Europâisches P a t e n t a m t ® COi) 0 042 ® Publication number: Office European Eur°Pean Patent Office B 1 Office européen des bbrevets revets @ EUROPEAN PATENT (§) Dateof publication of patent spécification: 27.03.85 8 6 9 SPECIFICATION (g) Int. CL4: G 03 C 5/04, G 03 B 2 7 / 7 2 (§) Application number: 81900375.7 (g) Date offiling: 23.12.80 (9) International application number: PCT/US80/01719 (S) International publication number: WO 81/01886 09.07.81 Gazette 81/16 (g) METHOD AND APPARATUS FOR FABRICATING A TRANSLUCENT GRADED DENSITY MEDIUM. (g) Priority: 31.12.79 US 108877 _ (§) Date of publication of application: 06.01.82 Bulletin 82/01 (4§) Publication of the grant of the patent: 27.03.85 Bulletin 85/13 (fi) Designated Contracting States: DE FR GB O) (O GO CM o o û. LU @ Proprietor: NCR Corporation World Headquarters Dayton, Ohio 45479 (US) (72) Inventor: HORST, William Richard 10165 Lebanon Pike Dayton, OH 45459 (US) @ Representative: Robinson, Robert George International Patent Department NCR Limited 206 Marylebone Road London NW1 6LY (GB) (§) References cited: DE-C-825205 US-A-2 051 584 US-A-2 083 215 US-A-2 150 805 US-A-3 224352 US-A-3 394003 US-A-3 642 477 US-A-3 694 079 US-A-3 797 934 US-A-3 996 051 US-A-4021831 US-A-4083 634 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention). Courier Press, Leamington Spa, England. Technical Field The invention relates to a method and apparatus for fabricating a translucent graded density medium. Background Art The medium of the present invention may, among other uses, be used for measurement of mechanical motion or displacement. Such displacement measurement is useful in a number of different environments, including currency dispenser systems. The reliability of currency dispenser systems, such as those employed i n remote teller terminals, depends cricitally on the accuracy in the monitoring of its performance. Prior art monitoring systems mainly relied on optically detecting a transition at the edge of a document or detecting member. Thus, for instance, the IBM Technical Disclosure Bulletin, Vol. 7, No. 8 of January 1965 discloses a double document detector in which an arm connected to a pair of rollers is moved by an extent dependent on the thickness of the documents passing between the rollers. A single document will move the arm to a position in which it will not prevent light from passing through an aperture to impinge upon a light sensitive element but overlapped multiple documents will move the arm to cover the aperture and block the passage of light thereby indicating an overlapped document condition. A disadvantage of this arrangement is that static changes in the position of the rollers, caused by wear, elasticity or accumulation of foreign matter, may result in a drift of the operating range of the system causing erroneous operation. A unique method of accomplishing the monitoring function is disclosed in an international application filed by the present Applicants on the same day as the present application entitled "Apparatus for Detecting the Passage of Multiple Documents" (EP-A-0 042 860). In this application a translucent graded density medium or film strip is attached to a mechanical arm, which arm is displaced according to the thickness of a document or multiple documents passing between a pair of rollers connected to the arm. Instead of a single binary indication provided by the opaque arm of the just mentioned prior art system, the film strip causes an analog electrical signal to be generated with an amplitude proportional to the displacement of the arm. This ensures successful operation of the system even when its operating range is caused to shift slightly by reason of the abovementioned changes in the position of the rollers. Disclosure of the Invention It is therefore an object of the invention to fabricate a translucent medium which has an optical density which constitutes an incrementally changing gradient from dark to light. It is a further object of this invention to provide an inexpensive and simple method and apparatus for producing a graded density medium. Thus, according to the invention there is provided a method for fabricating a translucent graded density medium, characterized by the steps of providing a source of radiant energy; diffusing radiant energy from said source; passing a portion of said diffused radiant energy through an aperture; further diffusing said radiant energy passing through said aperture; causing a portion of said further diffused radiant energy to be reflected from a substantially opaque surface in such a manner that the intensity of said reflected radiant energy decreases as a function of the distance from the edge of said aperture; and focusing said radiant energy passing through said aperture and said reflected radiant energy in the plane of a radiation-sensitive medium to produce a medium exhibiting an incremental gradient in optical