01-title 4/27/99 1:17 AM Leading References: Melikyan, G. G. Synthesis, 1993, 833. Iqbal, J. Bhatia, B. Nayyar, N. K. Chem. Rev. 1994, 94, 519. Snider, B. B. Chem. Rev. 1996, 96, 339 Melikyan, G. G. In Organic Reactions; Paquette, L. A. Ed; John Wiley: New York, NY, 1997; Vol. 49, 427. Melikyan, G. G. Aldrichimica Acta 1998, 31, 50 I. Mn(OAc)3 Intermolecular Additions II. Mechanism III. Hexenyl Radical Cyclizations IV. Heptenyl Radical Cyclizations V. Mn(pic)3 April 27, 1999 by Victor Cee An Evans group afternoon seminar Mn(III) Promoted Radical Reactions - 2+ + Mn+ Substitution 02-Mnintro 4/26/99 12:02 PM + Mn+ 1.92 1.61 1.51 0.77 0.16 E˚ (V) Electron Transfer Co +1e → Co Ce4+ +1e- → Ce3+ Mn3+ +1e- → Mn2+ Fe3+ +1e- → Fe2+ Cu2+ +1e- → Cu1+ 3+ Reaction One Electron Oxidants RH RH -H -M + n-1+ R Mn+ RH Mn(III) d4 -M e- n-1+ + t2g -H eg R R Mn(II) d5 Electronic Structure (Oh, high spin) Manganese (III): A One Electron Oxidant eg t2g OMe Me Me 03-metalinduced radicals 4/26/99 3:03 PM Ph O + OMe Me OTMS O mixture of isomers MeO TMSO Me MeO O Me OEt IP = 7.25 eV Me OTES 69% + OEt Me Me CO2Me -eRO OR + O OEt 85% only product observed Ph O Chan Tetrahedron 1983, 39, 847 Chung J. Org. Chem. 1983, 48, 1125 RO OR Fukuzumi J. Org. Chem. 1996, 61, 2951 J. Am. Chem. Soc. 1992, 114, 10271 CH2Cl2, -78 ˚C cat. SnCl4 cis:trans 1:99 MeO2C OTES CO2Me cis:trans 1:1 MeO2C IP = 7.74 eV CH2Cl2, 20 ˚C 2 equiv TiCl4 99% 2 equiv LDA 2 equiv CuBr2 THF, -78 ˚C Metal-Induced Carboxymethyl Radicals OH O OH 04-Mn induced radicals 4/26/99 3:13 PM IP ~ 8.8 eV Me O O IP = 10.65 eV O OEt + + + 75 % AcOH, ∆ Mn(OAc)3·2 H2O O HO Me Ph O O -e- Me Me Ph O Ph O Me CO2Et Heiba J. Org. Chem. 1974, 34, 3456 57% AcOH, 45 ˚C Mn(OAc)3·2 H2O Heiba J. Am. Chem. Soc. 1968, 90, 5905 79 % KOAc, AcOH, ∆ Mn(OAc)3·2 H2O O Bush and Finkbeiner J. Am. Chem. Soc. 1968, 90, 5903 Me Mn(III) Induced Carboxymethyl Radicals HO O Distance (Å) 1.848 1.858 2.108 Mn2 Mn3 05-Mn(OAc)3 xtal 4/26/99 3:17 PM Hessel C. Rec. Trav. Chim. 1969, 88, 545. Bond Mn1-O16 Mn3-O16 Mn2-O16 O16 Mn1 Solid-State Structure of Anhydrous Mn(OAc)3 [Mn3O(OAc)6·AcOH·OAc]n O n O OH O O Mn Mn Mn2 Mn1 Mn3 O Mn OH + AcO- Mn AcO HOAc O H Mn OAc HOAc = + AcO- O O CH3 Mn(OAc)3·nAcOH Dimeric and monomeric species may also be present . O A trimeric solution structure has been proposed . Solution Structure (AcOH) Anhydrous Mn(OAc)3 and the dihydrate are indistinguishable in solution, and undergo metathesis with other acids readily. The commercially available dihydrate is