第 49 卷 第 1 期 2013 年 2 月 兰 州 大 学 学 报(自然科学版) Journal of Lanzhou University (Natural Sciences) Vol. 49 No. 1 Feb. 2013 Articlcal ID: 0455-2059(2013)01-0100-04 Sixfold restricted sum formula for multiple zeta values at even integers LEI Peng, GUO Li School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China Abstract: Identities for the multiple zeta functions P ζ(2n1 , 2n2 , · · · , 2nk ), are known for k = 2, n1 +n2 +···+nk =n n1 , n2 , ··· , nk >1 3, 4, 5. The multiple zeta values was given for k = 6 by way of recursion P 231 ζ(2n) − ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 , 2n6 ) = 512 21 ζ(2)ζ(2n 64 − 2) + 21 ζ(4)ζ(2n 256 − 4). n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 Key words: multiple zeta value; shuffle product; recursion CLC number: O156.2 Document code: A AMS Subject Classifications(2000): 11M99 多重 Zeta 偶数值的六重求和公式 雷 鹏, 郭 锂 兰州大学 数学与统计学院, 兰州 730000 摘 P 要: 对于多重 Zeta 函数 ζ(2n1 , 2n2 , · · · , 2nk ), 当 k = 2, 3, 4, 5 时等式是已知的. 利用递归的 n1 +n2 +···+nk =n n1 , n2 , ··· , nk >1 方法给出了 k = 6 时的多重 Zeta 值 P ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 , 2n6 ) = 231 ζ(2n) − 512 21 ζ(2)ζ(2n 64 − 2) + 21 ζ(4)ζ(2n 256 − 4). n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 关键词: 多重 Zeta 值; 洗牌乘积; 递归 文献标识码: A 中图分类号: O156.2 The multiple zeta values (MZVs) are special values A principle goal in the theoretical study of MZVs of the multi-variable analytic function is to determine all algebraic relations among them. ζ(n1 , n2 , · · · , nk ) = X Conjecturally all such relations come from the so- m1 >m2 >···>mk 1 mn1 1 mn2 2 · · · mnk k >0 , (1) at integers n1 > 2, ni > 1, 1 6 i 6 k. Their study in the two variable cases went back to Goldbach and Euler[1] . The general concept was introduced in the 1990’s, with motivation from both mathematics[2] and physics[3] . Since then the subject has been studied intensively with interactions from a broad range called extended double shuffle relations. But there is no definite way to exhaust all of them and new identities of MZVs are being found steadily[9−10] . One of Euler’s major discoveries on double zeta values is his sum formula n−1 X ζ(i, n − i) = ζ(n). i=2 metic geometry, combinatorics, number theory, knot Reference [11] proved n−1 X 3 ζ(2m, 2n − 2m) = ζ(2n), 4 m=1 theory, Hopf algebra, quantum field theory and mir- for n > 2. of areas in mathematics and physics, including arith- ror symmetry [3−8] . (2) Reference [12] proved the following results: for Received date: 2012-10-08 Biography: LEI Peng(1977−), male, born in Zhongwei, Ningxia Hui Autonomous Region, lecturer, e-mail: [email protected], majoring in semigroup algebra and algebraic number theory. No. 1 LEI Peng, et al: Sixfold restricted sum formula for multiple zeta values at even integers n > 3, X By symmetry, we have Proof 1 5 ζ(2a, 2b, 2c) = ζ(2n) − ζ(2)ζ(2n − 2), 8 4 a+b+c=n X A= X (3) X ζ(2a, 2b, 2c, 2d) = X 35 5 ζ(2n) − ζ(2)ζ(2n − 2). (4) 64 16 In [13], the following result for the fivefold restrict- X 5 a=1 values at even integers by the method of recursion, a=1 ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 , 2n6 ) = n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 A= 5 ′ b , c , d , e be positive integers. In order to prove the theorem, we need the following lemmas. Lemma 1 For n > 2, we have n−1 X 2n + 1 ζ(2m)ζ(2n − 2m) = ζ(2n). 