density across an area thereof. According to another aspect of the invention, there is provided an apparatus for fabricating a translucent graded density medium, characterized by a source of radiant energy; a first diffusing means positioned to intercept said radiant energy from said source; an opaque element covering said first diffusing means, which element contains an aperture; a second diffusing means, having an edge which overlies an edge of said aperture in said element to cause a portion of said radiant energy passing through said aperture to be directed against said opaque element and reflected therefrom; and means for selectively exposing a radiation-sensitive medium to radiant energy passing through said aperture to cause the exposed medium to exhibit an incremental gradient in optical density across an area thereof. It has been found that by using the method and apparatus of the present invention it was possible to obtain a translucent medium having an optical density which constitutes a substantially linearly changing gradient from dark to light. Brief Description of the Drawings One embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings, in which: Fig. 1 is a front view of an apparatus according to the present invention; Fig. 2 is a fragmentary view of an aperture area of the apparatus shown in Fig. 1; Fig. 3 is a graph showing the density of a film strip fabricated according to the present invention with respect to the distance across the film strip; Fig. 4 is a graph showing the output current of a detector unit with respect to the distance across several film strips which were exposed for different periods of time. Best Mode for Carrying Out the Invention Referring to Fig. 1, there is shown apparatus comprising a photographic contact printing box 10 containing a tungsten lamp 12 at the closed end. The open end of the box 10 is covered with a ground glass diffusion plate 14, which plate is positioned with its rough side facing away from lamp 12. A sheet of black opaque photographic paper 16 covers the rough side of plate 14 with the exception of a narrow aperture 15, which is 1.27 centimeters wide, across the center of plate 14. A second ground glass diffusion plate 18 with a thickness of 0.318 centimeters covers a portion of paper 16, such that the right edge 17 of plate 18 overlaps the opening 15 of paper 16 an amount sufficient to prevent light leakage between paper 16 and plate 18. A camera 20, which may be a Polaroid type MP3 camera, is focused on the surface of paper 16 at a distance which causes the length of the image of the 1.27 centimeter wide aperture 15 of paper 16 to reach across the film 22 in camera 20. Film 22, which may be Polaroid type 55P/N film, is chosen such that it produces a negative transparency when exposed, and eliminates the need for external processing. When camera 20 is activated, light from lamp 12 passes through plate 14, the aperture 15 in paper 16, and plate 18 and exposes film 22, causing the area of film 22 corresponding to the 1.27 centimeter wide aperture 15 to be heavily exposed (dark on development). However, a portion of the light from lamp 12 is diffused as it passes through the rough surface of plate 14, as represented by path 19 in Fig. 2. The light is further scattered by the rough surface of plate 18. As a result, some of the light is reflected through edge 17 of plate 18 onto the surface of paper 16, and reflected therefrom. The amount of light which is diffused onto paper 16 decreases rapidly as the distance from edge 17 of plate 18 increases. Due to surface reflectivity of paper 16, the light exposes film 22 in proportion to the distance from edge 17. The resultant image on film 22 shows a dark section corresponding to aperture 15, which becomes lighter as the distance from the image of edge 17 increases. In the present embodiment, film 22 was exposed for a period of 105 seconds, creating a film strip with the desired qualities for use in the aforementioned currency dispenser monitor. However, the exposure time may be adjusted to generate a film strip with the proper gradient for other applications. The graded-density film strip created in the present invention can be an efficient means for extending the operating range of a photodetector. Some photodetector units, such as type H17B1 manufactured by General Electric, have an active optical area of only 0.050 to 0.075 centimeters in length. Therefore, any operating mechanism which contains a sharp opaque-to-transparent transition line can be moved only that distance to control the detector. By using a graded-density film strip to control the detector, the total range of motion measurable by the detector can be expanded significantly. Fig. 3 is a graph which plots the density as a percentage of light transmission through a film strip fabricated according to the method of the present invention with respect to the position of the film