the most popular. Mn(OAc)3•2H2O and Anhydrous "Mn(OAc)3" 06-Biochem 4/26/99 3:33 PM L L Mn H+, H2O2 L L III III Mn Mn L L O OH OH H 2O III O O2 Mn III = L L O O CH3 OH2 Mn II L L L Mn L H2O H+ L II L Mn OH2 II OH O+ II Mn L L H 2O L L OH2 Mn II OH II H3O+ L L Mn O H2O2 Proposed Mechanism 2 H2O2 → O2 + 2 H2O Catalyzes the disproportionation of H2O2: T. thermophilus Catalase 1.78 1.51 0.68 E˚ (V) Dismukes, G. C. Chem. Rev. 1996, 96, 2909. Net Result: Redox chemistry at the diffusion-controlled rate Close proximity of two manganese centers is established by bridging acetates H2O2 + 2 H3O+ + 2e- → 4 H2O Mn3+ + 1e- → Mn2+ O2 + 2 H3O+ + 2e- → H2O2 + 2 H2O Reaction Standard Reduction Potentials Importance of Bridged Mn Centers: Catalases Cu(II) Ti(IV), Sn(IV), O OR Ti(IV), Cu(II) RO + CH3 07-Uniqueness Mn 4/26/99 10:11 PM CO2 pic = pyridinecarboxylate Ce(IV), Mn(pic)3 M = Ag(II), Pb(IV), Decarboxylation is not a dominant pathway RO O Dimerization is not a dominant pathway RO OSiR3 Ability to oxidize free acids RO O M O O O CH3 HO O HO M = Mn(OAc)3 Mn(OAc)3 Mn(OAc)3 Unique Features of Mn(III) Attributed to the Trimeric Nature of Mn(OAc)3 O III O M O CH3 Mn Mn III O O O OH Mn III O CH3 CH3 AcOK R OH OH OH 08-Mechanism Mn_2 4/26/99 10:19 PM R' O -20 K = 4x10 Guthrie, Can. J. Chem. 1995, 73, 1395 O R' Mn(III) Fristad J. Org. Chem. 1985, 50, 10 CO2H Enol Content - Small R O Enolization Proposed as the Rate-Determining Step IP = 10.2 eV H O Ionization Potentials: Carbonyl vs. Enol Ether Mechanism of Mn(III) Oxidative Lactonization: Enolization H Cl SO2Ph CO2Me CN R IP = 9.0 eV H OMe III O Mn III O O CH3 Mn O Mn III O pKa = 0.1 pKa = 2.2 Li Inorg. Chem. 1996, 35, 4694 [Mn(OH2)6]+3 1 1.1 x 101 3.8 x 103 1.1 x 104 4.0 x 105 relative rate III Mn III [Fe(OH2)6]+3 Activation by Mn 25 22 14 13 9 pKa α-H (ester) Mn Mn III O Mechanism of Mn(III) Oxidative Lactonization: Enolization Lactone Solvent Enolization 09-Mechanism Mn_2 4/26/99 9:24 PM Fristad Tetrahedron 1986, 42, 3429 Conclusion: Once enolization occurs, rapid electron transfer and reaction ensue. Enolization is irreversible Olefin time (min) Comparison of Enolization and Reaction Rates mmol Mn O O CH3 HOAc, reflux Mn(III), KOAc Mn III O O III Mn O O Mn III O C8H17 Mn III O KOAc, reflux Mn(III) CHnD3-nCO2H(D) 1e- H OAc III O Mn II O Mn G. I. Nishikin J. Org. Chem. USSR 1978, 14, 1894 O Mn Alternative Conclusion: Enolization and electron transfer occur in a concerted step Presence of Mn(III) has no effect on D incorporation! CH3CO2H + CD3CO2D Rate of enolization ~ rate of deuterium incorporation: C8H17 The reaction: III Mn III II 10-Mechanism Mn 4/26/99 10:36 PM R1 R2 9.65 8.20 8.14 8.00 1-hexene 4-methylstyrene indene trans-stilbene HOAc IP (eV) OH Mn(III) Alkene + R3 O Mechanism of Mn(III) Oxidative Lactonization: Radical Addition O Mn II O + CH2 R1 R2 Ligand Electron Transfer O O O OAc 6 54 96 0 0 0 0 0 R2 Mn II O Alkene Electron Transfer R1 OAc O Mn III Mn III R O R Fristad Tetrahedron, 1986, 42, 3429 Alkene Electron Transfer (%) R3 = H R3 = CO2Me R3 Mn III Mn III Mn III O Mn O Mn III Mn III 11-Mechanism Mn 4/27/99 1:19 AM Fristad: No evidence for carbocation Fristad: Radical Cyclization Heiba: Oxidation to a carbocation III Mn II O Mn II O O O KOAc, HOAc, ∆ Mn(OAc)3 R R Mechanism of Mn(III) Oxidative Lactonization: Oxidation and Cyclization 63% O O R R R III O O O Mn II O Mn II O 1% + O - O O O Mn II O Mn II O Mn II O CO2H OAc R R Heiba J. Am. Chem. Soc. 1971, 93, 524 Fristad J. Org. Chem. 1985, 50, 10 OAc CO2H O Mn II Mn III Mn III Mn II Mn O Mn II O O Mn O III Mn III Mn III Mn II Mn III II Mn O Mn III 12-Cu_2 4/26/99 11:01 PM Copper (II) Oxidation Mechanism Heiba: Application to Mn(III) reactions Kochi: Cu(II) as a radical oxidant O O R O O R Elimination is usually the dominant pathway O Cu(OAc)2 III Cu(OAc)2 R 1 12 350 C9H19 + Ce(IV) Cu(II) O Relative kox 2 AcOH Cu(OAc)2 M Oxidant AcOH, KOAc, 85 ˚C 1-octene, Mn(OAc)3, M O O O CO2 Introduction of Copper (II) 97% + 3% O OAc C6H13 Nu R O + R + Cu(OAc) Heiba J. Am. Chem. Soc. 1971, 93, 524 C5H11 + Kochi J. Am. Chem. Soc. 1965, 87, 4855 + O O MeO MeO OEt O OMe + O OMe OMe CO2Et CO2Et 13-Intermolec. cyclizn 4/27/99 12:04 AM O O O OMe CO2Et O O 56% MeO AcOH, 30 min 2.2 Mn(OAc)3 OMe O O O OMe CO2Et CO2Et EtO2C O OMe OH O OMe O rt, 70 h 81% 5 equiv SnCl4 Podophyllotoxin MeO OMe OMe Fristad Tetrahedron Lett. 1987, 28, 1493 O O OMe CO2Et Intermolecular Cyclizations: Studies Toward Podophyllotoxin 14-Intramolec cycl intro 4/13/99 9:26 AM Higher cyclizations Monocyclizations X X O O O O OR OR X RO O O O O OR OR Intramolecular Cyclizations R X O O R O O X OR k-endo k-exo kterm 15-Hexenyl Cyclizn Intro 4/27/99 12:07 AM Representative rates: kexo = 2 x 105 s-1 kendo = 4 x 103 s-1 kterm = 3 x 106 M-1 s-1 (Bu3SnH) Equilibration: extent of ring opening depends on relative magnitude of kterm Kinetics: kexo/kendo depends on substitution pattern CH3 kterm kendo kexo Hexenyl Radical Cyclization Is Equilibration Possible? 