2 m=1 X X (b′ − 1)ζ(2a′ , 2b′ , 2c′ , 2d′ , 2e′ ) = a′ +b′ +c′ +d′ +e′ =n a′ , b′ , c′ , d′ , e′ >1 5 X (c′ − 1)ζ(2a′ , 2b′ , 2c′ , 2d′ , 2e′ ) = a′ +b′ +c′ +d′ +e′ =n a′ , b′ , c′ , d′ , e′ >1 For n > 6, let X ζ(2a + 2f, 2b, 2c, 2d, 2e)+ 5 X (d′ − 1)ζ(2a′ , 2b′ , 2c′ , 2d′ , 2e′ ). a′ +b′ +c′ +d′ +e′ =n a′ , b′ , c′ , d′ , e′ >1 a+b+c+d+e+f =n a, b, c, d, e, f >1 Adding in the above five equations and noting that ζ(2a, 2b + 2f, 2c, 2d, 2e)+ a′ +b′ +c′ +d′ +e′ = n, we get X 5A = (n − 5) ζ(2a′ , 2b′ , 2c′ , 2d′ , 2e′ ). a+b+c+d+e+f =n a, b, c, d, e, f >1 ζ(2a, 2b, 2c + 2f, 2d, 2e)+ a′ +b′ +c′ +d′ +e′ =n a′ , b′ , c′ , d′ , e′ >1 a+b+c+d+e+f =n a, b, c, d, e, f >1 ζ(2a, 2b, 2c, 2d + 2f, 2e)+ Multiplying a+b+c+d+e+f =n a, b, c, d, e, f >1 1 5 (6) on the two sides of the above equation, we complete the proof. ζ(2a, 2b, 2c, 2d, 2e + 2f ). a+b+c+d+e+f =n a, b, c, d, e, f >1 X (a′ − 1)ζ(2a′ , 2b′ , 2c′ , 2d′ , 2e′ ) = a′ +b′ +c′ +d′ +e′ =n a′ , b′ , c′ , d′ , e′ >1 5 [15] A = (n − 5) d=1 d′ > 1. The above equation equals X 5 (e′ − 1)ζ(2a′ , 2b′ , 2c′ , 2d′ , 2e′ ). Throughout this paper, let a, b, c, d, e, f and a′ , Then we have c=1 b=1 By symmetry, we also have Preliminaries X d=1 a′ +b′ +c′ +d′ +e′ =n a′ , b′ , c′ , d′ , e′ >1 21 21 231 ζ(2n)− ζ(2)ζ(2n − 2) + ζ(4)ζ(2n − 4). 512 64 256 X c=1 b=1 Let a′ = a, b′ = b, c′ = c, d′ = d, e′ = n − a′ − b′ − c′− For n > 6, we have X e=1 ζ(2a, 2b, 2c, 2d, 2(n − a − b − c − d)). which differs from the method in [14]. X d=1 ζ(2a, 2b, 2c, 2d, 2(n − a − b − c − d)) = n−4 X n−a−3 X n−a−b−2 X n−a−b−c−1 X 5 (n−a−b−c−d−1)· the sixfold restricted sum formula for multiple zeta A= ζ(2a, c=1 b=1 2b, 2c, 2d, 2(n−a−b−c−d)) = n−5 X n−a−b−3 X X n−a−4 X n−a−b−c−2 (n−a−b−c−d−1)· 5 21 3 63 ζ(2n) − ζ(2)ζ(2n − 2) + ζ(4)ζ(2n − 4). 128 64 64 In this paper, we obtain the following result for Lemma 2 n−5 n−a−b−c−d−1 X n−a−4 X n−a−b−3 X n−a−b−c−2 X X a=1 a+b+c+d+e=n a, b, c, d, e>1 ′ ζ(2a, 2b, 2c, 2d, 2e + 2f ) = a+b+c+d+e+f =n a, b, c, d, e, f >1 tegers was announced. X ζ(2a, 2b, 2c, 2d, 2e) = ′ ζ(2a, 2b, 2c, 2e + 2f, 2d)+ a+b+c+d+e+f =n a, b, c, d, e, f >1 ed sum formula for multiple zeta values at even in- ′ ζ(2a, 2b, 2e + 2f, 2c, 2d)+ a+b+c+d+e+f =n a, b, c, d, e, f >1 a+b+c+d=n a, b, c, d>1 1 ζ(2a, 2e + 2f, 2b, 2c, 2d)+ a+b+c+d+e+f =n a, b, c, d, e, f >1 X Theorem 1 X ζ(2e + 2f, 2a, 2b, 2c, 2d)+ a+b+c+d+e+f =n a, b, c, d, e, f >1 a, b, c>1 and, for n > 4, 101 2 ζ(2a′ , 2b′ , 2c′ , 2d′ , 2e′ ). a′ +b′ +c′ +d′ +e′ =n a′ , b′ , c′ , d′ , e′ >1 (5) The proof of theorem 1 Proof Using the quasi-shuffle relation and Lemma 2, we have X n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 )ζ(2n6 ) = 102 Journal of Lanzhou University (Natural Sciences) X 6 X we get ζ(2n1 + 2n6 , 2n2 , 2n3 , 2n4 , 2n5 )+ n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 X ζ(2n1 , 2n2 + 2n6 , 2n3 , 2n4 , 2n5 )+ n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 X ζ(2n1 , 2n2 , 2n3 + 2n6 , 2n4 , 2n5 )+ X ζ(2n1 , 2n2 , 2n3 , 2n4 + 2n6 , 2n5 )+ n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 X ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 + 2n6 ) = X ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 , 2n6 )+ n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 (n − 5) ζ(2a, 2b, 2c, 2d, 2e). a+b+c+d+e=n a, b, c, d, e>1 Applying (5) to the second part of the above equation, we obtain (n − 5)( 21 63 ζ(2n) − ζ(2)ζ(2n − 2)+ 128 64 3 ζ(4)ζ(2n − 4)). 