strip as measured by a microdensitometer. Fig. 3 shows that the percentage of light transmission increases linearly as the distance increases from the point 23 on curve 24 when the film portion being sensed is centered on the transition line corresponding to the image of the edge 17 of plate 18 (Fig. 1) on the film. As sensing of the film is shifted toward and into the fully exposed region, the percentage of light transmission rapidly decreases to a substantially constant value. The microdensitometer uses a precise reading spot which is 0.028 centimeters in diameter, and which provides a very accurate measurement. However, when the film strip is used in conjunction with a commercially available detector, such as the G. E. H17B1, the reading spot is significantly larger, which can have an effect on the operating range. Fig. 4 is a graph which plots the output current of a H17B1 detector with respect to several film strips which were created using the method disclosed in the present invention. Curve 28 shows the output current of the detector as a function of the distance across a film strip from the edge 17 image line (Fig. 1), where the film strip was exposed for 105 seconds. Curve 26 shows the detector output versus a film strip with a 90 second exposure time, and curve 30 represents the detector output plotted against a film strip with a 120 second exposure. Referring to Fig. 4, it can be seen that the output current decreases as the distance from the edge image is increased for all the film strips, but that the relationship displays the best linearity in curve 28, using the 105 second time exposure. Also, the linear relationship covers a minimum of 0.254 centimeters, which will allow for a significant expansion of the total range of motion measurable by the detector. It should be clear that many changes and modifications may be made without departing from the scope of the invention as defined in the appended claims. For example, a thin photographically sensitive glass plate may be used in place of photographic film, or any source of radiant energy may be substituted for the tungsten lamp. 1. A method for fabricating a translucent graded density medium, characterized by the steps of providing a source (12) of radiant energy; diffusing radiant energy from said source; passing a portion of said diffused radiant energy through an aperture (15); further diffusing said radiant energy passing through said aperture (15); causing a portion of said further diffused radiant energy to be reflected from a substantially opaque surface (16) in such a manner that the intensity of said reflected radiant energy decreases as a function of the distance from the edge of said aperture (15); and focusing said radiant energy passing through said aperture (15) and said reflected radiant energy in the plane of a radiation-sensitive medium (22) to produce a medium exhibiting an incre- mental gradient in optical density across an area thereof. 2. A method according to claim 1, characterized in that said radiant energy is light energy and in that said medium (22) is a photographic film. 3. An apparatus for fabricating a translucent graded density medium, characterized by a source (12) of radiant energy; a first diffusing means (14) positioned to intercept said radiant energy from said source; an opaque element (16) covering said first diffusing means, which element contains an aperture (15); a second diffusing means (18) having an edge (17) which overlies an edge of said aperture in said element to cause a portion of said radiant energy passing through said aperture to be directed against said opaque element and reflected therefrom; and means (20) for selectively exposing a radiation-sensitive medium (22) to radiant energy passing through said aperture to cause the exposed medium to exhibit an incremental gradient in optical density across an area thereof. 4. An apparatus according to claim 3, characterized in that said first and second diffusing means (14,18) each include a ground glass plate. 5. An apparatus according to claim 4, characterized in that each of said ground glass plates has one rough surface positioned away from said light source (12). 6. An apparatus according to claim 3, characterized in that said opaque element (16) is a black sheet of photographic paper. 7. An apparatus according to claim 3, characterized in that the width of said aperture (15) is approximately 1.27 centimeters. 8. An apparatus according to any one of claims 3 to 7, characterized in that said source (12) of radiant energy is a light source. 