Name ________________________________________ Date __________________ Class__________________ LESSON 11-4 Reteach Sum and Difference Identities You can use angle addition and subtraction identities to find the exact value of some trigonometric expressions. Look for ways to use 30° or π π , and 60° or π to make 6 4 3 the sum because exact values are known for these angles. Sum Identities , 45° or Difference Identities sin (A + B) = sinAcosB + cosAsinB sin (A – B) = sinAcosB – cosAsinB cos (A + B) = cosAcosB – sinAsinB cos (A − B) = cosAcosB + sinAsinB tan ( A + B ) = tan A + tan B 1 − tan A tan B tan ( A − B ) = Find the exact value of cos105°. cos105° = cos(60° + 45°) = cos60°cos45° – sin60°sin45° 1 2 3 2 = ⋅ − ⋅ 2 2 2 2 2 6 2− 6 = − = 4 4 4 ⎛π ⎞ Find the exact value of sin ⎜ ⎟ . ⎝ 12 ⎠ ⎛π ⎞ ⎛π π ⎞ sin ⎜ ⎟ = sin ⎜ − ⎟ ⎝ 12 ⎠ ⎝3 4⎠ = sin π 3 cos π 4 − cos π 3 sin tan A − tan B 1 + tan A tan B Think: 60° + 45° = 105°. Use cos(A + B) identity. Evaluate. The value is negative. This makes sense since 105° lies in Quadrant II where cosine is negative. Simplify. Think: π π 3 − π 4 = π 12 . Substitute: Use sin(A − B) identity. 4 3 2 1 2 = ⋅ − ⋅ 2 2 2 2 6 2 6− 2 = − = 4 4 4 Substitute: A = 60° and B = 45°. A= Evaluate. B= π and 3 π 4 . Simplify. Use the sum or difference identity to find the exact value of each expression. ⎛ 7π ⎞ ⎛π π ⎞ 1. cos(–15°) = cos(30° – 45°) 2. sin ⎜ = sin ⎜ + ⎟ ⎟ ⎝ 12 ⎠ ⎝3 4⎠ _________________________________________ ________________________________________ _________________________________________ ________________________________________ _________________________________________ ________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 11-30 Holt McDougal Algebra 2 Name ________________________________________ Date __________________ Class__________________ LESSON 11-4 Reteach Sum and Difference Identities (continued) You can use angle addition and subtraction identities to prove identities. Use an identity to make one side of the equation resemble the other side. Sum Identities Difference Identities sin(A + B) = sinAcosB + cosAsinB sin(A – B) = sinAcosB – cosAsinB cos(A + B) = cosAcosB – sinAsinB cos (A − B) = cosAcosB + sinAsinB tan ( A + B ) = tan A + tan B 1 − tan A tan B tan ( A − B ) = tan A − tan B 1 + tan A tan B Prove: tan(π + x) = tanx tan(π + x) = tanx tan π + tan x = tan x 1 − tan π tan x 0 + tan x = tan x 1 − (0) tan x tan x = tan x 1 Modify the left side. Use tan(A + B) identity. Substitute: A = π and B = x. Evaluate. Think: tanπ = 0. Simplify. Prove: sin(π − x) = sinx sin(π – x) = sinx sinπ cosx – cosπ sinx = sinx (0)cosx –(–1) sinx = sinx 0 + sinx = sinx Modify the left side. Use sin(A – B) identity. Evaluate. Think: sinπ = 0 and cosπ = –1. Simplify. Write the missing steps or reasons to prove each identity. ⎛π ⎞ 3. sin ⎜ + x ⎟ = cos x ⎝2 ⎠ Modify the left side. ⎛π ⎞ ⎛π ⎞ sin ⎜ ⎟ cos x + cos ⎜ ⎟ sin x = cos x ⎝2⎠ ⎝2⎠ _________________________________ _____________________________________ Evaluate. _____________________________________ Simplify. 4. cos(π + x) = −cosx Modify the left side. _____________________________________ Use cos(A + B) identity. _____________________________________ _________________________________ _____________________________________ _________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 11-31 Holt McDougal Algebra 2 1 x cosx − 0 x sinx = cosx ⎛ 3π ⎞ ⎛ 3π ⎞ − sin ⎜ sin x cos ⎜ ⎟ ⎟ cos x = cosx ⎝ 2 ⎠ ⎝ 2 ⎠ sinx x 0 − (−1)cosx = cosx cosx = cosx cosx = cosx 9. π⎞ ⎛ 8. cos ⎜ x − ⎟ = sin x 2⎠ ⎝ ⎛π ⎞ ⎛π ⎞ cos x cos ⎜ ⎟ + sin x sin ⎜ ⎟ = sinx ⎝2⎠ ⎝2⎠ cosx x 0 + sinx x 1 = sinx 21 221 11. − 21 220 140 13. − 221 10. − 220 221 12. − 171 221 13. − 204 325 14. − = 3 2 1 2 ⋅ + ⋅ = 2 2 2 2 2. sin = 253 204 π 3 cos π 4 + cos π 3 sin 3 2 1 2 = x + x 2 2 2 2 6+ 2 4 π 4 6+ 2 4 3. Use sin(A + B) identity (1)(cosx) + 0(sinx) = cosx cosx = cosx Practice C 5. 253 325 1. cos30°cos45° + sin30°sin45° 16. 207 m 2. 2− 6 4 12. Reteach 171 14. 140 c. A′(0.50, 0.87), B′(5, 8.66), C′(−4.2, 4.73) 3. −2 − 3 323 36 17. 156.3 mi ⎡0.50 5.00 −4.20 ⎤ b. ⎢ ⎥ ⎣0.87 8.66 4.73 ⎦ 1 2 11. − 36 325 16. F′(−9.66, 2.59), G′(2.59, 9.66), H′(1.22, 0.71) ⎡cos 60° − sin 60° ⎤ ⎡ 1 10 2 ⎤ 15. a. ⎢ ⎥⎢ ⎥ ⎣sin 60° cos 60° ⎦ ⎣0 0 6 ⎦ 1. 10. − 15. P′(−0.71, 0.71), Q′(2.83, −2.83), R′(−2.12, 4.95) sinx = sinx 9. 323 325 4. cosπcosx − sinπ sinx = −cosx 2− 6 4 (−1)cosx − (0)(sinx) = −cosx Evaluate. 4. −2 + 3 −cosx = −cosx 6− 2 6. − 4 Simplify. Challenge 7. tan(π − x) = − tanx 1. Possible answer: Since the triangles are right triangles and the circle has a radius of 1, the length of the side opposite angle x is sinx and the length of the adjacent side is cosx. In the right triangle with angle y, the length of the hypotenuse is cosx so the length of the side opposite angle y is cosxsiny and the adjacent side is cosxcosy. tan π − tan x = − tan x 1 + tan π tan x 0 − tan x = − tan x 1 + 0 x tan x −tanx = −tanx ⎛π ⎞ 8. sin ⎜ − x ⎟ = cos x 2 ⎝ ⎠ 2. Possible answer: m∠OAD + a = 90° − x; x + y = 90° − m∠OAD; so a = 90° − x − ⎛π ⎞ ⎛π ⎞ sin ⎜ ⎟ cos x − cos ⎜ ⎟ sin x = cos x ⎝2⎠ ⎝2⎠ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A51 Holt McDougal Algebra 2
© Copyright 2026 Paperzz