac‐ tions.Oxford,UK,JohnWiley&Sons,Inc.,pp.293‐309. MarconeC,NeimarkH,RagozzinoA,LauerU,SeemüllerE.(1999) Chromosome sizes of phytoplasmas composing major phyloge‐ neticgroupsandsubgroups.Phytopathology.89:805‐810. MartensHJ,RobertsAG,OparkaKJ,SchulzA.(2006)Quantification of plasmodesmatal endoplasmic reticulum coupling between sieveelementsandcompanioncells using fluorescenceredistri‐ butionafterphotobleaching.PlantPhysiol.142:471‐480. MusettiR,BuxaSV,DeMarcoF,LoschiA,PolizzottoR,KogelK‐H, vanBelAJE.(2013)Phytoplasma‐triggeredCa2+influxisinvolved insieve‐tubeblockage.MolPlant‐MicrobeInteract.26:379‐386. NakashimaJ,LaosinchaiW,CuiX,BrownRMJr.(2003)Newinsight intothemechanismofcelluloseandcallosebiosynthesis:prote‐ asesmayregulatecallosebiosynthesisuponwounding.Cellulose. 10:369‐389. OjaV,SavchenkoG,JakobB,HeberU.(1999)pHandbuffercapaci‐ ties of apoplastic and cytoplasmic cell compartments in leaves. Planta.209:239–249. PalevitzBA,NewcombEH.(1971)Theultrastructureanddevelop‐ mentoftubularandcristallinePproteininthesieveelementsof certainpapilionaceouslegumes.Protoplasma.72:399‐427. ParkS‐W,KaiyomoE,KumarD,MosherSL,KlessigDF.(2007)Me‐ thyl salicylate is a critical mobile signal for plant systemic ac‐ quiredresistance.Science.318:113‐116. 74 PieterseCMJ,TonJ,VanLoonLC.(2001)Cross‐talkbetweenplant defence signalling pathways: boost or burden? Ag Biotech Net. 3:ABN068. PieterseCMJ,VanderDoesD,ZamioudisC,Leon‐ReyesA,VanWees SCM.(2012)Hormonalmodulationofplantimmunity.AnnuRev CellDevelopBiol.28:489–521. Razin S, Yogev D, Naot Y. (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev. 62:1094‐ 1156. Rodriguez‐Medina C. (2009) Study of Macromolecules in Phloem Exudates of Lupinus albus. Ph.D. dissertation, School of Plant Biology,UniversityofWesternAustralia,Crawley. Schaper U, Seemüller E. (1982) Condition of the phloem and persistenceofmycoplasmalikeorganisms associatedwithapple proliferationandpeardecline.Phytopathology.72:736‐742. Scheel D. (1998) Resistance response physiology and signal transduction.CurrOpinPlantBiol.1:305‐310. SchneiderH.(1976)Indicatorhostforpeardecline:Symptomatol‐ ogy, histopathology and distribution of mycolpasmalike organ‐ ismsinleafveins.Phytopathology.67:592‐601. Schneider H. (1973) Cytological and histological aberrations in woody plants followinginfection with viruses, mycoplasmas, rickettsiasandflagellates.AnnuRevPhytopathol.11:119‐146. SchobertC,GroßmannP,GottschalkM,KomorE,PecsvaradiA,zur Nieden U. (1995) Sieve‐tube exudate from Ricinus communis L seedlings contains ubiquitin and chaperones. Planta. 196:205‐ 210. SchobertC,BakerL,SzederkényiJ,GroßmannP,KomorE,Hayashi H, Chino M, Lucas WJ. (1998) Identification of immunologically related proteins in sieve‐tube exudate collected from monocotyledonousanddicotyledonousplants.Planta.206:245– 252. Sears BB, Klomparens KL. (1989) Leaf tip cultures of the evening primrose allow stable aseptic culture of mycoplasma‐like organisms.CanJPlantPathol.11:343–348. Seemüller E, Kunze L, Schaper U. (1984) Colonization behavior of MLO, and symptom expression of proliferation‐diseased apple trees and decline‐diseased pear trees over a period of several years.ZeitschrPflanzenkrankhPflanzenchutz.91:525‐532. SeemüllerE,GarnierM,SchneiderB.(2002)Mycoplasmasofplants andinsects.In:RazinS,HerrmannR.(eds.)MolecularBiologyand Pathology of Mycoplasmas. London, Kluwer Academic/Plenum Publishers,pp.91‐116. Seemüller E, Schneider B. (2004) 'Candidatus Phytoplasma mali', 'Candidatus Phytoplasma pyri' and 'Candidatus Phytoplasma prunorum',thecausalagentsofappleproliferation,peardecline andeuropeanstonefruityellows,respectively.IntJSystemEvol Microbiol.54:1217‐1226. Seemüller E, Schneider B. (2007) Differences in virulence and genomicfeaturesofstrainsof'CandidatusPhytoplasmamali',the appleproliferationagent.Phytopathology.97:964‐970. SeemüllerE,KampmannM,KissE,SchneiderB.