48 h ∆, C6H12 (PhCO2)2 14 CO2Et CN 9 -1 -1 CO2Me CO2Me 10 min hν, benzene (Me3Sn)2 90 -1 -1 55 ˚C, 43 h Cu(OAc)2 Mn(OAc)3 16-Hexenyl Cyclizn Intro 2 4/27/99 12:13 AM koxidn ~ 1x10 M s 6 CO2Me CO2Me Rate of oxidation > rate of ring opening kI ~ 2x10 M s I I O 93 CO2Me O CO2Me CO2Me Rate of iodine abstraction > rate of ring opening kopen ~ 1x104 s-1 CO2Et CN CH3 Rate of H abstraction < rate of ring opening I + + + 10 86 CO2Me CO2Me CO2Me CO2Me CO2Et CN t-BuO3C CN CO2Et 7 CO2Me CO2Me Curran J. Org. Chem. 1989, 54, 3140 Snider J. Am. Chem. Soc. 1991, 113, 6609 + CN CO2Et M. Julia Acc. Chem. Res. 1971, 4, 386 t-BuO3C The same ratio is observed when the following radical precursors are used: Reversible vs. Irreversible Radical Cyclization H H H H Me Ph Me H H R3 R2 5-exo 5% - 21% 70% disfavored relative to 6-(enolendo)-exo-trig 5-(enolendo)-exo-trig 2 Mn(OAc)3 Cu(OAc)2 Ph OAc - - R R CO2Me R2 reference 6-endo R3 CO2Me PetersonTetrahedron Lett. 1987, 6109 Snider J. Org. Chem. 1985, 50, 3661 Snider J. Org. Chem. 1989, 54, 38 PetersonTetrahedron Lett. 1987, 6109 R1 OH X O Endocyclic ketone and the substitution pattern of the alkene control the mode of cyclization Similar selectivity seen for α-substituted β-ketoesters Similar selectivity seen for α-radicals generated by atom transfer 91% - 4 Mn(OAc)3 Cu(OAc)2 2 Mn(OAc)3 Cu(OAc)2 94% - 4 Mn(OAc)3 Cu(OAc)2 products R1 6-endo AcOH conditions O 5-exo conditions R2 R3 CO2Me 17-Hexenyl MonoCyclizn 4/13/99 10:11 AM MeOC O Me Me Me H H O R2 R1 substrate R1 O Hexenyl Radical Cyclization O OR O CO2Et Ph CO2Me HO H CO2H H 74% AcOH 2 equiv Mn(OAc)3 Gibberelic Acid Me OC O R=H R=CH3 R=OPO(OEt)2 Cu(OAc)2 AcOH 2 equiv Mn(OAc)3 18-HexenylbiCyclizn 4/13/99 10:31 AM R O O OH 48% 86% 77% R O H CH3 CO2Et CO2Me MeO2C O O 18% - R X O OR Snider J. Org. Chem. 1987, 52, 5487 J. Org. Chem. 1991, 55, 5544 Snider Tetrahedron Lett. 1987, 28, 845 OPO(OEt)2 O O Hexenyl Radical Bicyclization O O O O H O H bilobalide O OH OH t-Bu O CO2Me O H CO2H 18a-Hexenyl Bilobalide O 4/13/99 10:18 AM H O O H O lactone annulation 65%, two steps THF/H2O Al/Hg H O O O O O H AcOH, rt, 1h 52%, one isomer Mn(OAc)3 O OH CO2Me H O OH OH t-Bu H O O H O H Mn(III) 79% HO H O O O O O H O H O OH OH t-Bu O H methyl bromoacetate NaH X O O OR Corey J. Am. Chem. Soc. 1984, 106, 5384 2) LiOH; H+ 1) MsCl, TEA H H Hexenyl Radical Cyclization: Studies Toward the Ginkgolides 20 - 30% CuCl, Cu(OBz)2, ∆ Acetonitrile (PhCO2)2 OH BzO H 3C H3C HO H CH3 H 3C H CH3 H 3C H OAc Breslow Tetrahedron Lett. 1968, 1837 Breslow Tetrahedron Lett. 1962, 