1. Procédé pour fabriquer un milieu translucide de densité graduelle, caractérisé par les étapes consistant à utiliser une source (12) d'énergie rayonnante; à diffuser de l'énergie rayonnante à partir de ladite source; à faire passer une partie de ladite énergie rayonnante diffusée dans une ouverture (15); à diffuser encore ladite énergie rayonnante ayant passé dans ladite ouverture (15); à provoquer la réflexion, sur une surface sensiblement opaque (16), de ladite énergie rayonnante ayant encore diffusé de telle façon que l'intensité de ladite énergie rayonnant réfléchie décroît en fonction de la distance du bord de l'ouverture (15); et à focaliser ladite énergie rayonnante passant dans ladite ouverture (15) et ladite énergie rayonnante réfléchie dans le plan dudit milieu (22) sensible au rayonnement afin de produire un milieu dont une zone présente un gradient incrémentiel de densité optique. 2. Procédé selon la revendication 1, caractérisé en ce que ladite énergie rayonnante est de l'énergie lumineuse et en ce que ledit milieu (22) est un film photographique. 3. Appareil pour fabriquer un milieu translucide de densité graduelle, caractérisé par une source (12) d'énergie rayonnante; un premier moyen diffusant (14) positionné pour intercepter ladite énergie rayonnante provenant de ladite source; un élément opaque (16) recouvrant ledit premier moyen diffusant, lequel élément présente une ouverture (15); un second moyen diffusant (18) comportant un bord (17) qui recouvre un bord de ladite ouverture dudit élément pour qu'une partie de ladite énergie rayonnante passant dans ladite ouverture soit dirigée contre ledit élément optique et réfléchie par ce dernier; et un moyen (20) pour exposer sélectivement un milieu (22), sensible au rayonnement, à de l'energie rayonnante passant dans ladite ouverture afin qu'une zone du milieu exposé présente un gradient incrémentiel de densité optique. 4. Appareil selon la revendication 3, caractérisé en ce que lesdits premier et second moyens diffusants (14,18) comprennent chacun une plaque de verre dépoli. 5. Appareil selon la revendication 4, caractérisé en ce que chacune desdites plaques de verre dépoli présente une surface rugueuse éloignée de ladite source de lumière (12). 6. Appareil selon la revendication 3, caractérisé en ce que ledit élément opaque (16) est une feuille noire de papier photographique. 7. Appareil selon la revendication 3, caractérisé en ce que la largeur de ladite ouverture (15) est d'environ 1,27 cm. 8. Appareil selon l'une quelconque des revendications 3 et 7, caractérisé en ce que ladite source (12) d'énergie rayonnante est une source de lumière. 1. Verfahren zum Herstellen eine durchscheinenden Mediums abgestufter Dichte, gekennzeichnet durch die Schritte: Vorsehen einer Strahlungsenergiequelle (12); Zerstreuen der Strahlungsenergie von der Quelle; Hindurchlassen eines Teils der zerstreuten Abstrahlungsenergie durch eine Öffnung (15); weiteres Zerstreuen der durch die Öffnung (15) laufenden Strahlungsenergie; Bewirken einer Reflexion eines Teils der weiter zerstreuten Strahlungsenergie an einer im wesentlichen undurchsichtigen Fläche (16) so dass die Intensität der reflektierten Strahlungsenergie als Funktion des Abstandes vom Rande der Öffnung (15) abnimmt; und Fokussieren der durch die Öffnung (15) fallenden und der in der Ebene des strahlungsempfindlichen Mediums (22) reflektierten Energie, um ein Medium zu erzeugen, das einen inkrementalen Gradienten in der optischen Dichte über eine Fläche auf dem Medium aufweist. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Strahlungsenergie Lichtenergie ist und dass das Medium (22) ein photographischer Film ist. 3. Einrichtung zum Herstellen eines durchscheinenden Mediums mit abgestufter Dichte, ge- kennzeichnet durch eine Strahlungsquelle (12); eine erste Zerstreuungsvorrichtung (14), die angeordnet ist, um die Strahlungsenergie von der Quelle aufzufangen; ein undurchsichtiges Element (16), das die erste Zerstreuungsvorrichtung bedeckt und eine Öffnung (15) besitzt; eine zweite Zerstreuungsvorrichtung (18) mit einer Kante (17), die über eine Kante der Öffnung in dem Element liegt, um zu bewirken, dass ein Teil der durch die Öffnung laufenden Strahlungsenergie auf das undurchsichtige Element gerichtet und von diesem reflektiert wird; und durch eine Vorrichtung (20) zum selektiven Aussetzen eines strahlungsempfindlichen Medium (22), der durch die Öffnung laufenden Strahlungsenergie, um zu bewirken, dass das bestrahlte Medium einen inkrementalen Gradienten in der optischen Dichte uber eine Fläche des Mediums aufweist. 4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die erste und zweite Zerstreuvorrichtung (14, 18) jeweils eine geschliffene Glasplatte aufweisen. 5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass jede der geschliffenen Glasplatten eine rauhe Oberfläche besitzt, die von der Lichtquelle (12) abgewandt ist. 6. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das undurchsichtige Element (16) ein schwarzes Blatt von photographischem Papier ist. 7. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Weite der Öffnung (15) anähernd 1,27 cm ist. 8. Einrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Strahlungsenergiequelle (12) eine Lichtquelle ist.
© Copyright 2025 Paperzz