(2011)HfIBgene‐ basedphytopathogenicclassificationof'CandidatusPhytoplasma mali'strainsandevidencethatstraincompositiondeterminesvir‐ ulenceinmultiplyinfectedappletrees.MolPlant‐MicrobeInteract. 24:1258‐1266. SeemüllerE,SuleS,KubeM,JelkmannW,SchneiderB.(2013)The AAA plus ATPases and HfIB/FtsH proteases of 'Candidatus Phytoplasma mali': Phylogenetic diversity, membrane topology, and relationship to strain virulence. Mol Plant‐Microbe Interact. 26:367‐376. SillerW,KuhbandnerB,MarwitzR,PetzoldH,SeemüllerE.(1987) Occurrenceofmycoplasma‐likeorganismsinparenchymacellsof Cuscutaodorata(RuizetPav.).Phytopathology.119:147‐159. Snider J, Thibault G, Houry WA. (2008) The AAA+ superfamily of functionallydiverseproteins.GenBiol.9:216. Strauss E. (2009) Microbiology. Phytoplasmas research begins to bloom.Science.325:388‐390. Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA. (2011)PhytoplasmaproteineffectorSAP11enhancesinsectvec‐ torreproductionbymanipulatingplantdevelopmentanddefense hormonebiosynthesis.ProcNatlAcadSciUSA.108:E1254‐E1263. ThuleauP,SchroederJI,RanjevaR.(1998)Recentadvancesinthe regulationofplantcalciumchannels:Evidenceforregulationby Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Candidatus phytoplasma mali affects phloem function, Zimmermann MR et al. G‐proteins, the cytoskeleton and second messengers. Curr Opin PlantBiol.1:424‐427. TrewavasA.(1999)Lecalcium,c’estlavie:Calciummakeswaves. PlantPhysiol.120:1‐6. VadasseryJ,ReicheltM,HauseB,GershenzonJ,BolandW,Mithöfer A. (2012) CML42‐mediated calcium signaling co‐ordinates re‐ sponsestoSpodopteraherbivoryandabioticstressesinArabidop‐ sis.PlantPhysiol.159:1159–1175. vanBelAJE.(1996)Interactionbetweensieveelementandcompan‐ ion cell and the consequences for photoassimilate distribution. Two structural hardware frames with associated physiological softwarepackagesindicotyledons?JExpBot.47:1129‐1140. vanBelAJE,KnoblauchM.(2000)Sieveelementandcompanioncell: thestoryofthecomatosepatientandthehyperactivenurse.Aus‐ tralJPlantPhysiol.27:477‐487. vanBelAJE.(2003)Thephloem,amiracleofingenuity.PlantCell Environ.26:125‐149. vanBelAJE,KnoblauchM,FurchACU,HafkeJB.(2011)(Questions)n on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci. 181:210‐218. vanBelAJE,FurchACU,WillT,BuxaSV,MusettiR,HafkeJB.(2014) Spreadthenews:systemicdisseminationandlocalimpactofCa2+ signalsalongthephloempathway.JExpBot.65:761‐1787. VanMelderenL,AertsenA.(2009)Regulationandqualitycontrolby Lon‐dependentproteolysis.ResMicrobiol.160:645‐651. WhitcombRF,TullyED.(1989)TheMycoplasmas.Vol.V,SanDiego, AcademicPress,Inc. Yang Y, Shah J, Klessig DF. (1997) Signal perception and transduction in plant defense responses. Gen Develop. 11:1621‐ 1639. Zabotin AI, Barysheva TS, Trofimova OI, Lozovaya VV, Widholm J. (2002)Regulationofcallosemetabolismin higher plantcellsin vitro.RussJPlantPhysiol.49:792‐798. ZhangYP,QiaoYX,ZhangYL,ZhouYH,YuJQ.(2008)Effectsofroot temperature on leaf gas exchange and xylem sap abscisic acid concentrations in six cucurbitaceae species. Photosynthetica. 46:356–362. ZhaoY.(2010)Auxinbiosynthesisanditsroleinplantdevelopment. AnnuRevPlantBiol.61:49‐64. Zimmermann MR, Hafke JB, van Bel AJE, Furch ACU. (2013) Interaction of xylem and phloem during exudation and wound occlusioninCucurbitamaxima.PlantCellEnviron.36:237‐247. Journal of Endocytobiosis and Cell Research VOL 26 | 2015 75
© Copyright 2026 Paperzz