1207 CH3 van Tamelen, J. Am. Chem. Soc. 1966, 88, 4752 lanosterol CH3 H 3C CH3 CH3 18b-Hexenyl polyCyclizn bio 4/13/99 10:37 AM However, in 1966 the importance of squalene oxide was established: Corey J. Am. Chem. Soc. 1966, 88, 4750; OAc squalene Experiment: Proposal: Biosynthetic Radical Cyclization Hypothesis Me H CO2Et Me CO2Et OMe AcOH, rt, 1h 50%, one isomer 2 equiv Mn(OAc)3 18c-Hexenyl polyCyclizn Podo 4/27/99 12:37 AM Me O OMe Me H CO2H Me OMe H CO2Et Me OMe Me O 60% Zn, HCl CO2Et X O OR OMe Snider J. Org. Chem. 1985, 50, 3659 Ester hydrolysis: Welch J. Org. Chem. 1977, 42, 2879 (±) Podocarpic Acid Me O Hexenyl Radical Bicyclization: Podocarpic Acid O H Me O 33% 2) excess n-BuLi 1) H2NNHTs 18d-Hexenyl polyCyclizn beyerol 4/13/99 10:42 AM HO H Me CO2Et Me Me HO O Cu(OAc)2 MeOH, rt, 3h Mn(OAc)3 H H Me CO2Et 52 % 2) O3, DMS 1) LAH X O OR Snider J. Org. Chem. 1998, 63, 7945 Me O + 4% 6-8 bicycle 35%, one isomer Beyer-15-ene-3,19-diol H Me H CO2Et HO Me Me HO O Me Me Hexenyl Radical Tetracyclization: Beyer-15-ene-3,19-diol O O O O Me CO2Me CO2Me CO2Me Me Me O O O CO2Me 19-Hexenyl MonoCyclizn O 4/13/99 10:53 AM α-substituted α-unsubstituted O O 54% Cu(OAc)2 AcOH, ∆ 2 equiv Mn(OAc)3 21% Cu(OAc)2 KOAc, AcOH, ∆ 2 equiv Mn(OAc)3 73% Cu(OAc)2 KOAc, AcOH, ∆ 2 equiv Mn(OAc)3 43% Cu(OAc)2 KOAc, AcOH, ∆ 2 equiv Mn(OAc)3 O O O O O O O 2 CO2Me Me Me O Me O H O 2:1 : CO2Me Me O O 1 O Hexenyl Radical Cyclization: O-Substituted Malonates OR X=O O O Snider Tetrahedron 1993, 49, 9447 Me CO2Me Bertrand Tetrahedron Lett. 1989, 30, 331 X O Me O O O - 2 1 2 - product Cu(OAc)2 AcOH 2 Mn(OAc)3 1 Me + O R 45 90 44 28 - - 86 100 92 - yield (%) selectivity (%de) R O Snider J. Org. Chem. 1991, 56, 328; J. Org. Chem. 1993, 58, 7640 O Ph O O N N S Et2N Me Ph Me O O R Me 19a-Asymmetric Cyclization 4/13/99 11:00 AM R O Mn(III) Cyclizations: Chiral Auxiliaries 2 Me Ph S O S O Me 19b-Asymmetric Cyclization 4/13/99 11:01 AM sulfoxide pseudo-axial O O Ph Me O Me CO2Et Me Me OMe sulfoxide pseudo-equatorial Ph S OO PhOS O Snider J. Org. Chem. 1991, 56, 328 Proposed cyclization geometry in podocarpic acid synthesis O SOPh Mn(III) Cyclizations: β-Ketosulfoxide PhOS O Me 92% de O O R Me 86% de O Ph O O 19c-Asymmetric Cyclization 4/27/99 12:46 AM 17:1 X H N Me A1,3 strain minimized R O Me O Me N Me Me Porter J. Am. Chem. Soc. 1991, 113, 7002 Giese Tetrahedron Lett. 1993, 33, 2637 t-Bu 4:1 H The origin of diastereoselectivity is difficult to rationalize when the radical center is tertiary and the conformation