64 On the other hand, by (5), we get X (7) ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 )ζ(2n6 ) = n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 n−5 X ( n6 =1 X 21 63 ζ(2n − 2n6 ) − ζ(2)ζ(2n − 2 − 2n6 )+ 128 64 3 ζ(4)ζ(2n − 4 − 2n6 ))ζ(2n6 ) = 64 n−1 63 X ( ζ(2n − 2n6 )ζ(2n6 ) − ζ(2)ζ(2n − 2)− 128 n =1 ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 , 2n6 ) = n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 X ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 )ζ(2n6 )− n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 (n − 5) n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 X 7 5 ζ(4), ζ(2)ζ(4) = ζ(6), 2 4 5 7 2 ζ(2)ζ(6) = ζ(8), ζ (4) = ζ(8). 3 6 Using the above formulas and (7), we get ζ 2 (2) = 6 n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 6 ζ(6) = π 6 /945, ζ(8) = π 6 /9450, ζ(2n1 , 2n2 , 2n3 , 2n4 , 2n5 , 2n6 )+ n1 +n2 +n3 +n4 +n5 +n6 =n n1 , n2 , n3 , n4 , n5 , n6 >1 Vol. 49 X ζ(2a, 2b, 2c, 2d, 2e) = a+b+c+d+e=n a, b, c, d, e>1 63 2n + 1 ( ζ(2n) − ζ(2)ζ(2n − 2) − ζ(4)ζ(2n − 4)− 128 2 ζ(6)ζ(2n − 6) − ζ(8)ζ(2n − 8))− 2n − 1 21 ζ(2)( ζ(2n − 2) − ζ(2)ζ(2n − 4)− 64 2 3 2n − 3 ζ(4)ζ(2n − 6) − ζ(6)ζ(2n − 8)) + ζ(4)( ζ(2n − 4)− 64 2 63 ζ(2n)− ζ(2)ζ(2n − 6) − ζ(4)ζ(2n − 8)) − (n − 5)( 128 3 21 ζ(2)ζ(2n − 2) + ζ(4)ζ(2n − 4)) = 64 64 693 126 63 21 5 ζ(2n) − ζ(2)ζ(2n − 2) + (− + · + 256 64 128 64 2 3 3 2n − 3 · − (n − 5))ζ(4)ζ(2n − 4)+ 64 2 64 18 7 63 + · )ζ(6)ζ(2n − 6)+ (− 128 64 4 63 21 5 3 7 (− + · − · )ζ(8)ζ(2n − 8) = 128 64 3 64 6 126 63 693 ζ(2n) − ζ(2)ζ(2n − 2) + ζ(4)ζ(2n − 4). 256 64 128 Multiplying 1 6 to two sides of the above equation, we obtain the theorem. 6 ζ(4)ζ(2n − 4) − ζ(6)ζ(2n − 6) − ζ(8)ζ(2n − 8))− n−2 X 21 ζ(2n − 2 − 2n6 )ζ(2n6 ) − ζ(2)ζ(2n − 4)− ζ(2)( 64 n =1 6 ζ(4)ζ(2n − 6) − ζ(6)ζ(2n − 8))+ n−3 X 3 ζ(4)( ζ(2n − 4 − 2n6 )ζ(2n6 ) − ζ(2)ζ(2n − 6)− 64 n =1 6 ζ(4)ζ(2n − 8)). Reference [1] Juskevic A P, Winter E. Leonhard Euler and Christian Goldbach[M]. Berlin: Akademie-Verlag, 1965: 1 729−1 764. [2] Hoffman M E. Multiple harmonic series[J]. Pacific J Math, 1992, 152(2): 275−290. Applying Lemma 1 to the first, sixth and tenth [3] Broadhurt D J, Kreimer D. Association of mul- terms of the above sum, we have 63 2n + 1 ( ζ(2n) − ζ(2)ζ(2n − 2) − ζ(4)ζ(2n − 4)− 128 2 ζ(6)ζ(2n − 6) − ζ(8)ζ(2n − 8))− 21 2n − 1 ζ(2)( ζ(2n − 2) − ζ(2)ζ(2n − 4)− 64 2 ζ(4)ζ(2n − 6) − ζ(6)ζ(2n − 8))+ 3 2n − 3 ζ(4)( ζ(2n − 4)− 64 2 ζ(2)ζ(2n − 6) − ζ(4)ζ(2n − 8)). tiple zeta values with positive knots via Feynman di- Noting that ζ(2) = π 2 /6, ζ(4) = π 4 /90, agrams up to 9 loops[J]. Phys Lett B, 1997, 393(3/4): 403−412. [4] Bowman D, Bradley D. Resolution of some open problems concerning multiple zeta evaluations of arbitrary depth[J]. Composition Math, 2003, 139(1): 85−100. [5] Borwein J M, Broadhurst D J, Bradley D M, et al. Special values of multiple polylogarithms[J]. Trans Amer Math Soc, 2001, 353(3): 907−941. (下转第 107 页)
© Copyright 2026 Paperzz