is controlled by A1,3 strain. O N Me Mn(III) Cyclizations: β-Ketoamide, β-Ketoester CO2R O S N O N SO2 H O O O O R = (-)-phenmenthyl Me 19d-Asymmetric Cyclization 4/13/99 11:04 AM O OMe A similar example: H O O N O S O RO2C O O H Me 27:1 H O O N O S Zoretic Tetrahedron Lett. 1992, 33, 2637 Xc H Me Snider J. Org. Chem. 1993, 58, 7640 Me Curran; Porter; Geise In Stereochemistry of Radical Reactions, VCH: Weinheim, 1996, 198. 49%, 50% de Cu(OAc)2 HOAc, 4h, rt 2 Mn(OAc)3 AcOH, 15 ˚C, 1h, 50%, 75% de MeOH, 0 ˚C, 8h, 56%, 82% de 2 Mn(OAc)3 OMe Mn(III) Cyclizations: Chiral Auxiliaries H CO2Me H Me 20-Heptenyl BiCyclizn 4/13/99 11:16 AM Me O CO2Me O 25 ˚C, 13 h R1=H, R2=Me; R'=Me H 25 ˚C R1=Me, R2=H; R'=Me 6-exo R1 R2 CO2R' H O CO2Me 67% - 12% 6-exo - 68% 32% 7-endo products (%yield) H Me Cu(OAc)2 AcOH 2 equiv Mn(OAc)3 conditions CO2R' 25 ˚C O R1=R2=H; R'=Et substrate R2 R1 O Me R1 R2 CO2R' reference 7-endo O X O O H H CO2Me O Me H H Snider J. Org. Chem. 1987, 52, 5487 Snider Tetrahedron 1991, 47, 8663 O OR CO2Me Snider Tetrahedron Lett. 1988, 29, 5209 + Heptenyl Radical Bicyclization H Me H Me H H Me Me OH OH CO2Me O O 62% HgSO4 2N H2SO4 H 3 Me Me Me H H O Me H Me 2,3-dihydropallescensin D 2 Me Me 64%, one isomer 2) (i-Pr)2NMgBr; TMSCl, Et3N 3) mCPBA 1) LiCl, DMSO, ∆ 2) LDA, MeO2CCN 52% 1) Li, NH3, t-BuOH 21-Heptenyl Dihydropallescensin 4/13/99 11:20 AM Me Me Me Me O O OH Heptenyl Radical Cyclization: Dihydropallescensin D Me controls facial selectivity of "O" addition O controls facial selectivity of Nu addition O OR J. D. White Tetrahedron Lett. 1990, 31, 59 Me 81% 2) K2CO3, MeOH Li 61%, one isomer Cu(OAc)2 AcOH, rt, 3h 2 equiv Mn(OAc)3 1) TMS CO2Me X O O ∆ 1:1 Me Me OEt O O OMOM CO2H Cu(OAc)2 HOAc, 25 ˚C, 2h 85%, mixture of four diastereomers O Me Me MeO2C 2) HCl, THF/H2O 57%, 6:1 Me 7 steps OMOM CO2H 2 equiv Mn(OAc)3 Me CHO Me Me MeO2C 1) LDA, iodohexene 22-Heptenyl epiupial 4/27/99 1:02 AM Me Me Snider: Upial Formal Synthesis Me Me Paquette: 14-epiUpial Heptenyl Radical Cyclization: Upial and 14-epiUpial O O CHO CO2Me CO2Me Me H O Me OMOM O Me Me Upial O Paquette Tetrahedron 1987, 43, 5567 Me MOMO Me H O 14 Snider Tetrahedron 1995, 51, 12983 Taschner J. Am. Chem. Soc. 1985, 107, 5570 O Me O 9% " 68% HOAc, 70 ˚C Mn(OAc)3 Me Upial Me Me O O Me R TMS 62%, ~1:1 9:1 EtOH/HOAc 90 ˚C, 22 h 15 Mn(OAc)3 30%, 6:1 2) NaH, MeI Me Me O O TMS Me Me Me Me R=H R=TMS 9:1 EtOH/HOAc 90 ˚C, 20 h 15 equiv Mn(OAc)3 1) LiHMDS, 1-iodo-2-butyne O 23-Heptenyl gymnomitrol 4/13/99 11:25 AM Me Me Me Synthesis: Precedent: Me + 70% 2) NaBH4 1) HOAc, 100 ˚C O 4% 58% R Me 41% 0% R Me HO (±) gymnomitrol Me H Snider J. Org. Chem. 1997, 62, 1970 Me Me 65 % 2) LDA, TMSCl 1) KNH H2N O Heptenyl Radical Cyclization: Gymnomitrol HO Me Ph O OH + + Ph OTBS Ph OTBS 89% DMF, 0 ˚C, 2h 2.5 Mn(pic)3 68% DMF, rt, 2h 2.5 Mn(pic)3 Ph Ph O O Me O Ph O Ph Me Me 24-Mn picolinate 4/13/99 11:27 AM MeO2C O Cu(OAc)2 AcOH, rt 15% 2 Mn(pic)3 MeO2C O Me Cu(OAc)2 AcOH, rt 86% 2 Mn(OAc)3 N O 3 Mn MeO2C O Me Narasaka Chem Lett. 1991, 1193 Narasaka Chem Lett. 1989, 2169 Mn(pic)3 O Mn(pic)3 and Mn(OAc)3 behave differently in acetic acid: Snider J. Org. Chem. 1993, 58, 6217 Ph O Introduction in synthetic chemistry: Narasaka Chem Lett. 1989, 2169 Synthesis: Ray Aust. J. Chem. 1966, 19, 1737 Formerly a water-redox model for photosystem II. Manganese Tris(2-pyridinecarboxylate) H O H + + Ph OTBS H "chair" H Ph OTBS 25-Mn picolinate ring xpansion 4/27/99 2:02 AM "boat" H ( )n HO HO H O >9:1 n=1 81% n=2 63% DMF, 0 ˚C 2.4 Mn(pic)3 DMF, 0 ˚C 2.4 Mn(pic)3 H H H O H ( )n O 77% O O Ph 5% O Ph Cyclization selectivity is consistent with the Beckwith-Houk model Ph + O Narasaka Bull Chem. Soc. Jpn. 1999, 72, 85 H O Mn(pic)3: Oxidative Ring Expansion 2) 76%, >9:1 DMF, 0 ˚C Mn(pic)3, n-Bu3SnH 83% MgBr CuBr•SMe2, TMSCl 1) DHP, PPTS 26-Mn picolinate Guaianolide 4/27/99 2:01 AM OTHP OH OH O THPO O OTHP OTMS H Me H Me Narasaka Bull Chem. Soc. Jpn. 1999, 72, 85 10-Isothiocyanatoguaia-6-ene Me SCN 81%, 10:1 2) K2CO3, MeOH 1) Et2Zn, CH2I2 Oxidative Ring Expansion: Synthesis of 10-Isothiocyanatoguaia-6-ene H N CH3 t-Bu MeO2C H 2C H CH3 MgBr (-)-methyl cantabradienate 27-Mn picolinate Snider 4/24/99 7:10 PM 45% 3) CH2N2 2) PdCl2(PPh3)2 DIPEA, CO, MeOH H 3C 55% 2) PDC 1) 1:1, 79% EDTA•Li CO2t-Bu 1) KHMDS, PhN(Tf)2 O H3C H3C H CH3 CH3 46% 58% OH H 2C H 3C O H 79% DMAP, DIPEA, toluene, ∆ oxalyl chloride O CH3 CH2 Snider J. Org. Chem. 1994, 59, 5419 Mn(OAc)3 Mn(pic)3 Mn(III) CO2H 7 steps, 9% overall yield HO H 3C 20:1 H3C Oxidative Ring Expansion: Synthesis of (-)-Methyl Cantabradienate 28-conclusion 4/27/99 1:13 AM Mn(pic)3 offers interesting routes to natural products by oxidative cyclopropane fragmentation Liability: polymerization and other side-reactions often lead to modest yields Important in the synthesis of fused- and bridged- polycyclic natural products, often exhibiting excellent regioselectivity in cyclizations Mn(OAc)3 is a unique one-electron oxidant for acidic C-H bonds Reflections on Mn(III)
© Copyright 2026 Paperzz